Declaration by the candidate

The candidate certifies that the thesis entitled "Inference and Prediction of Quality of Tomato using Deep Learning" submitted to the School of Engineering, Tezpur University in partial fulfillment for the award of the degree of Doctor of Philosophy in the Department of Food Engineering and Technology is a record of research work carried out by me under the supervision of Prof. Manuj Kumar Hazarika.

All assistance received from various sources has been appropriately acknowledged. No part of the thesis has been submitted elsewhere for the award of any degree.

Ninja Begum

Ninja Begum

Date: 27-02-2025 Place: Tezpur University Reg. No. TZ155406, Roll No. FEP19006 Department of Food Engineering and Technology School of Technology, Tezpur University Napaam, 784028, Assam (India)

Certificate from the Supervisor

This is to certify that the thesis entitled "Inference and Prediction of Quality of Tomato using Deep Learning" submitted to the School of Engineering, Tezpur University in partial fulfillment for the award of the degree of Doctor of Philosophy in the Department of Food Engineering and Technology is a record of research work carried out by Ninja Begum under my supervision and guidance.

All assistance received from various sources has been appropriately acknowledged. No part of the thesis has been submitted elsewhere for the award of any degree.

Date: 34/09/2024 Place: Te3P4V

Prof. Manuj Kumar Hazarika Department of Food Engineering and Technology School of Technology, Tezpur University Napaam, 784028, Assam (India)

MKyazole

Acknowledgements

First and foremost, I thank the Almighty for his grace and mercy that have led me to this very moment. And my abba, Habib Rahman in heaven who prioritized educating his daughters above everything.

I wish to place my deepest and sincere gratitude to my supervisor, Prof. Manuj Kumar Hazarika, Professor, Department of Food Engineering and Technology, Tezpur University for his valuable guidance in carrying out my research work. Without his continuous encouragement and involvement, this work would not have been a reality.

I take this opportunity to thank my Doctoral Committee members Prof. Brijesh Srivastava, Dr. Nishant Swami, Department of Food Engineering and Technology and Prof. Brogeshwar Borah, Department of Computer Science & Engineering, Tezpur University for their valueable suggestions at various stages of my research. I also acknowledge the entire faculties, technical officer, technician, office staff of the Department of Food Engineering and Technology for all the facilities, help and encouragement for carrying out the research work.

I whole-heartedly thank my batch-mates Indrani, Sofia, Sahijul, and my lab mates Shagufta, Tridisha, Shikha, Arun, Zola, Priyanka, Swapnil for their love, support, and guidance in making this PhD journey a beautiful and memorable one.

I wish to dedicate this work to my husband, Zaved Iqubal Ahmed, my mother Najmira Begum and my sister Jesmin Akhtar Rahman. "I owe this PhD degree to you".

I thank my mother-in-law, Mumtaz Begum, my brother-in-laws Salman Ali and Nashib Iqbal, my sister-in-law Arifa Sultana, Nehan and all other relatives, friends and well wishers for all their prayers and blessings.

A special shout to my son, Waarith Iqubal Ahmed for being my emotional support throughout this journey.

Ninja Begum

LIST OF TABLES

Table No.	Title	Page No.			
	Ripening categories for tomatoes	5			
Table 2.1	Application of non-destructive techniques in food	16			
Table 2.2	Machine learning in quality inference based on other non-destructive techniques	24			
Table 3.1	Parameter used during experiments	59			
Table 3.2	Metrics used for performance evaluation	64			
Table 4.1	Classification accuracy and average time taken in each step of an epoch correspon	nding			
to differen	nt optimizers and learning rates	78			
Table 4.2	Comparison between model prediction, sensory and physiological evaluation	80			
Table 4.3	Training time per epoch of different transfer learning models	85			
Table 4.4	Comparison between model prediction and sensory evaluation	85			
Table 4.5	Physiological analysis of tomatoes	86			
Table 4.6	Recall, precision, F1-score, overall accuracy of different transfer learning models	89			
Table 4.7	Changes in physico-chemical parameters of tomatoes with respect to days of stora	ige 95			
Table 4.8	ANOVA test on TSS values for three maturity stages of tomatoes	97			
Table 4.9	ANOVA test on pH values for three maturity stages of tomatoes	97			
Table 4.1	0 ANOVA test on TA values for three maturity stages of tomatoes	97			
Table 4.1	1 ANOVA test on lycopene values for three maturity stages of tomatoes	98			
Table 4.1	2 Pearsons' correlation between lycopene, TSS and TA values	99			
Table 4.1	3 Pearsons' correlation between Lycopene, firmness and a*/b* values	99			
Table 4.1	Table 4.14 Mean firmness, lycopene, TSS, TA, and pH values mapped to images corresponding				
to each rij	pening classes	100			
Table 4.1	5 Classification performance analysis of tomato maturity prediction model	102			
Table 4.1	6 Comparison of predicted values using deep learning with experimental values by	7			
physico-c	hemical analysis	102			
Table 4.1	7 Percentage error obtained between the predicted value and experimental value	104			
Table 4.1	8 Rate constant (k) and decision coefficient (R2) of zero-order and first-order kine	tic			
equations		113			
Table 4.1	9 Kinetic parameters of zero-order models for quality parameter in tomato	115			
Table 4.2	0 Values for calculating ASLT from a* value	116			
Table 4.2	1 Values for calculating ASLT from firmness	116			
Table 4.2	2 Experimental and calculated value of shelf-life of tomatoes at different temperatu	ure			
		117			

LIST OF FIGURES	LIST	OF	FIG	UR	ES
-----------------	------	----	-----	----	----

Figure Title No.	Page No.
Fig. 1.1 Biological neuron inspired artificial neural network	6
Fig. 1.2 Deep Learning Architecture	7
Fig. 2.1 Machine learning coupled with non-destructive techniques in food	16
Fig. 2.2 Machine learning in food and agriculture	17
Fig. 3.1 Categorization of images for dataset preparation	49
Fig. 3.2 Customized CNN model	50
Fig. 3.3 Sensory analysis performed by semi-trained panelist	52
Fig. 3.4 Confusion matrix and evaluation parameters	52
Fig. 3.5 Architecture of (a) VGG 16 (Bangar, 2022) (b) VGG 19 (Nguyen et al., 202	
Fig. 3.6 Inception v3 architecture (Ali et al., 2020)	55
Fig. 3.7 ResNet101 architecture (Li et al., 2020)	56
Fig. 3.8 ResNet152 architecture (Cai et al., 2014)	56
Fig. 3.9 Categorization of dataset into mature green, intermediate and advanced	58
Fig. 3.10 Different layers in VGG 19 architecture	70
Fig. 3.11 Flow diagram of the android application	73
Fig. 4.1 Classification accuracy of customized classification models	79
Fig. 4.2 Prediction made by the classification model	80
Fig. 4.3 Evaluation parameters calculated from confusion matrix	81
Fig. 4.4 Classification accuracy obtained from different transfer learning models	83
Fig. 4.5: (a) Classification accuracy using VGG19 on varying epoch sizes (b) Classif	fication loss
using VGG19 on varying epoch sizes	84
Fig. 4.6 (a) Confusion matrix for VGG 19, (b) Confusion matrix for ResNet101, (c)	Confusion
matrix for ResNet152, (d) Confusion matrix for Inception v3, and (e) Confusion mat	rix for VGG
16	88
Fig. 4.7 Firmness change in tomatoes with respect to days of storage	91
Fig. 4.8 Colour value change in tomatoes with respect to days of storage	92
Fig. 4.9 Change in a*/b* values in tomatoes with respect to days of storage	93
Fig. 4.10 Lycopene change in tomatoes with respect to days of storage	94
Fig. 4.11 PCA biplot on the obtained result	96
Fig. 4.12 Mean and standard deviation plot of lycopene values for the three maturity	stages of
tomatoes	98
Fig. 4.13 Confusion matrix obtained on the test set	102
Fig. 4.14 Colour (a*) change in tomato during storage at different temperature	105
Fig. 4.15 Change in a*/b* values of tomato during storage at different temperature	106

Fig. 4.16 Change in ΔE values of tomato during storage at different temperature	106		
Fig. 4.17 Firmness change in tomato during storage at different temperature	107		
Fig. 4.18 Lycopene change in tomato during storage at different temperature	107		
Fig. 4.19 TSS change in tomato during storage at different temperature	108		
Fig. 4.20 TA change in tomato during storage at different temperature	108		
Fig. 4.21 PME change in tomato during storage at different temperature	109		
Fig. 4.22 PWL change in tomato during storage at different temperature	109		
Fig. 4.23 Decay rate in tomato during storage at different temperature	111		
Fig. 4.24 Disease damage incidence change in tomato during storage at different temperature	112		
Fig. 4.25Maturity index in tomato during storage at different temperature	112		
Fig. 4.26 Relationship between shelf life and storage temperature	118		
Fig. 4.27 Tomato shelf-life prediction using VGG 19 model	119		
Fig. 4.28 (a) Initial interface of the application, (b) Spoilage detection interface, and (c) Interface			
for display of quality parameters	121		
Fig. 4.29 App inference spoilage detection of tomato	122		
Fig. 4.30 App inference on shelf life of tomato	123		