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3.1 Methodology Flow Diagram 

The following flowchart (Fig 3.1) outlines the methodology employed in this study 

for the conversion of raw biomass into value-added products. The process begins with the 

characterization and preparation of raw biomass, including cleaning, drying, grinding, and 

sieving, to obtain a processed biomass sample. The prepared biomass undergoes pyrolysis, 

a thermochemical decomposition process, accompanied by detailed kinetic and 

thermodynamic studies. Several ZSM-5 catalysts are introduced during pyrolysis to 

enhance the yield and quality of the products. The resulting pyrolysis products—biochar, 

bio-oil, and gas—are subjected to analysis and characterization to compare catalytic and 

non-catalytic pyrolysis. To further optimize the process and predict outcomes, Response 

Surface Methodology (RSM) and Artificial Neural Networks (ANN) are applied and 

compared. This systematic approach ensures a comprehensive understanding of the 

biomass conversion process and its performance. 

 

Fig. 3.1: Flow diagram of the methodology adopted for the study 
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3.2 Identification and Description of the Feedstock 

A species of weed, Tithonia diversifolia, known for its invasive properties was 

identified and collected from the Sonitpur district in Assam, located in the north-eastern 

part of India. Assam lies at coordinates 26.2006° N and 92.9376° E and experiences a 

predominantly warm and moist climate, with the exception of some central regions. 

Temperature fluctuations are common, ranging from 22 °C to 35 °C in the summertime, 

and dropping to a cooler 10 °C to 30 °C during the winter months. High humidity levels, 

between 75-90%, are a constant feature across the state year-round. The state receives an 

annual rainfall that typically falls between 1700 and 2100 millimeters [1]. 

3.2.1 Tithonia diversifolia: The Feedstock in the Current Investigation 

 

Fig. 3.2: Tithonia diversifolia 

Scientific classification of the feedstock: 

Species: T. diversifolia 

Kingdom: Plantae 

Family: Asteraceae 

Genus: Tithonia 

Tithonia diversifolia (TD), commonly referred to as Mexican sunflower or tree 

marigold, is a robust annual or perennial herbaceous and bushy plant with a woody base, 

growing to a height of about 2.5 m belongs to the family Asteraceae [2]. The stems of 

Tithonia diversifolia are cylindrical, hollow, slightly ridged, and hairy when young. The 

leaves, borne on stalks, are simple, alternate, and finely hairy; they have a tapered base and 
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3-7 pointed lobes with scalloped or toothed margins. A photograph of the species has been 

shown in Fig. 3.2. The flower heads look like sunflowers but have yellow centers. They are 

borne on long stalks, velvety beneath the heads, and are arranged in small groups at the 

ends of the branches. The fruit is a blackish hairy achene topped with a ring of scales and 

two awns. It can grow throughout the year and its seeds are spread through way of wind, 

water, and animals. 

3.2.1.1 Distribution of T. diversifolia 

This aggressive weed plant has been found on disturbed sites, abandoned farmlands, 

wastelands, roadsides, forest edges, field edges, riverbanks, and disturbed secondary forests 

at elevations ranging from near sea level to 2300 m [5, 10, 31]. It originated from Mexico 

and Central America and is now widely distributed throughout the tropical and subtropical 

regions of the world, including Central and South America, Africa, Asia, Australia, the 

West Indies, and many islands across the Pacific and Indian Ocean [3, 8, 31]. 

In India, Tithonia diversifolia is distributed widely across several states. In southern 

India, it has been recorded in Karnataka, specifically the Hassan district, and across all 

districts of Kerala. It is also present in Tamil Nadu (Salem and Madurai districts) and 

Odisha [32, 33]. In Maharashtra, the plant has been reported, along with northeastern states 

like Nagaland, Arunachal Pradesh, Mizoram, Manipur and Meghalaya. In Assam, it has 

been recorded in Bokakhat, Jorhat, and several other districts [33, 34]. This extensive 

spread in Assam and neighboring states highlights its adaptability to diverse environments, 

aided by its high seed production potential, which can reach up to 900,000 seeds/m² [35]. 

The rapid spread of T. diversifolia is facilitated by its tolerance to heat and drought, 

its rapid growth rates, and its ability to produce large quantities of small seeds that are easily 

dispersed by wind, water, and animals [4]. Once established, it quickly forms dense stands 

that out-compete native vegetation, preventing the recruitment and growth of native plant 

species. In addition, it may also affect the loss of medicinal resources as it contains a large 

amount of allelochemicals especially in leaves which inhibit the growth of many plants [5]. 

Furthermore, T. diversifolia has been reported as a weed in rice, sorghum, and maize 

plantations [9]. One study found that when dried leaf material comprised more than 4% of 

broiler feed, carcass traits and sensory characteristics were adversely affected [35]. 

However, despite its invasive nature, the plant has some economic and traditional uses, 

such as fuelwood, building materials, compost, and land demarcation [3]. The leaves of 
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Tithonia diversifolia are also used in traditional medicine for treating constipation, stomach 

pains, liver pains, indigestion, sore throats, and as an antiviral [6, 7] 

3.3 Material and Analytical Test Method 

3.3.1 Sample Preparation 

Biomass material for the current study was gathered from nearby areas of Tezpur 

University, Tezpur, Assam. The entire plant excluding the roots were collected and washed 

thoroughly to remove extraneous particles, cut into small pieces and then sun-dried 

followed by oven drying for 12 h at 105 °C. After that, samples were grounded using a 

Wiley machine (SECOR Scientific Eng. Co) with different sieve sizes to produce samples 

with different particle sizes (<0.25 mm, 0.25- 0.5mm, 0.5- 0.84 mm, 0.84-1mm, and >1 

mm).  For the preliminary analysis, biomass particles smaller than 0.25 mm (60 mesh) were 

used and stored in sealed containers. To assess the impact of particle size on Tithonia 

diversifolia biomass pyrolysis, all particle sizes were evaluated. 

3.3.2 Proximate Analysis 

3.3.2.1 Determination of moisture content  

The moisture content (MC) of the samples under investigation was determined 

following the ASTM D-3173 method. At first, a certain amount of the fresh sample was 

taken in an aluminum container and weighed by using an electronic balance. Then the 

sample was oven-dried at a temperature of 105±3 °C until a constant weight was obtained. 

For each sample, the experiment was performed in triplicate and the mean value was 

reported. The moisture content (MC) was calculated by using the following equation: 

𝑀𝑜𝑖𝑠𝑡𝑢𝑟𝑒 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 (%) =
𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑤𝑒𝑖𝑔ℎ𝑡−𝑂𝑣𝑒𝑛 𝑑𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑤𝑒𝑖𝑔ℎ𝑡
×100 …….(1) 

3.3.2.2 Determination of ash content 

The ash content (AC) of the samples was determined by using the ASTM D-3174 

method. At first, an empty 25 ml silica crucible was dried in a muffle furnace at a 

temperature of 575 ± 25 °C for 15 minutes and then allowed to cool in desiccators for 45 

min and weighed precisely. About 2 g of the oven-dried sample was weighed and 

transferred to a completely dried crucible and then kept in a muffle furnace at 575 ± 25 °C 

for six hours until complete combustion of the sample took place as indicated by the 
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absence of black particles. When the furnace was cooled down, the crucible was taken out, 

kept in a desiccator, and weighed accurately. For each sample, the experiment was done in 

triplicate and the mean value was reported. The percentage of ash content (AC) was 

determined by using the following formula: 

𝐴𝑠ℎ 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 (%) =
𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑎𝑠ℎ

𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒
×100 …….(2) 

3.3.2.3 Determination of volatile matter 

The volatile matter (VM) of the samples was determined by the ASTM D-3175 

method. A silica crucible with 10 ml capacity was dried in a preheated vertical tube furnace 

at 950 ºC for 2 min and then allowed to cool in a desiccator for 15 min. Then the weight of 

the empty crucible was taken. About 2 g of the oven-dried biomass sample was taken in the 

dried crucible, covered with a lid, and placed in the preheated vertical tube furnace at 950 

ºC for about 2 minutes. Then the crucible was removed from the furnace and allowed to 

cool in air for 2 to 5 min and then in a desiccator for about 15 minutes. The weight loss 

percentage was reported as volatile matter (VM) content which was calculated as follows: 

𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑒 𝑚𝑎𝑡𝑡𝑒𝑟 (%) =
𝑊𝑒𝑖𝑔ℎ𝑡 𝑙𝑜𝑠𝑠 𝑜𝑓 𝑑𝑟𝑦 𝑠𝑎𝑚𝑝𝑙𝑒

𝑁𝑒𝑡 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑑𝑟𝑦 𝑠𝑎𝑚𝑝𝑙𝑒
×100 …….(3) 

3.3.2.4 Fixed carbon 

The fixed carbon content of the samples was determined by the method given in 

ASTM Test No. D-271-48. Fixed carbon content was calculated by subtracting the sum of 

percentages of moisture, ash, and volatile matter from 100. 

𝐹𝑖𝑥𝑒𝑑 𝑐𝑎𝑟𝑏𝑜𝑛 (𝑑𝑟𝑦 𝑏𝑎𝑠𝑖𝑠)(%) = 100 − [𝑀𝐶(%) + 𝑉𝑀 (%) + 𝐴𝐶(%)] …….(4) 

3.3.3 Biochemical Analysis of Biomass 

The biochemical components, i.e., hemicellulose, cellulose, lignin, and extractive 

of the biomass samples were done using the method illustrated elsewhere [11]. The 

methods adopted are discussed in the following subsections. 

3.3.3.1  Extractives  

The dried biomass sample (W0, g) is leached with a mixture of benzene/ethanol (2:1 

in volume) at a constant temperature for 3 h. After air-drying, the residue is dried in an 

oven at 105 –110 °C to a constant weight. Then the residue is cooled to room temperature 

in a desiccator and then weighed (W1, g). The extractive wt.% is calculated as:  
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𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑣𝑒𝑠, 𝐸 (%) =
𝑊0−𝑊1

𝑊0
×100 …….(5) 

3.3.3.2 Hemicellulose 

The residue W1 from the extractive analysis was placed in a flask and then added to 

a 150 ml NaOH solution (20 g/l). The mixture was boiled for 3.5 hours with recycled 

distilled water. The residue was filtered and washed until no more Na+ ions were present, 

and it was subsequently dried to a constant weight. The residue is then cooled to room 

temperature in a desiccator and weighed (W2, g). The hemicellulose wt.% is calculated as: 

𝐻𝑒𝑚𝑖𝑐𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒, 𝐻𝑐 (%) =
𝑊1−𝑊2

𝑊0
×100 …….(6) 

3.3.3.3 Lignin 

Approximately 1 g of residue, from the extractives analysis outlined above, was 

placed into a pre-weighed flask. The residue was dried until a constant weight was 

achieved. Subsequently, the sample was cooled within a desiccator and weighed (W3, g). 

A quantity of 30 ml of sulfuric acid (72%) was carefully poured into the sample. The 

mixture was maintained at a temperature between 8 and 15 °C for a duration of 24 hours. 

Following this period, the mixture was transferred to a flask and diluted with 300 ml of 

distilled water. The sample was then boiled for 1 hour using recycled distilled water. After 

cooling and filtration, the residue is washed until there is no more sulfate ion in the filtrate 

(detected by 10% barium chloride solution). The residue is then dried to a constant weight, 

cooled to room temperature in a desiccator, and weighed (W4, g). The hemicellulose wt.% 

is calculated using the following formula: 

𝐿𝑖𝑔𝑛𝑖𝑛, 𝐿 (%) =
𝑊4(1−𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑣𝑒,   𝑤𝑡 %)

𝑊3
×100 …….(7) 

3.3.3.4 Cellulose 

The cellulose wt.% is calculated as: 

 𝐶𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒, (%) =  100 −  (𝐴𝐶 % + 𝐸 % +  𝐻𝑐 % +  𝐿 %) …….(8) 
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3.3.4 Pyrolysis Experiments 

              

Fig. 3.3: Schematic of pyrolysis experimental setup 

The thermo-chemical conversion i.e., pyrolysis experiments were conducted in a 

fixed-bed tubular pyrolysis reactor system (Montech Instruments, Chandigarh, India). In 

this system, the temperature was controlled by a Ni-Cr thermocouple placed in the center 

of the pyrolysis reactor as shown in Fig 3.3. The biomass sample (10 g) was placed in the 

lab-scale fixed-bed tubular reactor (length 30 cm and internal diameter 2.47 cm) made up 

of quartz. The bed height of the biomass in the reactor was approximately 5 cm, depending 

on the size of the sample particles. 

The pyrolysis of the samples was performed in the reactor at different operating 

conditions or parameters. A condenser was attached to the outlet of the reactor to condense 

the vapors coming out of it. The condensed liquid was collected in a container at the end of 

the condenser. The liquid product consists of two phases: the aqueous phase (it is mainly 

composed of acids, sugars, and other highly polar organic compounds) and the organic 

phase (Fig 3.4). The organic phase was extracted with an equal quantity of diethyl ether. 

The obtained ether fraction (organic phase) was dried over anhydrous sodium sulfate, 

filtered, and evaporated in a rotary evaporator at 30 °C to remove diethyl ether. Then this 

fraction was weighed, bottled, and indicated as bio-oil in the present study. The liquid 

products and char yield were determined by weighing and the gas yield was determined by 
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difference as mentioned in equations (9) and (10). Triplicate experiments were conducted 

for each sample yielding outputs with acceptable experimental margins. 

 Product yield (wt. %) =  
𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑡

𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑖𝑜𝑚𝑎𝑠𝑠 𝑠𝑎𝑚𝑝𝑙𝑒
× 100 …….(9) 

Gas Yield, (wt. %) = 100 − [ Oil yield (wt. %) + Biochar yield (wt. %)] …….(10) 

 

3.3.4.1 Effect of operating conditions on product distribution 

For estimation of the optimum operating conditions for highest products yield 

classically, temperature (T) from 400 – 600°C were selected along with heating rates (HR) 

10, 20, 30 and 40 °C/min; nitrogen flow rates (NFR) of 50, 100, 150, 200 mL/min; and 

different particle sizes (PS in mm) of >0.84, 0.5-0.84, 0.25-0.5 and <0.25 mm, with holding 

time of 30 min. 

To study the effect of operating conditions on biomass pyrolysis, experiments were 

conducted systematically under varying parameters. Initially, 10 g of biomass sample with 

a particle size (PS) of <0.25 mm was placed in the reactor. A nitrogen flow rate (NFR) of 

50 mL/min was initiated to ensure an inert atmosphere and maintained throughout the 

pyrolysis process. The feedstock was subjected to heat treatment at a constant heating rate 

(HR) of 10 °C/min, with final temperatures of 400, 450, 500, 550, and 600 °C. After 

pyrolysis, the liquid products and solid residue were collected and weighed to determine 

product yields. 

In the second set of experiments, the effect of HR on bio-oil yield was evaluated by 

varying the HR at 10, 20, 30, and 40 °C/min while maintaining the optimal pyrolysis 

 

Fig. 3.4 Pyrolysis liquid product (A) Aqueous phase (B) Organic phase 

 

(A) (B) 
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temperature (determined in the first step). The biomass PS (<0.25 mm) and NFR (50 

mL/min) were kept constant. 

Subsequently, the impact of PS was studied by keeping the optimal temperature and 

HR constant. Biomass samples with particle sizes of >0.84 mm, 0.5–0.84 mm, 0.25–0.5 

mm, and <0.25 mm were tested at NFR of 50 mL/min. 

Finally, the effect of NFR on product yield was investigated while maintaining the 

optimal parameters for temperature, HR, and PS. The NFR was varied at 50, 100, 150, and 

200 mL/min, and the flow rate corresponding to the maximum bio-oil yield was identified.  

3.3.5 Statistical Modelling 

3.3.5.1 Response surface methodology 

To predict the output response of a particular problem due to the interaction of 

various input factors; Box and Wilson derived a regression method in 1951 which 

facilitated exploring the association among the factors and their response [12]. To increase 

or forecast the highest yield of bio-oil from the above-mentioned biomass, the pyrolysis 

experiment was developed with the design expert software (Version 10.0.6, Stat- Ease Inc., 

MN, USA) using CCD-based response surface methodology (RSM). CCD was used due to 

a smaller number of experiments and the use of a second-order model fitting for the 

prediction and verification of the model equation. The four independent parameters to 

obtain a realistic model are; temperature (T °C); heating rate (HR °C/min); nitrogen flow 

rate (FR mL/min) and particle size (PS mm). The parameters were coded as A, B, C, and 

D respectively. Bio-oil yield (YBO) was taken as a response for the experiments.  

Table 3.1 represents the levels of the independent variables (coded and uncoded) 

whereas Table 3.2 depicts the CCD for the experiment. The general form for second-order 

polynomial equation is shown below: 

YBO= 𝛼0 + ∑ 𝛼𝑖𝑍𝑖
𝑛
𝑖=1 +  ∑ 𝛼𝑖𝑖

𝑛
𝑖=1 𝑋𝑍𝑖

2 +  ∑ ∑ 𝛼𝑖𝑗
𝑛
𝑗>1

𝑛
𝑖 𝑍𝑖𝑍𝑗   (11) 

Where, YBO= predicted bio-oil yield, n = number of tests, 𝛼o, 𝛼i, 𝛼ii, 𝛼ijwere the 

constant, linear, quadratic, and interaction coefficients respectively and Xi and Xj were 

coded independent factors. 
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Table 3.1: Process parameters and their levels 

Coded factors Factors Experimental Levels 

- α -1 0 +1 + α 

A Temperature (°C) 375 450 525 600 675 

B Heating rate (°C/min) 10 20 30 40 50 

C Flow rate (mL/min) 50 100 150 200 250 

D Particle size (mm) 0.25 0.5 0.75 1 1.25 

 

In this study, the particle size was set in five categories, which are 0.25 <PS~0.25 

mm, 0.25 <PS< 0.5~0.5 mm, 0.5 <PS< 0.84~0.75 mm, 0.84<PS<1mm~1mm and PS> 

1~1.25 mm. 

Graphical and numerical representations were carried out along with an analysis of 

variance (ANOVA) to test the statistical significance of the regression coefficient. Based 

on P<0.05, the significance of model terms was judged. Finally, the model fitness was 

measured by calculating the “lack-of-fit”. Based on the effect of the four parameters, three-

dimensional response surface plots were derived which is also used to study the interaction 

effect. In addition to that optimum process conditions for maximum bio-oil yield were also 

evaluated using a design expert tool. 
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Table 3.2: CCD experimental design matrix 

Sl 

No. 

Temperature (°C) Heating rate 

(°C/min) 

Flow rate 

(mL/min) 

Particle size 

(mm) 

1 450 20 200 1 

2 375 30 150 0.75 

3 450 40 100 0.5 

4 525 30 150 0.75 

5 600 40 100 0.5 

6 525 30 150 1.25 

7 675 30 150 0.75 

8 450 40 200 0.5 

9 525 30 150 0.75 

10 600 40 100 1 

11 600 20 200 0.5 

12 600 20 100 1 

13 450 20 100 0.5 

14 600 20 200 1 

15 525 30 150 0.75 

16 450 20 200 0.5 

17 450 20 100 1 

18 525 30 150 0.75 

19 600 40 200 1 

20 525 10 150 0.75 

21 450 40 200 1 

22 525 30 250 0.75 

23 525 30 50 0.75 

24 450 40 100 1 

25 525 50 150 0.75 

26 525 30 150 0.25 

27 525 30 150 0.75 

28 600 20 100 0.5 

29 600 40 200 0.5 

30 525 30 150 0.75 
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3.3.5.2 ANN modelling 

An artificial neural network (ANN) is a promising alternative modeling technique 

inspired by biological neural systems [13]. It consists of a large number of neurons or 

processing elements or units in different layers that are interconnected to one another 

through weights. Through adjusting connecting weights, bias, and architecture; neurons are 

trained to perform a particular task [14]. The network architecture of neural networks was 

determined by how artificial neurons were mutually connected, and more than fifty types 

of network architecture could be found in the literature [15]. The systems showing 

nonlinearities and complex behavior can be well predicted using neural networks due to 

their ability to learn from a set of experimental data (e.g., process conditions and responses) 

with minimal prior knowledge about their further properties and mechanisms. 

A feedforward or backpropagation network is a widely used neural network 

consisting of several inputs and one output in each processing element [15]. A multilayer 

perceptron (MLP) is a feedforward ANN that is comprised of three or more layers of 

neurons. Independent input variables from the first layer of neurons (i.e., input layer) are 

connected to neurons of hidden layers. Propagation of the data from the input layer to the 

first hidden layer within the network occurred via the connections and the associated 

activation functions combined and modified those. Each layer has a certain number of 

neurons with corresponding weight and bias; and the ANN model for a particular task was 

dependent upon the nature of these connections, which provides additional adjustable 

parameters. In this way, the signals were propagated through each layer until they reached 

the output layer. The impact of each input neuron and its complex interactions can be 

identified by employing learning algorithms. Optimized ANNs are capable of 

approximating any continuous non-linear function, being highly resistant to missing or 

noisy data [13]. 

3.3.5.2.1 Topology 

The most important part of selecting an ANN model for the prediction of 

experimental data is the topology and the architecture of the neural network [16]. The 

topology of an ANN is determined by the number of layers in the ANN, the number of 

nodes in each layer, and the nature of the transfer functions. Levenberg-Marquardt (LM) 

algorithm was used for modelling the process parameters of the pyrolysis process in multi-

layer perception (MLP) neural network analysis. The neural network toolbox (nntool) of 
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MATLAB 2016a (9.0.0.341360) was used in this modelling. The feedforward network 

needs outputs to train the model. A representation of the ANN architecture is shown in Fig. 

3.5 with four variables viz. T, HR, FR, and PS in the input layer followed by one hidden 

and output layer, i.e., bio-oil yield. In this investigation, a hyperbolic tangent sigmoid 

function (tansig) transfer function was used in the hidden layer whilst a linear transfer 

function (purelin) was used in the output layer. To assess the robustness of the prediction 

ability of the models, a total of 30 experimental results generated in CCD design were 

employed to train, test, and validate the model. Out of these, 70% were used for network 

training, and the rest 30% were fragmented between testing and validation of the network. 

TRAINLM function is employed for training models which is the fastest back-propagation 

algorithm. Gradient descent learning function (LEARNGD) was used to minimize the 

errors. All training parameters of the ANN are shown in Table 3.3. The optimum hidden 

neurons number was set based on the lowest output data obtained for MSE, and one hidden 

layer of fourteen neurons is considered the best result. The total number of iterations for 

ANN training was set as 100,000 while the other parameters were kept as the preset input 

of the software. 

Table 3.3: ANN parameters used to train, model, and optimize the bio-oil yield 

Particulars Specifications 

Network type Feed-forward back-propagation 

Training function or training 

algorithm 

Levenberg-Marquardt backpropagation 

(TRAINLM) 

Adaptation learning function Gradient descent (LEARNGD) 

Performance function Mean Square Error (MSE) 

Transfer function Hyperbolic Tangent Sigmoid (TANSIG) 

Output layer PURELIN 

Number of input layer 4 

Number of output layer 1 

Number of hidden layer 1 

Number of hidden layer neuron 14 
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Fig. 3.5 ANN architecture 

3.3.5.3 Prediction capability of the RSM and ANN models 

The coefficient of determination (R2), root mean square error (RMSE), mean 

absolute error (MAE), absolute average deviation (AAD), and standard error of prediction 

(SEP) was used for statistical assessment of the prediction ability of the models developed 

by using RSM and ANN. These are evaluated according to equations (12) to (16) [17]. 

The amount of reduced response variability in the model is measured by R2 while 

AAD deals with the deviations. The precision of the model is determined by evaluating R2 

and AAD values. R2 must be close to “1” and the smaller the AAD value, the more precise 

the model is [18]. The acceptable values of R2 and AAD values mean that the model 

TANSIG PURELIN 
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equation determines the system’s true behaviour and it can be used for interpolation in the 

experimental domain [19]. 

𝑅2 = 1 −
∑ (𝑥𝑒,𝑖−𝑥𝑝,𝑖)

2𝑛
𝑖=1

∑ (𝑥𝑝,𝑖−𝑥𝑒.𝑎𝑣𝑒)
2𝑛

𝑖=1

   (12) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑥𝑝,𝑖 − 𝑥𝑒,𝑖)

2𝑛
𝑖=1   (13) 

𝑀𝐴𝐸 =
1

𝑛
∑ |(𝑥𝑒,𝑖 − 𝑥𝑝,𝑖)|𝑛

𝑖=1    (14) 

𝑆𝐸𝑃 =
𝑅𝑀𝑆𝐸

𝑥𝑒.𝑎𝑣𝑒
× 100    (15) 

𝐴𝐴𝐷 =
100

𝑛
∑ |

𝑥𝑒,𝑖−𝑥𝑝,𝑖

𝑥𝑒,𝑖
|𝑛

𝑖=1    (16) 

where n is the number of experiments, xe,i is the experimental results, xp,i is the predicted 

outputs, and xe,ave is the average experimental results. 

3.3.5.4 Application of catalysts in biomass pyrolysis 

3.3.5.4.1 Preparation of catalysts  

ZSM-5 (Alfa Aesar, molar ratio of 50:1) zeolite was calcined at 550 °C for 5 hr at 

a heating rate of 5°C/min, for transformation to its protonic form [29]. The obtained HZSM-

5 was employed to form Ni/ZSM-5 and Co/ZSM-5 catalysts with 1 wt% metal by wet 

impregnation. To achieve this, equimolar amounts of 1 wt% nickel nitrate, Ni(NO3)2·6H2O 

(Sigma-Aldrich) and cobalt nitrate, Co(NO3)2·6H2O (Sigma-Aldrich), were dissolved 

separately in  water. Then ZSM-5 was introduced into the corresponding metal nitrate 

solution, with continuous stirring at 80 °C for 3 hours [28]. Following that, the slurry was 

subjected to drying at 100 °C for 24 hours and calcined at 500 °C for 4 hr at 5 °C/min to 

achieve uniform distribution on both the internal and external catalyst surfaces, leading to 

the creation of the respective metal oxides. The zeolites that underwent post-treatment were 

labeled as M/ZSM-5, with ‘M’ representing the metal oxide that was loaded. Prior to the 

experiment, prepared catalysts were stored in a desiccator to prevent moisture. 

3.3.5.4.2 Catalytic pyrolysis 

The effect of the catalysts in pyrolysis was investigated at the biomass-to-catalyst 

ratio of 10:1, and each experiment was operated at 500 °C, HR of 40 °C/min, with a 
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residence time (RT) of 30 min. The temperature of 500 °C and the heating rate of 40 °C/min 

were selected based on preliminary pyrolysis experiments conducted to evaluate the effect 

of operating parameters on product distribution. These experiments indicated that the 

selected conditions resulted in the highest bio-oil yield during non-catalytic pyrolysis. 

For the catalytic pyrolysis experiments, both the biomass and catalyst were ground 

to a particle size of <0.25 mm to ensure uniform mixing and maximize contact between the 

catalyst and the biomass during the pyrolysis process. The mixture was then homogenized 

using a mortar and pestle followed by mixing in a cylindrical plastic container to ensure 

uniform distribution of the catalyst particles throughout the biomass. This facilitated 

smooth heat transfer and consistent catalytic activity throughout the reaction. 

3.3.6 Instrumental Characterization 

3.3.6.1 Elemental characterization 

  The elemental composition of the material was determined by the ultimate analysis. 

The carbon, hydrogen, and nitrogen content of the biomass samples was determined using 

a CHN elemental analyzer (Perkin Elmer, 2400 Series 2, USA.). The percentage of oxygen 

was calculated by difference.  

3.3.6.2 Higher heating value (HHV)  

Calorific value is the amount of heat generated when a unit weight (1 g or 1 kg) of 

material is burnt or combusted. It was determined by using a bomb calorimeter (Auto bomb 

calorimeter, SE-1AC/ML, MS. CHANGSHA KAIYUAN INSTRUMENTS CO. LTD., 

CHANGSHA, CHINA) according to the ASTM D2015 method. Here, about 1.0 g of finely 

ground oven-dried sample was pressed into a tablet with a mechanical pelletizer. Then the 

sample was completely combusted in an adiabatic bomb containing 3.4 MPa pure oxygen 

under pressure. The test was conducted in triplicates and the mean value was reported. 

3.3.6.3 FTIR analysis 

The presence of different functional groups in the samples was investigated by FTIR 

(Fourier transforms infrared spectroscopy) spectroscopy. Samples were prepared using the 

potassium bromide (KBr) disk technique The FTIR spectrum of the samples was recorded 

on a IR spectrometer (Perkin Elmer, SPECTRUM 100, USA) at room temperature (26 ± 2 

°C) in the mid-infrared region of 4000-400 cm-1 with resolution of 4 cm-1. 
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3.3.6.4  1H-NMR  

The 1H-NMR spectra of the bio-oil samples were recorded in a 400 MHz NMR 

spectrophotometer (JEOL, ECS 400, Japan) where deuterated chloroform (CDCl3) was 

used as the internal standard. The coupling constants were expressed in Hertz (Hz). 

3.3.6.5 GC-MS  

GC–MS analysis of the bio-oil samples was carried out using a GC-MS instrument 

(Perkin Elmer Claurus 600, USA) equipped with a TCD detector and DB-5ms column (60.0 

× 250 µm). Helium (99.99 %) with a constant flow of 1.0 ml/min was used as the carrier 

gas. The column temperature was programmed from 70 °C for 2 min to 290 °C at the 

heating rate of 10 °C min-1 and finally held at 290 °C for 7 min. A sample volume of 3 µL 

was injected. The MS was operated in an electron ionization mode and an m/z range from 

24 to 624 was scanned. Peaks were identified based on the NIST library.  

In the GC-MS spectra of the bio-oils, components constituting less than 0.5 Area % 

were disregarded and the compounds identified were classified under the following classes: 

phenols, alcohols, aldehydes, esters, ethers, furan, ketones, aliphatic and aromatic 

hydrocarbons, etc. for better comparison of bio-oils obtained from catalytic and non-

catalytic pyrolysis.  

3.3.6.6 Determination of pH  

The pH of both bio-oil and biochar are evaluated. The pH of biochar was calculated 

by following the method described by Kim et al. [30]. 10 g biochar was added to 200 ml 

deionized water and allowed to stir for 24 hours at 180 rpm. The mixture was then filtered 

through Whatman 40 filter paper and the supernatant was used to measure pH by a digital 

pH meter (Eutech pH 700, USA). The measurement of pH helps to understand the influence 

of biochar application on soil acidity. 

3.3.6.7 Electrical conductivity  

The electrical conductivity (EC) of biochar was measured with a conductivity meter 

(Systronics digital TDS/conductivity meter MK509, Gujarat, India) using the same solution 

as prepared for pH measurement. EC values of biochar are significant as it is directly 

proportional to the amount of salt (ion) concentration present in biochar and is therefore, 

related to the buffering capacity and cation exchange capacity (CEC) of biochar. 
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3.3.6.8 SEM 

To examine surface morphology and elemental composition of solid samples, 

scanning electron microscopy (JEOL JSM-6390 LV, Japan) coupled with energy dispersive 

X-ray spectroscopy (Oxford EDX) was used. SEM images were taken with an acceleration 

voltage of 20 kV at different magnifications with a resolution of 0.03 nm. The EDX is 

helpful in providing rapid qualitative and semi-quantitative analysis of elemental 

composition with a sampling depth of 1-2 microns. 

3.3.6.9  XRD analysis 

X-ray diffraction (XRD) analysis (D8 Focus, Bruker AXS, Germany) was 

conducted to assess the structure of catalysts (pre- and post-impregnation of metal into 

ZSM-5). The powder X-ray was recorded on a Rigaku miniflex diffractometer (Cu-Kα 

radiation, λ= 1.5406 Å) in 2θ range of 5-60° at a scanning rate of 20° min-1. 

3.3.6.10  Surface area analysis of catalysts 

All the prepared catalysts were characterized for surface area, pore size, and pore 

volume using Quantachrome Instruments (Anton Paar, Nova 1000 E, USA). The samples 

underwent a degassing process of 5 hours at 150°C before the analysis. Subsequently, the 

samples were cooled to 77 K by immersing them in liquid nitrogen for characterization. 

The nitrogen adsorption method at -196 °C for analysis of the surface area. The 

physisorption data was utilized for the estimation of the surface area of each sample through 

the Brunauer-Emmett-Teller (BET) method. Furthermore, the pore distributions have been 

assessed by employing the Barrett-Joyner-Halenda (BJH) method. 

3.3.7 Thermogravimetric Analysis (TGA)  

The thermal degradation characteristics of all four specimens, i.e., TD, TD+HZSM-

5, TD+Co/ZSM-5, and TD+Ni/ZSM-5, were examined using a TG analyzer (Mettler 

Toledo TGA/SDTA 851, Switzerland). For experiments conducted without the catalyst 

(TD only), approximately 5-10 mg of pure biomass (TD) was introduced directly into the 

alumina crucible for thermal analysis. For experiments involving catalysts, the biomass 

(TD) and catalyst were physically mixed in a 10:1 mass ratio. For example, if the sample 

contained 10 mg of biomass, 1 mg of catalyst was added and thoroughly mixed. About 5-

10 mg of this prepared mixture was introduced into the alumina crucible for analysis. The 
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mixing was conducted properly as mentioned in section 3.3.5.4.2, to ensure uniform 

distribution of the catalyst within the biomass prior to thermal degradation experiments. 

For both types of samples (Catalytic and non-catalytic), the heating process involved 

raising the temperature from 30 to 900 °C using three distinct heating rates – HR (10, 20, 

and 40 °C/min) with a gas flow rate of 50 mL min-1. To ensure precision and accuracy: the 

TG balance had a precision of 0.1 μg and sensitivity of 0.001% and the balance accuracy 

was better than 0.02%. Additionally, to lessen investigational errors during the recording 

of thermal curves, proposals given by the Kinetics Committee of the International 

Confederation for Thermal Analysis and Calorimetry (ICTAC) and some other literature 

were followed [20-22]. 

3.4 Kinetic Study 

The thermogravimetric information obtained at different heating rates for the 

samples was investigated by using Microsoft Excel 2010 and SCILAB (version 6.1.0, 

Windows 64 bits). The exploratory data were recorded each 0.5s time gap and the entire 

dataset was processed for determinations of kinetics and mechanisms of thermal 

degradation in the fractional conversion range of 0.025-0.900 with step size of 0.025. 

3.4.1 Determination of Kinetic Parameters 

During pyrolysis, the single-step thermal decomposition of biomass can be stated 

by the reaction scheme mentioned below:  

                𝐵𝑖𝑜𝑚𝑎𝑠𝑠 
∆ 
→  (𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑒 + 𝐺𝑎𝑠) + 𝐶ℎ𝑎𝑟                  ……(17) 

The kinetic equation based on Arrhenius law for the above-mentioned reaction 

scheme can be written as: 

𝑑𝛼

𝑑𝑇
=  

𝐴

𝛽
exp(

−𝐸

𝑅𝑇
)𝑓(𝛼)                                   (18) 

Here, E and A are respectively the activation energy in kJ.mol-1, and Arrhenius 

constant in s-1 of the pyrolysis process, β is the heating rate in K.s-1, T is the temperature in 

Kelvin, R is gas constant, 8.314 J.mol-1.K-1 and f(α) is the mechanism model of the 

decomposition process and depends on the fractional conversion, α, which can be expressed 

as- 

𝛼 =
𝑤𝑜−𝑤𝑇

𝑤𝑜−𝑤𝑓
                                                (19) 

Where, wo, wt, and wf are the mass (in mg) of biomass samples at the initial 

temperature, To, at any temperature, T, and final temperature, Tf respectively. 
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Isoconversion methods are generally considered the best to evaluate the one-step 

thermal decomposition scheme without prior knowledge of the mechanism function, f(α) 

of the decomposition procedure, for the calculation of the apparent kinetics parameters 

[23]. Both, differential and integral isoconversional methods were used in this study to 

calculate the apparent activation energies of the sample. Further Miura-Maki distributed 

activation energy model was used for the evaluation of the apparent frequency factor 

values. All of the methods used in this investigation were discussed with equations in the 

following: 

3.4.1.1 Friedman method [24] 

In this differential method, the value of apparent activation energy (Eα) for a 

particular fractional conversion (α) value is obtained from the equation (20): 

     ln[(β
𝑑α

𝑑𝑡
)]α,i= ln [Aαf(α)] -  

𝐸𝛼

𝑅𝑇𝛼
                          (20) 

where Tα and Aα are the absolute temperature and pre-exponential factor at a given 

value of α, and f(α) is a function referring to different differential forms of reaction models. 

The value of Eα can be determined from the slope of the straight line obtained by plotting 

ln[(β
dα

dT
)]α, i against 1/Tα at various heating rates. 

3.4.1.2 Kissinger-Akahira-Sunose method [25]  

In the Kissinger-Akahira-Sunose method, the following equation is used to 

determine the value of Eα: 

                                                 (ln
𝛽

𝑇𝛼
2)α,i= ln(

𝐴𝛼𝑅

𝐸𝛼𝑔(𝛼)
)- 

𝐸𝛼

𝑅𝑇𝛼
                         (21) 

Where g(α) is a function that defines different integral forms of reaction models. 

The value of Eα can be determined from the slope of the plot of (ln
𝛽

𝑇𝛼
2)α, i versus 1/Tα.  

3.4.1.3 Flynn-Wall-Ozawa method [26] 

This method can be used to determine the apparent activation energy (Eα) from the 

slope obtained from the equation (22) on plotting (lnβ)i against 1/Tα: 

                              (lnβ)i = ln(
𝐴𝛼𝐸𝛼

𝑅𝑔(α)
)- 5.331 - 1.052

𝐸𝛼

𝑅𝑇𝛼
                        (22) 
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3.4.1.4 Miura-Maki distributed activation energy method [27]  

This method uses the same temperature integral approximation as in the KAS 

method, and hence the values of Eα obtained in this method are similar to those obtained in 

the KAS method. The advantage of this method is that the apparent Arrhenius constants 

(Aα) can be determined without considering the g(α) function. The following equation (23) 

is used to evaluate the values of Eα and Aα: 

                             (ln
𝛽

𝑇𝛼
2)α,i = ln(

𝐴𝛼𝑅

𝐸𝛼
)–0.6075 -

𝐸𝛼

𝑅𝑇𝛼
                         (23) 

Thus, the plot of (ln
𝛽

𝑇𝛼
2)α,i vs 1/Tα gives a straight line, and the slope and intercept of 

the line give the Eα and Aα parameters for a particular fractional conversion (α). 

3.4.2 Derivation of degradation mechanisms 

The 𝑌(𝛼)-master plot method was used to determine the biomass degradation 

model where the function Y(α) is defined as: 

𝑌(𝛼) = 𝛽𝑗 ∙ (
𝑑𝛼

𝑑𝑇
)𝛼,𝑗 ∙ exp (

𝐸𝑜

𝑅𝑇𝛼,𝑗
) = 𝐴𝑓(𝛼)           (24) 

here, βj is the jth heating rate, Eo is the average energy determined by the Friedman method, 

R is the gas constant, and Tα,j is the absolute temperature for a particular α value and at the 

jth heating rate,  (
𝑑𝛼

𝑑𝑇
)𝛼,𝑗 is differential conversion to temperature at the jth heating rate.  

The experimental Y(α) was determined by putting numerical values of βj, 

(
𝑑𝛼

𝑑𝑇
)𝛼,𝑗, 𝐸𝑜, R, and Tα,j into equation (24). Similarly, theoretical Y(α) was determined by 

using various theoretical f(α) functions. Differential and integral forms (f(α) and g(α) 

respectively) of these functions used in this investigation and their physical interpretations 

are presented in Table 3.4. In the eqn. (24), A is an unknown quantity, which is removed 

by dividing experimental and theoretical 𝑌(𝛼) functions by Y(0.5), where Y(0.5) is the 

numerical value of Y for the conversion at α =0.5.  The most suitable degradation process 

was then evaluated by plotting experimental and theoretical Y(α) values as a function of 

fractional conversion (α).  

3.4.3 Determination of arrhenius constant 

The Vyazovkin and Lesnikovich method was used to determine the Arrhenius 

constant of the thermal degradation reaction [21]. To determine the Arrhenius constant (Aα) 

at various fractional conversions the most suitable solid degradation model (obtained from 



 

Chapter 3: Materials and Methods   125 | P a g e  

 

Y(α) master plot) and the corresponding apparent activation energies were used as shown 

in Eq. (25): 

  ln Aα =  b +  aEα     (25) 

where a and b are the correlation parameters and linear regression was used to calculate 

their values. 

Table 3.4. Algebraic expressions for the f(α) and g(α) functions. 

Mechanism Differential form, 

        f(α) 

Integral form, 

     g(α) 

Nucleation models 

Power law (P2) 2 α 1/ 2 α 1/ 2 

Power law (P3) 3 α 2 / 3 α 1/ 3 

Power law (P4) 4 α 3/ 4 α 1/ 4 

Avarami-Erofe’ev (A2) 2(1- α)[-ln(1- α)]1/ 2 [-ln(1- α)]1/ 2 

Avarami-Erofe’ev (A3) 3(1- α)[-ln(1- α)]2 / 3 [-ln(1- α)]1/ 3 

Avarami-Erofe’ev (A4) 4(1- α)[-ln(1- α)]3/ 4 [-ln(1- α)]1/ 4 

Prout-Tompkins (B1) α(1- α) ln[α/(1- α)] + c# 

Geometrical contraction models 

Contracting area (R2) 2(1- α)1/ 2 [1- (1- α)1/ 2 ] 

Contracting volume (R3)  3(1- α)2 / 3 [1- (1- α)1/ 3] 

Diffusion models 

One-dimensional diffusion (D1) 1/ (2 α) α 2 

Two-dimensional diffusion (D2) -[ln(1- α)-1] [(1- α) ln(1- α)]+ α 

Three- dimensional diffusion (D3) [3(1- α)2 /3]/[2(1- (1- α)1/ 3)] [1- (1- α)1/ 3]2 

Ginstling-Brounshtein’s equation (D4) 3/ [2{(1- α)-1/ 3-1}] 1- (2 α / 3) - (1- α)2 / 3 

Reaction-order models 

Zero order (F0/R1) 1 α 

First-order (F1) (1- α) -ln(1- α) 

Second-order (F2) (1- α)2 (1- α)-1-1 

Third-order (F3) (1- α)3 (1/2)[(1- α)-2-1]  

Pseudo n-th order (Fn) (1-α)n 1/(n-1)[(1-α)1-n – 1] 

# Integration constant 
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3.4.4 Sestak-Berggren Combined Kinetic Model 

Sestak-Berggren combined autocatalytic kinetic model (CK model) is a three 

parameters model and can be described by using the following equation: 

                      𝑓(𝛼) = (1 − 𝛼) 𝑛𝛼𝑚[− ln(1 − 𝛼)]𝑝                                  (29) 

Here, the terms, n, m, and p are the unknown parameters, which give information regarding 

the decomposition process.  Thus, the equation for the CK model can be written as: 

𝑑𝛼

𝑑𝑇
=  

𝐴

𝛽
exp(

−𝐸

𝑅𝑇
)(1 − 𝛼) 𝑛𝛼𝑚[− ln(1 − 𝛼)]𝑝                                 (30) 

       The logarithmic linear form of the eqn. (30) can be represented as: 

ln {
𝑑𝛼

𝑑𝑇

𝛽(1−𝛼)𝑛𝛼𝑚[− ln(1−𝛼)]𝑝 } = ln 𝐴 −  
𝐸

𝑅𝑇
                                        (31) 

The linear regression of the left-hand side of the above equation with respect to −
1

𝑇
 gives 

a straight line. The activation energy (E) and Arrhenius constant (A) of the thermal 

decomposition process of biomass for combined heating rates can be determined from the 

slope and intercept of the straight line, respectively. The parameters, n, m, and p can be 

calculated by maximizing the Pearson’s ratio of linear regression to 1. 

3.4.5 Determination of Thermodynamic Parameters 

The changes in enthalpy (ΔH), free energy (ΔG), and entropy (ΔS) were determined 

by using the following equations: 

                                         ∆𝐻 = 𝐸 − 𝑅𝑇                                        (26) 

                                         ∆𝐺 = 𝐸 + 𝑅𝑇𝑚ln (
𝐾𝐵𝑇𝑚

ℎ𝐴
)                       (27) 

                                         ∆𝑆 =  
∆𝐻−∆𝐺

𝑇𝑚
                                           (28) 

      Here, KB is the Boltzmann constant, h is Plank’s constant, and Tm is the temperature 

for the maximum weight loss rate.  
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