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Chapter-IV 

 

4 Results and discussions 

 

This chapter provides a detailed discussion on the observations and outputs obtained 

from implementation of the methodologies mentioned in chapter III. The chapter is 

divided into 5 subheadings of the 4 objectives. 

4.1 Results obtained in classifying tomato as edible or spoilt 

In this section results obtained from the customized model in obtaining the highest 

classification accuracy are elaborated. 

4.1.1 Effectiveness of various optimizers during model training 

The developed model was trained on the prepared image dataset using three different 

optimizers in order to identify the optimizer which is best suitable for the considered 

classification problem. Three different learning rates were set for each optimizer and 

classification accuracy along with average time taken per step (in 1 epoch) was obtained 

by training the model. The different cases corresponding to learning rates and optimizers 

are shown in the Table 4.1. From Table 4.1, it is evident that Adam optimizer provided 

the highest classification accuracy among the selected three different optimizers. 

Table 4.1 Classification accuracy and average time taken in each step of an epoch 

corresponding to different optimizers and learning rates 

Cases Learning 

rate 

Optimizer Average time 

taken per step 

(in 1 epoch) 

Classification 

accuracy 

I 0.01 Adam 698ms 98.32% 

II 0.01 RMSprop 743 ms 98.74% 

III 0.01 SGD 782 ms 96.64% 

IV 0.001 Adam 741 ms 99.56% 

V 0.001 RMSprop 760 ms 99.10% 

VI 0.001 SGD 792 ms 59.24% 

VII 0.0001 Adam 769 ms 99.25% 

VIII 0.0001 RMSprop 770 ms 99.12% 

IX 0.0001 SGD 825 ms 64.71% 
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4.1.2 Results obtained on binary classification of tomatoes into edible and spoilt 

The outcome of the CNN architecture developed to predict the current state of tomato as 

edible or spoilt as discussed in section 3.1.2.4 of chapter III is elaborated here. In total 

810 images were collected during the experiment which works as the dataset for this 

model. Splitting of the dataset into training and testing classes is done in the ratio 7:3. 

Out of the 810 images of the dataset 572 images were selected for training randomly and 

238 images for testing. The training was carried out iteratively with varying epoch and 

batch sizes to evaluate the model to give the highest accuracy. The model was trained 

with 10, 20 and 30 epoch and 8, 16, 24 and 32 batch number. The classification accuracy 

obtained on the test set on varying epoch and batch size is presented in Fig. 4.1. Overall 

classification accuracy obtained is above 95% for epoch between 10 and 30 as well as 

batch size between 8 and 64(Fig. 4.1). The highest classification accuracy of the CNN 

model was achieved at 20 epoch and 32 batch size. Thus, at the afore-mentioned hyper 

parameters, the architecture of the CNN model showed an accuracy of 99.70%. The 

obtained classification accuracy of the model vindicates its applicability in predicting the 

current condition of tomatoes as edible or spoilt. 

Fig. 4.1indicates that the CNN model obtains overall classification accuracy above 95% 

for epoch between 10 and 30 as well as batch size between 8 and 64. Hence, the 

classifier was capable of distinguishing the two classes of tomatoes under consideration 

paving the way for application of deep learning based image processing technique for 

grading systems. Fig. 4.2 presents the ability of the model to distinguish between an 

edible and spoilt tomato. 

 

Fig. 4.1 Classification accuracy of customized classification models 
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Fig. 4.2 Prediction made by the classification model 

4.1.3 Model evaluation 

To evaluate the performance of the customized CNN model, a comparison was made 

between the predicted results, sensory results (actual) and physiological analysis results. 

From Table 4.2 and Fig. A1, the predictions made by the customized CNN model are at 

par with the recognition made by the sensory panelist. Also, upon performing texture 

(firmness) analysis on the similar tomato it was found that firmness values were less than 

10 N/mm for spoilt tomatoes. A firmness value of 1.45 N/mm is an indicator to spoilt 

tomato (Batu, 1995). 

Table 4.2 Comparison between model prediction, sensory and physiological 

evaluation 

Sample 
Model recognized 

as 

Sensory panelist 

evaluated as 

Firmness value 

(N) 

S1 Spoilt Spoilt 10.53 

S2 Edible Edible 30.42 

S3 Spoilt Spoilt 10.43 

S4 Spoilt Spoilt 5.74 

S5 Edible Edible 28.22 

S6 Spoilt Edible 9.32 

S7 Edible Edible 44.12 
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S8 Spoilt Spoilt 10.28 

S9 Spoilt Spoilt 11.52 

S10 Spoilt Spoilt 19.72 

S11 Edible Edible 56.15 

S12 Edible Edible 37.62 

S13 Spoilt Spoilt 10.53 

S14 Spoilt Spoilt 3.28 

S15 Edible Edible 29.30 

S16 Spoilt Spoilt 2.81 

S17 Spoilt Spoilt 5.53 

S18 Edible Edible 69.24 

S19 Spoilt Spoilt 3.27 

S20 Spoilt Spoilt 4.42 

 

4.1.3.1 Model evaluation using confusion matrix 

The performance of the model was validated by establishing a confusion matrix based on 

the results obtained from Table 4.2. The sensory evaluation was considered “actual 

values” while model‟s evaluation was considered as “predicted values” and further 

validated using confusion matrix and Pearsons‟ correlation. From the confusion matrix, 

precision, recall and accuracy were calculated (Fig. 4.3).  

Confusion 

matrix 

Predicted 

Edible Spoilt 

A
ct

u
al

 Edible 7 1 

Spoilt 0 12 

 

Precision 

Precision = TP/ (TP + FP)     = 7/(7+0) = 1 

(100%) 

Recall 

 Recall = TP / (TP + FN) = 7/(7+1) = 0.87 

(87%) 

Accuracy 

 Accuracy = TP+TN / (TP + TN+ FP + FN) 

 = 7+12/(7+12+0+1) = 0.95 (95%) 

Fig. 4.3 Evaluation parameters calculated from confusion matrix 

The result of the confusion matrix presumes that the customized CNN model 

outperforms the task of spoilage detection with precision, recall and accuracy of 100%, 

87% and 95% respectively. Precision of 100% means that the model is 100% precise in 

spoilage detection of tomatoes. From the confusion matrix below it is seen that 12/12 

images were predicted spoilt whereas 7/8 images were predicted edible giving a recall of 

87%.   



82 

 

4.1.3.2 Model evaluation using Pearsons’ correlation 

From the results obtained in Table 4.2, correlation is established between them. The 

developed model showed a Pearson correlation of 0.895, showing that there is strong 

linear correlation between the predictive model and the sensory evaluation results. 

4.2 Results obtained in classifying tomato as mature green, intermediate and 

advanced 

In this objective three different approaches of transfer learning (viz Inception, VGG and 

ResNet) were employed to evaluate its efficiency in classifying tomatoes into their 

maturity classes. Based on the methodology discussed in section 3.2.2.4, training of the 

models on the self-prepared dataset was performed. The conventional architectures of 

Inception, VGG and ResNet with the learned weights were used with to obtain features. 

The outputs obtained out of it, were fed to the newly added fully-connected layer to train 

the self-prepared dataset. These models are such that when number of convolution layers 

is less, the essential features of the targeted image cannot be learned by the model and 

when number of layers is more, the model extracts more features leading to over-fitting 

issues. A comparison is drawn on the architectures in terms of accuracy in classifying 

tomatoes. Parameters such as number of epochs, batch size and time required to achieve 

the maximum accuracy were considered for performance evaluation of individual model. 

In total 950 images were used during the experiment which works as the dataset for 

every model. Splitting of the dataset into training and testing classes is done in the ratio 

7:3. Out of 950 images of the dataset, 665 images were selected for training randomly 

and 285 images for testing. The training was carried out iteratively with varying number 

of epoch and batch sizes to evaluate the model. Performance comparison of individual 

model based on transfer learning approach is discussed in the following subsections. The 

results obtained are shown in Fig. 4.4. 
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Fig. 4.4 Classification accuracy obtained from different transfer learning models 

4.2.1 Performance of VGG 16 based transfer learning model 

VGG 16 showed good results achieving accuracy of 94.74% and 95.24% at epoch 25 and 

50 at batch size 32. At batch size 64, the highest classification accuracy of 93.42% is 

achieved which remains same for both epochs 25 and 50. Thus it has been observed that 

batch size 32 provides higher classification accuracy than batch size 64 at epoch 50. The 

negative impact of batch size on classification accuracy is due to increase in variance in a 

batch with large batch size. 

4.2.2 Performance of VGG 19 based transfer learning model 

VGG 19 gave the highest classification accuracy of 96.05% and 97.37% at epoch 25 and 

50 at batch size 32. Secondly it gives accuracy 92.11% and 96.05% at epoch 25 and 50 at 

batch size 64. Hence in this study VGG 19 has shown highest performance in 

classification of tomatoes on the basis of maturity. From Fig. 4.5(a), it is evident that the 

validation accuracy achieved in VGG 19 has higher convergence to the training 

accuracy. Also in Fig. 4.5(b), the validation loss is a little bit higher than training loss, 

indicating good performance of the model. 
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(a) 

 

(b) 

Fig. 4.5: (a) Classification accuracy using VGG19 on varying epoch sizes (b) 

Classification loss using VGG19 on varying epoch sizes 

4.2.3 Performance of inception V3 based transfer learning model 

The inception V3 model gave the lowest classification accuracy of 82.89% and 84.21% 

at epoch 25 and 50 at batch size 32. And 76.32% and 82.89% at epoch 25 and 50 at batch 

size 64. Thus, this model has shown the lowest accuracy in the tomato dataset prepared 

(Fig. A3). 

4.2.4 Performance of ResNet101 based transfer learning model 

The hybridized ResNet 101 architecture being trained with the tomato dataset gave 

accuracy 93.42% at epoch 25 and batch size 32. Accuracy increased to 97.37% when 

number of epochs increases to 50 while batch size being 32 indicating that more number 

of iterations during training gives more accuracy. Again, the model gave accuracy 

89.47% at epoch 25 and batch size 64 and 90.79% at epoch 50 and batch size 64. Hence, 

we can say that larger batch size has a negative impact on the accuracy. 

4.2.5 Performance of ResNet 152 based transfer learning model 

 

The pre-trained architecture of ResNet 152 when restructured and trained with the 

prepared tomato dataset an accuracy of 93.42% and 96.05% was obtained at epoch 25 

and 50 while batch size being 32. And an accuracy of 88.16% and 92.11% was achieved 

at epoch 25 and 50 while batch size being 64. Thus, we can see that with the increase in 

number of epochs the accuracy of the architecture increases. It is also seen that the model 

works better when batch size is fixed to 32. Higher batch size and lower accuracy is due 

to increase in variance. As the number of images is increased in a batch it leads to slower 

learning rate and hence, lowers accuracy. 
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For the consistency of the results, the experiments were repeated three times. Keeping 

the hyper parameters fixed during the training, the classification accuracy in each step 

was recorded. The recorded accuracies from the same experiment are averaged to obtain 

the final classification accuracy. The standard deviation in classification accuracy 

remained below 2% for all experiments. 

4.2.6 Evaluation of models based on performance and training time 

Another important evaluation parameter is the training time which is dependent on a 

number of factors. The training time of a model depends on the size of the dataset, model 

complexity and the computational speed of the processor. Using a computer with Intel 

Pentium processor (2.30 GHz clock frequency) on the prepared dataset, the average 

training time per epoch is shown in Table 4.3. Further, the size of the image (no. of 

pixels) also affects the computational time. Images with large pixel value led to high 

training time. However, in this work the image size is augmented to 100 ×100 pixels. 

Table 4.3 Training time per epoch of different transfer learning models 

Transfer learning model Computational/training time (per epoch) 

VGG 16 21 seconds 

VGG 19 29 seconds 

Inception v3 15 seconds 

ResNet 101 31 seconds 

ResNet 152 39 seconds 

From above it is found that VGG 19 performed best in three class (mature green, 

intermediate and advanced) classification with 97.37% accuracy and 29 seconds 

execution time among the other transfer learning models. Moreover size of dataset does 

not affect the accuracy of the model. 

4.2.7 Model evaluation 

Like objective 1.1, a comparison table was established using the model prediction and 

the sensory prediction results (Table 4.4 and Fig. A2). This table is basically obtained to 

evaluate the performance of the transfer learning models in maturity class prediction of 

tomatoes. 

Table 4.4 Comparison between model prediction and sensory evaluation 

Sample Model recognized as Sensory panelist evaluated as 

S1 Advanced Advanced 
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S2 Advanced Advanced 

S3 Mature green Intermediate 

S4 Intermediate Intermediate 

S5 Advanced Advanced 

S6 Mature green Mature green 

S7 Intermediate Intermediate 

S8 Intermediate Intermediate 

S9 Intermediate Intermediate 

S10 Mature green Mature green 

S11 Mature green Mature green 

S12 Advanced Intermediate 

S13 Intermediate Intermediate 

S14 Mature green Mature green 

S15 Advanced Advanced 

S16 Advanced Advanced 

S17 Intermediate Intermediate 

S18 Mature green Mature green 

S19 Intermediate Intermediate 

S20 Mature green Mature green 

 

Since color is an important indicator to ripening stage determination. So, color values of 

the tomato samples were obtained at different stage of ripening. From Table 4.5, it is 

seen that L*, a* and b* values varied between different classes indicating color has 

influence on ripening stages. a*/b* is the most widely used reference parameter for color 

quality in commercial practice. Significant difference in a*/b* values, ΔE, Hue, Chroma 

between groups indicates difference in classes. 

Table 4.5 Physiological analysis of tomatoes 

Ripening 

stage 

L* a* b* a*/b* ΔE Hue Chroma 

Mature green 70.19 

±8.47 

-2.2  

±7.07 

24.53 

±3.83 

-0.08 

±0.02 

69.42 

±2.82 

-55.97 

±0.56 

24.62 

±0.87 

Intermediate 60.78 

±5.09 

12.46 

±5.45 

36.24 

±11.08 

0.34  

±0.08 

60.82 

±3.74 

51.10 

±0.41 

38.32 

±0.67 
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Advanced 46.57 

±12.15 

25.05 

±2.88 

30.90 

±2.47 
0.81 ±0.13 

49.41 

±1.88 

41.64 

±0.38 

39.79 

±0.70 

 

4.2.7.1 Model evaluation using confusion matrix 

Confusion matrix is an important tool to evaluate the classification performance of 

different deep learning models. The classification accuracy is usually summarized by 

performance indicators like precision, recall and accuracy. Hence from the 5 different 

transfer learning models used, confusion matrixes were obtained. Based on the precision, 

recall and accuracy of the 5 different transfer learning models, VGG 19 outperformed the 

task of maturity detection with an accuracy of 95%. From the confusion matrix it can be 

seen that a total of 7/7 and 7/7 tomato images were correctly classified as mature green 

and advanced respectively, giving a recall of 100% for both the classes. However, in case 

of intermediate 5/6 images were correctly classified, indicating 83% recall. This may be 

due to mixed surface color ranging from green to red in this category. On the other hand, 

precision was found in the range 88%-100%indicating that the model can predict the 

ripening stages correctly. The model confused samples belonging to intermediate class 

with mature green and advanced.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

Fig. 4.6 (a) Confusion matrix for VGG 19, (b) Confusion matrix for ResNet101, (c) 

Confusion matrix for ResNet152, (d) Confusion matrix for Inception v3, and (e) 

Confusion matrix for VGG 16 
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Table 4.6 Recall, precision, F1-score, overall accuracy of different transfer learning 

models 

Models 
Maturity 

stage 
Recall Precision F1-score 

Overall 

accuracy 

VGG 19 

Mature green 1.00 0.88 0.93 

0.95 Intermediate 0.83 1.00 0.91 

Advanced 1.00 1.00 1.00 

ResNet 101 

Mature green 1.00 0.88 0.93 

0.90 Intermediate 0.83 1.00 0.91 

Advanced 0.86 0.86 0.86 

ResNet 152 

Mature green 1.00 1.00 1.00 

0.90 Intermediate 0.83 0.83 0.83 

Advanced 0.86 0.86 0.86 

Inception V3 

Mature green 0.86 0.86 0.86 

0.80 Intermediate 0.67 0.80 0.73 

Advanced 0.86 0.75 0.80 

VGG 16 

Mature green 1.00 1.00 1.00 

0.90 Intermediate 0.67 1.00 0.80 

Advanced 1.00 0.78 0.88 

 

 



90 

 

4.2.7.2 Model evaluation using Pearsons’ correlation 

From the results obtained from Table 4.4, correlation is established between them using 

Pearsons‟ correlation. The Pearsons‟ correlation coefficient obtained is R = 0.919 

indicating strong linear correlation between the predictive model and the sensory 

evaluation results. From the confusion matrix, VGG19 gives the highest classification 

accuracy of 95 % followed by VGG 16, ResNet and Inception V3. Hence in this study 

VGG 19 is considered best for classification of tomatoes on the basis of ripening stage. 

4.3 Results obtained in predicting physico-chemical properties of tomato from 

their surface characteristics 

After image acquisition, fruit is separated for its physico-chemical analysis as mentioned 

in section 3.2.2.3 of objective 3. The results obtained from the physico-chemical analysis 

of tomato and how it is affected upon ripening is discussed below. 

4.3.1 Results of physical analysis 

Physical analysis included firmness and color analysis. Prior to chemical analysis, 

physical analysis was performed on the whole tomato. The results are presented in 

section 4.3.1.1 and 4.3.1.2. 

4.3.1.1 Correlation of firmness on ripening 

The firmness values decreased upon maturation in tomato as shown in Fig. 4.7. The 

unripe tomatoes were firm and showed a higher firmness value that ranges from 68-72 N. 

With increasing maturity, the tomatoes began to soften causing slight change in firmness 

values at intermediate stage of tomatoes. The tomatoes gets soften as it reaches its 

advanced stage. The acceptable firmness value considered here is 1.45 Nmm-1 (Batu, 

1993). According to Ali Batu, if the firmness values of tomatoes are higher than 1.28 

Nmm-1 (slightly soft) it is preferable for salads. And if their firmness is above 1.46 

Nmm-1 (very firm) such tomatoes are considered marketable at the supermarket (Batu 

1995). Thus, it can be concluded that significant difference is observed in firmness 

values as tomato passes through its maturity stages from intermediate to advanced. From 

Fig. 3, it is seen that firmness decreased exponentially upon maturity with days of 

storage. This difference is due to conversion of polysaccharides to soluble sugar by 

enzymes which causes softening of tissues. Uluisik (2021) in their work found that 

firmness in tomatoes significantly declined in the three different varieties reaching 
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softest level in all varieties at its ripe stage stored for 21 days. The results indicate that 

tomato firmness during storage is directly related to maturity stage, regardless of variety 

(Uluisik, 2021). The obtained results are then mapped against its respective image. 

 

Fig. 4.7 Firmness change in tomatoes with respect to days of storage 
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Fig. 4.8 Colour value change in tomatoes with respect to days of storage 

4.3.1.2 Correlation of color on ripening 

The L*, a* and b* values obtained from Hunter Color Lab were used to correlate color 

with days of storage corresponding to the maturity stages of tomato. Fig. 4.8 presents the 

L*, a* and b* color intensities with respect to the storage time (in number of days). For 

color analysis USDA color classification is considered and compared. a* values give 

degree of greenness and redness and hence can be considered good indicator to tomato 

maturity.  During the mature green stage, the a* values were negative indicating redness 

while during advanced stage the a* values were positive indicating redness. b* values 

give degree of yellowness to blueness which becomes helpful in indicating the 

intermediate tomatoes. During the intermediate stage the b* values showed a linear trend. 

Change in b* values is dependent on the days of storage. It increased slightly as tomato 

ripened from mature green to intermediate stage, indicating that β-carotenes (pale-yellow 

color) reach their highest concentration during its intermediate stage before reaching full 

maturity. L* values are reported as degree of brightness to darkness which decreased 

during the ripening stages and then remained constant, producing a fair correlation 

(Table 4.7) with the ripening stages. The decrease of L* with maturity reflects the 

darkening of the tomatoes with carotenoid synthesis and the loss of greenness. Shewfelt 

et al. (1988) reported the same trend. The obtained L*, a* and b* reading are then 

correlated against its respective image. 
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4.3.1.3 Correlation of a*/b* on ripening 
 

 

Fig. 4.9 Change in a*/b* values in tomatoes with respect to days of storage 

 

4.3.2 Results of chemical analysis 

The tomato after its physical analysis is cut and made ready for chemical analysis. This 

analysis is mostly destructive and includes the use of chemicals.  

4.3.2.1 Correlation of lycopene content on ripening 
 

Lycopene is an important characteristic nutrient substance in tomatoes, and it is also the 

main coloring material of tomatoes. Thus, it is of practical significance to study the 

changes of lycopene content during storage period. As shown in Fig. 4.10, the content of 

Lycopene changes significantly upon tomato ripening. The contents of lycopene 

increased with the prolongation of maturity in tomatoes. As tomato changes from mature 

green to red advanced, the Lycopene content was found to increase exponentially. 

During mature green stages lycopene content was as low as 3.94±0.37 mg/100g. During 

intermediate stage it increased to 13.06±0.29 mg/100g indicating partial redness. 

Advanced stage showed a high amount of lycopene augmenting upon maturity of 

tomatoes as chloroplasts change to chromoplasts and the synthesis of lycopene increases, 

causing the development of red color (Kirk and Tilney, 1978). Results are in support of 

the study conducted by Opara et al. (2011). Lycopene results are in correspondence to 

Clement et al. (2008) 0.92<R2<0.98. 
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Fig. 4.10 Lycopene change in tomatoes with respect to days of storage 

 

 

4.3.2.2 Correlation of TA, TSS and pH on ripening 

From Table 4.7 below it can be seen that as tomato matured from mature green stage to 

red advanced stage, its acidity value decreased. According to Tadesse et al. (2015), the 

higher loss of TA in tomatoes is due to higher respiration and ripening rate where 

organic acid could be used as a substrate in respiration process. In general, studies 

suggested that the TA content was decreasing during ripening and storage (Al-Dairi et al., 

2021). Similarly at mature green stage, the TSS content of tomato ranged from 4.07° to 

3.93° Brix. The values slightly increased with the increase in ripeness of tomato. During 

the partial and advanced stage, the TSS values ranged between 4.57 to 5.19° Brix and 

5.24 and 5.67° Brix. The results followed similar trend in TSS of tomatoes as reported by 

Luna et al. (2014).  Starch is accumulated in green tomatoes that start to fall with the 

onset of ripening. This decrease in starch is accompanied by rising soluble solids (Eskin, 

1989). It has been also reported that total soluble solids increased with color and maturity 

(Tigist et al., 2011). From the pH values presented in Table 4.7, pH values did not show 

much significant difference. The pH values varied between 4.38 to 4.55 in its mature 

green stage, 4.47 to 4.57 in its intermediate stage and 4.51 to 4.77 in its advanced stage. 

A lower pH is related to a slower respiration rate. The results are in conforming to study 

of Moneruzzaman et al. (2008) on the pH of tomato fruit.  Both, pH and titratable acidity 

are based on organic acids presents in tomatoes; generally, the organic acids decrease 

during the storage, because they are used as substrate in the respiration process, which 
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increases with increasing the temperature of storage (Wills et al., 1981). 

Table 4.7 Changes in physico-chemical parameters of tomatoes with respect to days 

of storage 

                                                      
1
 Four samples were randomly selected per day. Experiments were performed in triplicates of each sample. The results were 

expressed as the means±standard deviation (SD). 

Days1 L* a* b* 
Firm-

ness 

Lyco-

pene 
TA 

TSS 

(˚Brix) 
pH 

Interpreted class 

as per USDA 

color 

classification 

standard 

1 
77.67 

±0.87 

-7.11 

±0.16 

20.68 

±0.21 

68.6 

±1.8 

3.83 

±1.24 

0.93 

±0.12 

4.07 

±0.16 

4.42 

±0.04 

 

 

 

(Mature green) 

2 
77.41 

±0.45 

-4.88 

±0.34 

22.9 

±0.12 

60.76 

±4.3 

5.09 

±2.26 

0.88 

±0.08 

3.93 

±0.20 

4.38 

±0.02 

3 
75.71 

±0.76 

-1.26 

±0.18 

23.82 

±0.18 

55.86 

±2.1 

6.22 

±3.42 

0.84 

±0.07 

3.98 

±0.10 

4.45 

±0.04 

4 
71.59 

±1.12 

-1.08 

±0.29 

23.35 

±0.13 

52.92 

±2.9 

7.51 

±2.75 

0.75 

±0.07 

4.10 

±0.21 

4.48 

±0.10 

5 
68.77 

±0.65 

2.94 

±0.19 

25.86 

±0.14 

44.1 

±3.2 

8.23 

±1.66 

0.73 

±0.06 

4.11 

±0.09 

4.53 

±0.03 

6 

65.46 

±0.30 

4.47 

±0.3 

29.53 

±0.12 

42.14 

±1.6 

6.58 

±2.81 

0.69 

±0.02 

4.12 

±0.11 

4.55 

±0.02 

7 
62.54 

±0.69 

6.66 

±0.14 

30.12 

±0.21 

36.26 

±3.5 

13.08 

±1.8 

0.77 

±0.05 

4.57 

±0.13 

4.47 

±0.03 

 

 
 

(Intermediate) 

8 
60.44 

±1.57 

7.43 

±0.22 

32.84 

±0.16 

35.28 

±2.8 

15.5 

±3.5 

0.73 

±0.03 

4.59 

±0.07 

4.43 

±0.04 

9 
59.37 

±0.62 

9.11 

±0.41 

33.28 

±0.25 

30.38 

±3.0 

16.06 

±2.91 

0.68 

±0.05 

4.64 

±0.05 

4.57 

±0.04 

10 
58.47 

±2.08 

10.05 

±0.16 

36.48 

±0.18 

26.46 

±2.3 

19.25 

±2.4 

0.65 

±0.05 

4.73 

±0.09 

4.53 

±0.05 

11 
57.52 

±1.13 

11.87 

±0.21 

39.35 

±0.25 

22.54 

±4.1 

25.22 

±3.08 

0.63 

±0.05 

5.11 

±0.02 

4.43 

±0.06 

12 
55.18 

±0.91 

12.84 

±0.19 

42.52 

±0.14 

20.58 

±3.5 

26.16 

±4.16 

0.57 

±0.05 

5.19 

±0.14 

4.45 

±0.04 

13 
54.31 

±0.51 

15.92 

±0.35 

43.76 

±0.21 

18.44 

±1.9 

29.25 

±3.24 

0.55 

±0.02 

5.24 

±0.12 

4.51 

±0.02 

14 53.76 

±0.63 

18.11 

±0.18 

44.01 

±0.14 

15.61 

±2.8 

30.2 

±2.18 

0.62 

±0.05 

4.48 

±0.03 

4.57 

±0.08 

 

 
 

(Advanced) 

15 52.84 

±0.92 

19.44 

±0.24 

44.9 

±0.3 

13.43 

±3.2 

33.33 

±1.85 

0.59 

±0.05 

5.35 

±0.06 

4.59 

±0.05 

16 50.59 

±1.19 

23.41 

±0.12 

46.77 

±0.12 

12.25 

±2.3 

45.05 

±3.3 

0.57 

±0.05 

5.54 

±0.04 

4.63 

±0.06 

17 48.76 

±0.74 

25.53 

±0.15 

48.21 

±0.45 

11.27 

±4.6 

46.11 

±2.45 

0.66 

±0.12 

5.60 

±0.05 

4.69 

±0.09 

18 43.28 

±0.82 

27.13 

±0.19 

45.56 

±0.21 

6.2 

±2.7 

53.43 

±1.4 

0.46 

±0.13 

5.67 

±0.07 

4.77 

±0.01 



96 

 

 

 

4.3.3 Principal Component Analysis 

The PCA model was applied to all data to determine the most important variables that 

explain the determining parameter in ripening. Two principal components explaining 

99.2% of the overall variance (96.2% and 3.01% for PC1 and PC2, respectively) divided 

the ripening stages into four distinct clusters. The factors that most contributed to PC1 

(positive side) were: lycopene and firmness followed by color. 

 

Fig. 4.11 PCA biplot on the obtained result 

 

 

4.3.4 Statistical Validation 

Here, ANOVA was used to calculate the significance of difference between samples 

means. Table 4.8, Table 4.9, Table 4.10 and Table 4.11 presents the sum of square, 

degree of freedom (df) and mean square of One-Way ANOVA of TSS, TA, pH, and 

lycopene respectively. Based on these values, the F‟s critical value and p value is 

evaluated, and the highest calculated F value is considered. An F-value compares the 

variance between groups to the variance within groups. A p-value (< 0.05) indicates that 
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results between the groups are statistically significant. The one-way AVONA results 

presented in Table 6 depict that there is a statistically significant difference in mean 

lycopene values between at least two maturity classes {F (2, 15) = [57.64], p<0.001}. 

Similar observations are also reported for TSS {F (2, 15) = [32.17], p<0.001} followed 

by TA {F (2, 15) = [20.65], p<0.001} in Table 3 and table 5 respectively.  The results 

presented in Table 3, 4, 5 and 6 indicated that among the four quality parameters 

lycopene, TA, TSS and pH; lycopene showed the highest discriminating ability for 

maturity classes with the highest F value. On the other hand, the F value for pH is close 

to 1 indicating that pH is not a good discriminating factor for maturity class detection. 

The one-way ANOVA here is successful to compare the effect of maturity on lycopene. 

Table 4.8 ANOVA test on TSS values for three maturity stages of tomatoes 

ANOVA – TSS 

Cases Sum of 

Squares 

df Mean 

Square 

F P η
2
 

Maturity 6.476 2 3.238 32.174 <.001 0.811 

Residuals 1.510 15 0.101    

Note. Type III Sum of Squares 

Table 4.9 ANOVA test on pH values for three maturity stages of tomatoes 

ANOVA – pH 

Cases Sum of 

Squares 

df Mean 

Square 

F P η
2
 

Maturity stage 0.114 2 0.057 1.151 0.343 0.133 

Residuals 0.744 15 0.050    

Note. Type III Sum of Squares 

Table 4.10 ANOVA test on TA values for three maturity stages of tomatoes 

ANOVA – TA 

Cases Sum of 

Squares 

df Mean 

Square 

F P η
2
 

Maturity stage 0.132 2 0.066 20.650 <.001 0.734 

Residuals 0.048 15 0.003    

Note. Type III Sum of Squares 
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Table 4.11 ANOVA test on lycopene values for three maturity stages of tomatoes 

 

From Fig. 4.12, it can be interpreted that there is no overlapping in lycopene values 

between classes and hence the obtained results are balanced and reliable for classifying 

tomatoes into their maturity classes. The mean lycopene value is highest in the case of 

advanced followed by intermediate and mature green tomatoes. The standard deviation 

of mature green is lowest followed by intermediate and advanced classes. Therefore, 

lycopene can be considered a better indicator of maturity class detection. 

 

Fig. 4.12 Mean and standard deviation plot of lycopene values for the three 

maturity stages of tomatoes 

Using one way ANOVA, we investigated lycopene as a key indicator tomato maturity 

class estimation. In Table 4.12 and Table 4.13, lycopene is further correlated with the 

ANOVA - Lycopene  

Cases Sum of 

Squares 

df Mean 

Square 

F P η
2
 

Maturity stage 3428.864 2 1714.432 57.641 <.001 0.885 

Residuals 446.145 15 29.743    

Note. Type III Sum of Squares 
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fruit‟s physico-chemical parameters using Pearson Correlation.  

Table 4.12 Pearsons’ correlation between lycopene, TSS and TA values 

Pearsons’ Correlation 

   
Pearsons’ r p 

Lycopene 
 

- 
 

TSS 
 

0.921 
 

< .001 
 

Lycopene 
 

- 
 

TA 
 

-0.858 
 

< .001 
 

TSS 
 

- 
 

TA 
 

-0.835 
 

<0.001 
 

 

Again in Table 4.13, correlation is established between lycopene and the physical 

parameters firmness and color (a*/b*). From Table 8 it is evident that color and firmness 

has the highest correlation (0.979), followed by lycopene and firmness (0.910). It can 

thus be concluded that lycopene content, color and firmness have a very correlation and 

thus may be used as a determining factor to tomato maturity. 

 

Table 4.13 Pearsons’ correlation between Lycopene, firmness and a*/b* values 

Pearsons’ Correlation 

   Pearsons’ r p 

Lycopene - a*/b* 0.909 < .001 

Lycopene - Firmness -0.910 < .001 

a*/b* - Firmness -0.979 < .001 

4.3.5 Mapping of physico-chemical properties 

It is evident that for every different tomato, different values for physico-chemical 

parameters will be obtained. This study is an attempt to correlate those obtained values 

with its surface characteristics. Features are extracted from the surface characteristics 

from the images that are input to the deep learning model. The experimental values 

corresponding to each maturity stage are averaged to obtain the mean values against that 

stage. The mean values of a particular maturity stage are then mapped with the image 

corresponding to it as shown in Table 4.14. It was then analyzed for maturity class 

detection using deep learning and for estimation of its chemical constituents and physical 

properties. 

From Table 4.14 it found that the mean value of lycopene in its mature green stage is 

6.24 ± 1.60. This indicates that lycopene content did not show much variation during its 



100 

 

mature green stage indicating slow biosynthesis of lycopene in the initial 1-6 days. The 

mean value reached 20.64±6.21 in its intermediate stage indicating variations in values 

upon ripening. The highest mean value of Lycopene was in it advanced stage 41.62±9.62 

with a high variation. The highest concentration peaks of lycopene at this stage may be 

associated to the increasing concentration of geranyl geranyl diphosphate (GGPP) and/or 

the increasing activation of the enzymes responsible for the conversion (Colombani et al., 

2001). In a similar way, TA values are highest in its mature green stage from day 1-6 

with values 0.80 ± 0.09. The TA values decreased significantly upon maturation with its 

value ranging from 0.65±.079 to 0.58±.075. Table 4.14 also shows that TSS increases 

significantly from 4.05 ± 0.07 to 5.32±0.48 upon ripening from mature green to deep red 

advanced stage respectively. The pH values of tomatoes in all the three stages are found 

to be quite similar, ranging from 4.46±0.06, 4.48±0.05 and 4.65±0.08 in mature green, 

intermediate and advanced stage respectively. Since these values did not change 

significantly (p>0.05) as shown in hence the pH values do not show a good mapping 

with its respective image. 

Table 4.14 Mean firmness, lycopene, TSS, TA, and pH values mapped to images 

corresponding to each ripening classes 

Day Image 
Firm-

ness 

Lyco-

pene 
TSS TA pH Class 

1-6 
  

  

 

54.06 

±10.02 

6.24  

± 1.60 

4.05  

± 0.07 

0.80 

±0.09 

4.46  

±0.06 

Stage I 

(Mature 

green) 

7-13 
  

  

 

27.13 

±7.07 

20.64 

± 6.21 

4.86  

± 0.29 

0.65 

±0.08 

4.48  

±0.05 

Stage II 

(Intermedia

te) 
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14-18 
 

 

  

 

10.52 

±4.33 

41.62 

± 9.62 

5.32  

±0.48 

0.58 

±0.07 

4.65  

±0.08 

Stage III 

(Advanced) 

 

4.3.6 Model Evaluation using confusion matrix 

The VGG19 model used for maturity detection was trained and tested using self-prepared 

tomato dataset containing 900 tomato images of three different maturity classes. Out of 

900 images, 75% of the images were used to train the model and the remaining 25% 

tomato images were retained for validation of the model. The test images were not used 

to train the deep learning model. On validation, the proposed model achieved validation 

accuracy of 92% after 50 epochs with batch size of 32. Further, the time taken to classify 

individual tomato using the proposed model is approximately 650 milliseconds.  

The confusion matrix obtained to evaluate the performance of the model is shown in Fig. 

7. It can be seen in Fig. 4.13 that a total of 81/81 and 79/79 tomato images were correctly 

classified as mature green and advanced respectively, giving a recall of 100% for both 

the classes. However, in the case of intermediate only 48 images were correctly 

classified out of 65 images, thus, indicating 73.84% recall. This may be due to mixed 

surface color ranging from green to red. On the other hand, precision was found in the 

range 86%-100% indicating that the model can predict the maturity classes correctly. F1-

score was of the range 85%-98%. It can thus be concluded that the model gives the best 

results in classifying tomatoes as mature green and advanced. The model confused 

samples belonging to intermediate class with mature green and advanced. Table 4.15 

provides precision, recall, F1-score, cohen‟s kappa score and overall accuracy of the 

model on the test set. Precision, recall, F1-score provides a class-wise insight in the 

correctness of the model. 
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Fig. 4.13 Confusion matrix obtained on the test set 

 

Table 4.15 Classification performance analysis of tomato maturity prediction model 

Maturity 

stage 
Recall Precision 

F1-

score 

Cohen’s 

Kappa 

Overall 

accuracy 

Mature 1.00 0.95 0.98 

0.88 0.92 Intermediate 0.74 1.00 0.85 

Advanced 1.00 0.86 0.92 

Table 4.16 Comparison of predicted values using deep learning with experimental 

values by physico-chemical analysis 

PREDICTED VALUES USING DEEP 

LEARNING 

EXPERMENTAL VALUES BY PHYSICO-

CHEMICAL ANALYSIS (Physio-chemical 

analysis of the same tomato image given as 

input to VGG19 model.) 

 

Maturity stage: Mature green 

Bio-chemical properties: 

TSS (
o
Brix) 3.95 

TA (% citric acid) 0.89 

Lycopene (mg/100g) 5.29 

pH 4.41 

Texture and color details: 

Firmness (N) 60.76 

L* 71.22 

a* -1.08 

b* 23.61 
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Maturity stage: Intermediate 

Bio-chemical properties: 

 TSS (
o
Brix)  4.59 

TA (% citric acid) 0.74 

Lycopene (mg/100g) 15.67 

pH 4.48 

Texture and color details: 

Firmness (N) 30.28 

L* 61.85 

a* 7.19 

b* 31.40 

 

 

Maturity stage: Advanced 

Bio-chemical properties: 

TSS (
o
Brix) 5.37 

TA (% citric acid) 0.60 

Lycopene (mg/100g) 32.23 

pH 4.57 

Texture and color details: 

Firmness (N) 14.61 

L* 53.15 

a* 18.53 

b* 43.27 
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4.3.7 Model Evaluation using Pearson correlation 

To validate the VGG 19 model in predicting the physico-chemical properties of tomato, 

on site physico-chemical analysis is performed on the same tomato being used as input to 

the proposed model. The error of the model is obtained based on the experimental values 

in Table 4.17. It can be observed that experimental values for lycopene, TSS, TA, 

firmness, and colour are within the standard deviation of the predicted values of VGG19 

model. The VGG19 model thus surmounts the task of predicting the physic-chemical 

properties of tomatoes non-destructively in real-time from images. However, as 

discussed in section 4.3.2.2, pH value did not show a good correlation with the other 

chemical parameters indicating maturity class. The proposed deep learning model may 

not appropriately predict the maturity class of tomatoes from pH values alone. 

Table 4.17 Percentage error obtained between the predicted value and experimental 

value 

Parameters Ripening stage Predicted value Actual value Percentage Error 

TSS 

Mature green 4.06 3.95 2.78% 

Intermediate 4.83 4.59 5.23% 

Advanced 5.6 5.37 4.28% 

TA 

Mature green 0.8 0.89 10.11% 

Intermediate 0.69 0.74 6.76% 

Advanced 0.58 0.6 3.33% 

Lycopene 

Mature green 6.24 5.29 17.96% 

Intermediate 20.6 15.67 31.46% 

Advanced 41.63 32.23 29.17% 

Firmness 

Mature green 54.06 60.76 11.03% 

Intermediate 27.13 30.28 10.40% 

Advanced 10.53 14.61 27.93% 

pH 

Mature green 4.46 4.41 1.13% 

Intermediate 4.48 4.48 0.00% 

Advanced 4.65 4.57 1.75% 

L* 

Mature green 72.77 71.22 2.18% 

Intermediate 58.26 61.85 5.80% 

Advanced 49.85 53.15 6.21% 

a*  

Mature green -1.15 -1.08 6.48% 

Intermediate 10.55 7.19 46.73% 

Advanced 22.72 18.53 22.61% 

b*  

Mature green 24.36 23.61 3.18% 

Intermediate 36.91 31.4 17.55% 

Advanced 45.89 43.27 6.06% 
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4.4 Results obtained from prediction of shelf-life of tomatoes based on its surface 

characteristics 

This section presents how quality attributes of tomato degrade upon storage at different 

temperatures. 

4.4.1 Effect of temperature on quality of tomato upon storage 

Tomatoes were stored at refrigerated temperatures 5.5±2.2˚C, 18.5±4.9˚C and 

29.5±2.1˚C. Temperature is monitored using a digital thermometer. In order to evaluate 

the change in quality of tomatoes at the above-mentioned temperatures, color and 

firmness is determined at regular intervals of time. The effect of temperature on quality 

parameters is discussed below. 

 
Fig. 4.14 Colour (a*) change in tomato during storage at different temperature 
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Fig. 4.15 Change in a*/b* values of tomato during storage at different temperature 

 

 
Fig. 4.16 Change in ΔE values of tomato during storage at different temperature 
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Fig. 4.17 Firmness change in tomato during storage at different temperature 

 
Fig. 4.18 Lycopene change in tomato during storage at different temperature 
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Fig. 4.19 TSS change in tomato during storage at different temperature 

 

 

 
Fig. 4.20 TA change in tomato during storage at different temperature 
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Fig. 4.21 PME change in tomato during storage at different temperature 

 

 

 

Fig. 4.22 PWL change in tomato during storage at different temperature 
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The above figures show degradation of physico-chemical attributes of tomato upon 

storage at three different temperatures. As expected, temperature has a great influence on 

the quality indices. Color and firmness are the physical parameters considered for the 

storage study of tomatoes at temperatures 5.5±2.2˚C, 18.5±4.9˚C and 29.5±2.1˚C 

respectively. From Fig. 4.17, it is seen that firmness follows a declining trend during 

storage. Firmness decreases abruptly at higher temperatures compared to lower 

temperatures (Bourne and Comstock, 1986). This decrease in firmness is due to 

breakdown of cell wall due to activity of enzymes like PG and PME. Activity of PME is 

discussed below. Secondly, color values increase gradually as tomatoes undergo 

ripening. From Fig. 4.14, it is seen that higher the temperature, the change in color values 

from breaker green to dark red is faster. This is due to loss of chlorophyll pigments 

which are highly accelerated at higher temperatures (Koca et al., 2007). TSS, TA, PWL, 

lycopene content, PME are considered chemical attributes for shelf-life study of 

tomatoes. TSS values increase because of hydrolysis of carbohydrate with increase in 

maturity and thus influenced by storage temperature (Dairi et al., 2021). From Fig. 4.22it 

is seen that as tomato matures, weight loss increases. Weight loss is mostly related to 

respiration and transpiration of tomatoes, which is thus less at lower temperature 

(Javanmardi and Kubota, 2006). TA is aggregation of all acids (volatile and fixed) (Naik 

et al., 1993). From Fig. 4.20, it is seen that TA values decreases upon storage as maturity 

proceeds. This decrease is faster at higher temperatures. Lycopene is the main pigment 

responsible for distinguishing maturity stages of tomatoes (Park et al., 2018). Lycopene 

content increases with prolongation of maturity. As shown in Fig. 4.18, its content is 

(3.43 mg/100g) in its breaker stage while (55.18 mg/100g) in its red ripen stage. As 

discussed above, PME is one of the enzymes responsible for softening of cell wall 

(Brummell and Harpster, 2001). Contrary to other parameters it is seen that activity of 

PME is highest at temperature 27.5±2.1˚C while it‟s lowest at temperature 5.5±2.2˚C. In 

the case of all the three temperatures the activity of PME shows an increasing trend until 

it reaches the advanced stage after which there is a remarkable decline in PME value. 

Highest value (42 U/ml) of PME is found before entering the ripened stage and later 

declined to (35 U/ml). The results are the same as (Koslanundet al., 2005).Thus, from the 

above results it is clear that biochemical and physical responses that occur in food are 

primarily responsible for variations in food quality. Also, temperature has a tremendous 

effect on the quality indices in maintaining the shelf-life of tomatoes. 
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4.4.2 Effect of temperature on Decay Rate 

From Fig. 4.23 it is observed that decay starts earlier for tomatoes stored at temperature 

29.5±2.1˚C followed by 18.5±4.9˚C and 5.5±2.2˚C. This clearly indicates that 

temperature has an influence on decay rate of stored tomatoes.   

 

 

Fig. 4.23 Decay rate in tomato during storage at different temperature 
 

4.4.3 Effect of temperature on Disease Damage Incidence 

From Fig. 4.24 it is observed that higher the temperature of storage, higher is the disease 

damage incidence. From the obtained results it is seen that disease damage starts after 

decay rate for tomatoes.  
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Fig. 4.24 Disease damage incidence change in tomato during storage at different 

temperature 

4.4.4 Effect of temperature on Maturity Index 

Maturity index is an indicator to ripening of tomatoes which varies upon storage. Maturity index 

is achieved earlier at higher temperature 29.5±2.1˚C followed by 18.5±4.9˚C and5.5±2.2˚C. 

 

Fig. 4.25Maturity index in tomato during storage at different temperature 
 

4.4.5 Kinetics of changes in quality parameter of tomato during storage 

The kinetics of the physico-chemical changes in tomatoes are evaluated using a 
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mathematical kinetic model which is a powerful tool for food quality prediction (Bunkar 

et al., 2014). Each reaction has its own rate and kinetics. The color, firmness, TSS, TA, 

PWL, lycopene content, and PME characteristics are fitted in zero-order, first-order and 

second-order kinetics in tomato during storage at various temperatures. The reaction 

rates and R
2
 values for each reaction order are estimated corresponding to each 

temperature range. Based on the R
2
 values obtained, the reaction order to be considered 

for shelf-life estimation is determined. Table 4.18 shows the results of a regression study 

of the zero-order, first-order and second-order kinetics in tomato during storage at 

various temperatures. 

Table 4.18 Rate constant (k) and decision coefficient (R2) of zero-order and first-

order kinetic equations 

Quality Indices 

Tempr Zero-order First-order Second-order 

(◦C) k R2 k R2 k R2 

Firmness 

5.5±2.2˚

C, 
-1.318 0.951 -0.053 0.945 0.003 0.617 

18.5±4.

9˚C 
-2.208 0.978 -0.071 0.935 0.003 0.686 

29.5±2.

1˚C 
-2.407 0.897 -0.103 0.983 0.006 0.792 

a* 

5.5±2.2˚

C, 
0.926 0.980 0.112 0.727 0.006 0.143 

18.5±4.

9˚C 
1.399 0.983 0.198 0.813 0.019 0.023 

29.5±2.

1˚C 
1.696 0.928 0.185 0.644 0.043 0.03 

TSS 

5.5±2.2˚

C, 
0.032 0.987 0.007 0.994 -0.001 0.992 

18.5±4.

9˚C 
0.060 0.975 0.012 0.981 -0.002 0.980 

29.5±2.

1˚C 
0.096 0.959 0.019 0.964 -0.004 0.962 

PME 

5.5±2.2˚

C, 
0.874 0.969 0.048 0.886 -0.003 0.664 

18.5±4.

9˚C 
1.270 0.967 0.076 0.953 -0.006 0.779 
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29.5±2.

1˚C 
1.771 0.982 1.449 0.881 -0.004 0.685 

PWL 

5.5±2.2˚

C, 
0.476 0.967 0.078 0.941 -0.009 0.193 

18.5±4.

9˚C 
0.560 0.971 0.109 0.919 -0.013 0.145 

29.5±2.

1˚C 
0.913 0.979 0.119 0.804 -0.023 0.383 

TA 

5.5±2.2˚

C, 
-0.012 0.959 -0.018 0.915 0.029 0.854 

18.5±4.

9˚C 
-0.015 0.907 -0.022 0.849 0.032 0.776 

29.5±2.

1˚C 
-0.023 0.986 -0.036 0.983 0.060 0.958 

Lycopene 

5.5±2.2˚

C, 
1.121 0.913 0.067 0.967 -0.006 0.815 

18.5±4.

9˚C 
1.636 0.838 0.099 0.972 -0.009 0.913 

29.5±2.

1˚C 
2.584 0.951 0.126 0.934 -0.009 0.758 

 

From Table 4.19 it is found that quality indices of tomato at three different temperatures 

better fitted with zero-order reaction models. The R
2
 values were followed by first-order 

reaction. The least R
2
 values were obtained for second order reaction showing poor 

performance of the model. The best fitted reaction order model is then considered for 

calculation of activation energy (Ea), ΔH and ΔS from Arrhenius and Eyring models 

respectively. The obtained results are plotted in Table 4.19.  

Arrhenius equation‟s linear regression is obtained from the rate constant (k) and 

temperature (T) values at different storage conditions. Arrhenius equation is thus the plot 

of 1/T and ln k. The activation energy (Ea) values can describe the influence of 

temperature on the quality indices. Same follows for determination of ΔH and ΔS values 

from Eyring equation. The results demonstrate that Ea values ranged from 20.94 to 28.66 

kJ/mol. The highest value of Ea was obtained from lycopene, followed by TSS, TA, 

PWL, PME, firmness and color. ΔH ranged from 18.69 to 25.99 kJ/mol, which is closer 

with the results obtained for Ea as presented in Table 4.19. 

The highest Ea and ΔH value (28.66 kJ/mol and 25.99 kJ) of lycopene implies that 
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higher temperature change was needed to degrade lycopene compared to other quality 

indices. The a* seemed to have the lowest Ea and ΔH value (20.94 kJ/mol and 18.69 kJ), 

followed by firmness (20.97 kJ/mol and 18.75 kJ), indicating that the storage 

temperature has a greater influence on color values (a* value) and firmness of tomatoes. 

According to Van Boekel (2008), a high Ea value suggests that some chemical reactions 

in food are very slow at low temperatures but relatively fast at high temperatures. 

Moreover, the Arrhenius model (with R
2
 higher values) showed better performance than 

Eyring model. Since both Zero-order reaction and Arrhenius model fitted better in all 

cases, they are found suitable for prediction of shelf-life of tomatoes at different storage 

temperature. 

Table 4.19 Kinetic parameters of zero-order models for quality parameter in 

tomato 

Quality indices 

Arrhenius model Eyring model 

Arrhenius Equation Ea(kJ/mol) R2 ΔH (kJ) 
ΔS 

(J/(mol.K)) 
R2 

Firmness ln k=9.331-2523/T 20.97 0.876 18.75 -139 0.876 

a* ln k=8.931-2519/T 20.94 0.969 18.69 -244 0.969 

TSS ln k=12.81-4555/T 24.59 0.999 23.66 -269 0.999 

PME ln k=9.228-2605/T 21.65 1.000 20.31 -245 1.000 

PWL ln k=8.713-2669/T 22.19 0.905 20.79 -250 0.905 

TA ln k=5.074-2675/T 22.23 0.956 18.01 -115.31 0.956 

Lycopene ln k=12.38-3448/T 28.66 0.992 25.99 -243.26 0.992 

 

4.4.6 Predictability of the shelf life of tomatoes at different temperatures 

Based on the Arrhenius results, the a* and firmness value changes in tomatoes were 
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recognized as the major form of deterioration. The difference between the initial values 

of a* and firmness and the predetermined critical values of a* and firmness is used to 

calculate the shelf life. According to research conducted by Ali Batu firmness and color 

are the most important factors for determination of tomato quality. If the firmness value 

is above 1.46 N are very firm and easily acceptable (Castro et al., 2021). Thus, the 

critical value of firmness is taken as 1.46 N as presented in Table 4.21. And according to 

Castro et al acceptable a* values of tomato ranged from 17.95-29.68. a* value more than 

this indicates intense red soft (Rosa et al., 2011). Thus, 35 is taken as the threshold value 

for end of shelf-life of tomatoes as presented in Table 4.20. 

 

Table 4.20 Values for calculating ASLT from a* value 

T (◦C) k A0 As 

5.5±2.2˚C, 0.461 -8.92 

35 18.5±4.9˚C 0.687 -9.26 

29.5±2.1˚C 0.878 -7.94 

 

Table 4.21 Values for calculating ASLT from firmness 

T (◦C) k A0 As 

5.5±2.2˚C, 1.318 65.12 

1.4 18.5±4.9˚C 2.208 70.01 

29.5±2.1˚C 2.407 68.6 

 

 ts =
Ao − 1.4

11282.41 × e 
−2519

T+273
 
 (4.1) 



117 

 

 

 ts =
35 − Ao

7562.82 × e 
−2519

T+273
 
 (4.2) 

 

Putting the above values in equation (13) and (14), the shelf-life of tomatoes is calculated 

as 50, 35 and 26 days, at storage temperature of 5.5±2.2˚C, 18.5±4.9˚C and 29.5±2.1˚C, 

respectively against firmness values from Table 4. Similarly, tomatoes showed shelf life 

of 46, 34 and 25 days against a* values from Table 3. The experimental and calculated 

values of shelf-life of tomatoes obtained from the above study are presented in Table 

4.22. 

 

Table 4.22 Experimental and calculated value of shelf-life of tomatoes at different 

temperature 

Parameter 
Storage 

temperature (◦C) 

Shelf life (Day) 

Experimental 

value 
Calculated value 

Firmness (N) 

5.5±2.2˚C, 46 50 

18.5±4.9˚C 32 35 

29.5±2.1˚C 25 26 

a* 

5.5±2.2˚C, 46 46 

18.5±4.9˚C 32 34 

29.5±2.1˚C 25 25 

 

4.4.7 Relationship between shelf life and storage temperature 

Plotting the logarithm of calculated shelf-life of tomatoes (ln ts) against storage 

temperature (T), a relationship is established between them. It can be seen in Fig. 

4.26that calculated shelf-life of tomatoes has a very good relationship with temperature 

(R
2
=0.997). 
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Fig. 4.26 Relationship between shelf life and storage temperature 

4.4.8 Application of Deep Learning to estimate the shelf life of tomatoes at 

different temperature 

For making the study more robust and meaningful, the above findings are trained in deep 

learning architecture with image as input. As discussed in section 2.7, a deep transfer 

learning model i.e.; VGG 19 is used to classify the tomatoes from its surface 

characteristics. The Arrhenius equation obtained out of the analysis was incorporated in 

the model for predicting shelf-life of tomatoes. Based on its surface characteristics, the 

shelf-life is estimated at three different temperatures. The VGG 19 model in particular 

was configured for training as: epoch (50), batch size (32), activation function (softmax) 

and learning rate (0.001). The VGG 19 model is trained with the images acquired 

throughout the experiment. The model works well with the given data points with a 

validation accuracy of 94%. 
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Fig. 4.27 Tomato shelf-life prediction using VGG 19 model 

Based on the VGG 19 architecture, the predicted results are presented in Fig. 4.27. The 

predicted results show better performance in estimating its shelf-life. Given an image to 

predict its shelf-life, the developed model can thus automatically estimate the shelf-life 

of that tomato with a recommendation on its time-temperature. 

 

4.5 Results obtained in developing the app for quality inference of tomatoes 

This section highlights the performance accuracy of the models selected for developing 

the app. 

4.5.1 Performance comparison of developed models for deployment as mobile app 

The models giving the highest classification accuracy have been selected for developing 

the android based app. The performances of the different models with their classification 

accuracies are discussed below: 

4.5.1.1 Performance of customized CNN model when implemented with TF lite in 

mobile 

The training of the CNN model was carried out iteratively with varying epoch and batch 

sizes to evaluate its accuracy. The highest classification accuracy of 99.70% was 

achieved at 20 epoch and 32 batch size.  
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4.5.1.2 Performance of transfer learning model when implemented with TF lite in 

mobile 

Out of the 5 pre-trained models (VGG 19, VGG 16, inception V3, ResNet 101 and 

ResNet 152) used, VGG 19 gave highest classification accuracy 97.37% at 50 epoch and 

32 batch size. 

4.5.1.3 Performance of transfer learning model when implemented with TF lite in 

mobile 

VGG 19 outperformed the ripening stage classification of tomatoes based on its surface 

characteristics with an accuracy of 97.37%. Hence to execute the task of predicting 

physico-chemical properties of tomato based on it‟s ripening stages, VGG 19 is used. In 

predicting physico-chemical properties of tomatoes based on their ripening stages, the 

proposed model achieved a validation accuracy of 92% after 50 epochs with a batch size 

of 32. 

4.5.1.4 Performance of transfer learning model when implemented with TF lite in 

mobile 

In consideration of the above two cases, VGG 19 was used in predicting shelf-life of 

tomatoes stored at different temperatures. The proposed VGG 19 model is successful in 

predicting the shelf-life on tomatoes with an accuracy of 81%.   

Accordingly, the developed models were deployed into an app for inference of tomato 

quality and shelf life with image input. The built application first identifies tomatoes as 

edible or spoilt. If it is predicted as spoilt, then the application indicates unfit for 

consumption. And if edible, the app further identifies the maturity stage of tomato as 

mature green, intermediate and advanced. Secondly the app predicts the physico-

chemical properties of the given tomato based on the maturity class. Finally, the app 

estimates the shelf-life of the given tomato from the image provided. The application is 

designed in a way that the input image is given to the TFLite model for classification and 

the output of the model is displayed in the interface of the Application with an option to 

read the result. 
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(a) 

 

(b) 

 

(c) 

Fig. 4.28 (a) Initial interface of the application, (b) Spoilage detection interface, and 

(c) Interface for display of quality parameters 

4.5.2 Evaluation of computational capability of the developed app 

After development of the android application, an .apk file was generated, which can be 

installed in android based smart phones (Android Version 4.4 or above). After 

installation of the application in the smart phone, it was tested for performance analysis. 

On the home page, an option can be chosen for selecting which quality attributes to be 

determined as shown in Fig. 4.28 (a). After selecting the required quality criteria an 

option will flash whether to select an image from the gallery or an image to be captured 

from the mobile camera as shown in Fig. 4.28 (b). After selecting the image, the 

application gives the prediction based on the input image. To verify the performance of 

the application, benchmark tests have been conducted on the sample images extracted 

from the test set. On the benchmark test, the application provided more than 90 % 

accuracy for the test cases. The test also indicated that, in addition to the high recognition 

rate, the application consumed less computation time and was able to make  prediction in 

real-time (<0.67 sec). 
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4.5.3 Validation of results predicted by developed app against measurement in 

real sample 

To investigate the app‟s performance, an experiment was designed to establish the 

correlation between app‟s predicted values and the actual values of the quality attributes 

being considered for laboratory analysis. Some of the test cases on inference made of the 

app on the tomatoes are shown in Fig. 4.29. 

Test image 
App inference on 

spoilage 
Test image 

App inference on 

physico-chemical 

properties 

 

 

 

 

Fig. 4.29 App inference spoilage detection of tomato 

Considering all the results obtained from the app, sensory and physico-chemical analysis, 

Pearsons‟ correlation and percentage error was established respectively. Pearsons‟ 

correlation established between apps prediction and sensory evaluation in predicting 

current state of tomato as edible or spoilt was found to be 0.99. The app‟s prediction and 

the sensory panelists‟ evaluation were highly correlated (0.99) meaning that the app is 

99% successful in detecting the current state of tomato as edible or spoilt. In the next 

case, Pearsons‟ correlation established between apps prediction and sensory evaluation in 

predicting current state of tomato as mature green, intermediate and advanced was 0.92.  

This indicates that the app is 92% successful in detecting the current state of tomato as 

mature green, intermediate and advanced. Next to this, the physico-chemical analysis 

results obtained experimentally and from the app was compared by calculating the 

percentage error in prediction. From the results it is found that the error percentage was 

<4% for firmness, TSS, TA and pH. For lycopene it was <10%. It was found that 

lycopene values slightly differ from experimental values which may be due to variety of 

tomato used. For L*, a* and b* it was <5%, <15% and <10% respectively, the error 
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percentage was highest for a* values followed by b* and L* which may be due to variety 

of tomato and amount of carotene in trained and test sample. The app‟s performance was 

further evaluated for shelf-life (Fig. A4). One of the test cases on the inference of the 

developed app for shelf-life estimation of tomatoes is plotted below. 

Test images App inference on shelf-life 

 

 

Fig. 4.30 App inference on shelf life of tomato 

Pearsons‟ correlation was again established between the predicted value and real time 

values. The results obtained were found to be highly correlated (0.92). From the overall 

results it can be concluded that quality indices predicted by the app was at par with 

human inference and experimental results. The app thus outperforms the task of quality 

inference and can be regarded as a viable solution in food supply chain in a way that 

during handling storage and prior to processing, it will provide prior information on the 

tomatoes quality in terms of its current state, physicochemical compositions and shelf-

life. Knowing the shelf-life will minimize losses to a great extent. 

4.5.4 Challenges faced during deployment of app onto Smartphone 

The model was trained using pre-processed images of 100 x 100 pixels. However, input 

image dimension on an android smart phone tend to be much higher than desired 

dimension of the input image on the deployed application. To overcome this limitation 

during deployment, measures were taken to resize the image before feeding it into the 

model. 
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