Bibliography:

- Abella, J. P., and Bergerson, J. A. (2012). Model to investigate energy and greenhouse gas emissions implications of refining petroleum: Impacts of crude quality and refinery configuration. *Environmental Science and Technology*, 46(24):13037–13047.
- Adamu, T. M., Ul Haq, I., and Shafiq, M. (2019). Analyzing the impact of energy, export variety, and FDI on environmental degradation in the context of environmental Kuznets curve hypothesis: A case study of India. *Energies*, 12(6):1076.
- Adeel-Farooq, R. M., Raji, J. O., and Adeleye, B. N. (2021). Economic growth and methane emission: testing the EKC hypothesis in ASEAN economies. *Management of Environmental Quality: An International Journal*, 32(2):277–289.
- Adeel-Farooq, R. M., Riaz, M. F., and Ali, T. (2021). Improving the environment begins at home: Revisiting the links between FDI and environment. *Energy*, 215:119150.
- Adenutsi, D. E. (2011). Financial development, international migrant remittances and endogenous growth in Ghana. *Studies in Economics and Finance*, 28(1):68–89.
- Afriyie, D., Wang, Z., Hu, S., Ampofo, G. K. M., and Asante, D. A. (2023). Exploring the dynamic nexus between urbanization and industrialization with carbon emissions in sub-Saharan Africa: evidence from panel PMG-ARDL estimation. *Environmental Science and Pollution Research*, 30:6373–6389.
- Ahmad, M., Jabeen, G., Hayat, M. K., Khan, R. E. A., and Qamar, S. (2020). Revealing heterogeneous causal links among financial development, construction industry, energy use, and environmental quality across development levels. *Environmental Science and Pollution Research*, 27(5):4976–4996.
- Ahmad, M., and Zhao, Z. Y. (2018). Empirics on linkages among industrialization, urbanization, energy consumption, CO2 emissions and economic growth: a heterogeneous panel study of China. *Environmental Science and Pollution Research*, 25:30617–30632.
- Ahmad, M., Zhao, Z. Y., and Li, H. (2019). Revealing stylized empirical interactions among construction sector, urbanization, energy consumption, economic growth and CO2 emissions in China. *Science of the Total Environment*, 657:1085–1098.
- Akadırı, S. Saint, Alola, A. A., and Usman, O. (2021). Energy mix outlook and the EKC hypothesis in BRICS countries: a perspective of economic freedom vs. economic growth. *Environmental Science and Pollution Research*, 28(7):8922–8926.

- Alam, M., Murad, W., Hanifa, A., and Ozturk, I. (2016). Relationships among carbon emissions, economic growth, energy consumption and population growth: Testing Environmental Kuznets Curve hypothesis for Brazil, China, India and Indonesia. *Ecological Indicators*, 70:466–479.
- Alhaddad, A., Ettouney, H., and Saqer, S. (2015). Analysis of air pollution emission patterns in the vicinity of oil refineries in Kuwait. *Journal of Engineering Research*, 3(1):1–24.
- Ali, H., Ali, I., and Baz, K. (2023). Do industrialization and nonrenewable energy affect environmental quality? Evidence from top fossil fuel–consuming countries. *Environmental Science and Pollution Research*, 30(50):109800–109809.
- Ali, M. A. S., and Yi, L. (2022). Evaluating the nexus between ongoing and increasing urbanization and carbon emission: a study of ARDL-bound testing approach. *Environmental Science and Pollution Research*, 29:27548–27559.
- Ali, R., Ishaq, R., Bakhsh, K., and Yasin, M. A. (2022). Do Agriculture Technologies Influence Carbon Emissions in Pakistan? Evidence based on ARDL technique. *Environmental Science and Pollution Research*, 29(28):43361–43370.
- Alshubiri, F., and Elheddad, M. (2020). Foreign finance, economic growth and CO2 emissions Nexus in OECD countries. *International Journal of Climate Change Strategies and Management*, 12(2):161–181.
- Alves, L. A., and Uturbey, W. (2010). Environmental degradation costs in electricity generation: The case of the Brazilian electrical matrix. *Energy Policy*, 38(10):6204–6214.
- Amato, A., Bigi, G. Pietro, Baldini, C., and Beolchini, F. (2020). Sustainable Reduction of the Odor Impact of Painting Wooden Products for Interior Design. *Applied Sciences*, 10(22).
- Ankathi, S., Lu, Z., Zaimes, G. G., Hawkins, T., Gan, Y., and Wang, M. (2022). Greenhouse gas emissions from the global transportation of crude oil: Current status and mitigation potential. *Journal of Industrial Ecology*, 26(6):2045–2056.
- Ansari, M. A., Haider, S., and Khan, N. A. (2020). Environmental Kuznets curve revisited: An analysis using ecological and material footprint. *Ecological Indicators*, 115:106416.
- Anser, M. K., Ahmad, M., Khan, M. A., Zaman, K., Nassani, A. A., Askar, S. E., Abro, M. M. Q., and Kabbani, A. (2021). The role of information and communication technologies in mitigating carbon emissions: evidence from panel quantile regression. *Environmental Science and Pollution Research*, 28(17):21065–21084.

- Anwar, A., Sarwar, S., Amin, W., and Arshed, N. (2019). Agricultural practices and quality of environment: evidence for global perspective. *Environmental Science and Pollution Research*, 26:15617–15630.
- Arnaut, J., and Lidman, J. (2021). Environmental Sustainability and Economic Growth in Greenland : Testing the Environmental Kuznets Curve. *Sustainability*, 13(3):1228.
- Aşici, A. A. (2015). On the sustainability of the economic growth path of Turkey: 1995-2009. *Renewable and Sustainable Energy Reviews*, 52:1731–1741.
- Aslam, B., Hu, J., Shahab, S., Ahmad, A., Saleem, M., Shah, S. S. A., Javed, M. S., Aslam, M.
 K., Hussain, S., and Hassan, M. (2021). The nexus of industrialization, GDP per capita and CO2 emission in China. *Environmental Technology and Innovation*, 23:101674.
- Asumadu-Sarkodie, S., and Owusu, P. A. (2017a). A multivariate analysis of carbon dioxide emissions, electricity consumption, economic growth, financial development, industrialization, and urbanization in Senegal. *Energy Sources, Part B: Economics, Planning and Policy*, 12(1):77–84.
- Asumadu-Sarkodie, S., and Owusu, P. A. (2017b). Carbon dioxide emissions, GDP per capita, industrialization and population: An evidence from Rwanda. *Environmental Engineering Research*, 22(1):116–124.
- Asumadu-Sarkodie, S., and Yadav, P. (2019). Achieving a cleaner environment via the environmental Kuznets curve hypothesis: determinants of electricity access and pollution in India. *Clean Technologies and Environmental Policy*, 21(9):1883–1889.
- Audu, A., Jimoh, A., Abdulkareem, S. A., and Lawrence, O. (2016). Economics and environmental impacts of oil exploration and exploitation in Nigeria. *Energy Sources, Part B: Economics, Planning and Policy*, 11(3):251–257.
- Awan, A. M., and Azam, M. (2021). Evaluating the impact of GDP per capita on environmental degradation for G-20 economies: Does N-shaped environmental Kuznets curve exist? *Environment, Development and Sustainability*, 24(9):11103–11126.
- Bader, Y., and Ganguli, S. (2019). Analysis of the association between economic growth, environmental quality and health standards in the Gulf Cooperation Council during 1980-2012. *Management of Environmental Quality*, 30(5):1050–1071.
- Balsalobre-Lorente, D., Driha, O. M., Leitão, N. C., and Murshed, M. (2021). The carbon dioxide neutralizing effect of energy innovation on international tourism in EU-5

countries under the prism of the EKC hypothesis. *Journal of Environmental Management*, 298:113513.

- Balsalobre-Lorente, D., Shahbaz, M., Roubaud, D., and Farhani, S. (2018). How economic growth, renewable electricity and natural resources contribute to CO2 emissions? *Energy Policy*, 113:356–367.
- Bathrinath, S., Abuthakir, N., Koppiahraj, K., Saravanasankar, S., Rajpradeesh, T., and Manikandan, R. (2021). An initiative towards sustainability in the petroleum industry: A review. *Materials Today: Proceedings*, 46(17):7798–7802.
- Baumann, M., Gasparri, I., Buchadas, A., Oeser, J., Meyfroidt, P., Levers, C., Romero-Muñoz,
 A., Waroux, Y. le P. De, Müller, D., and Kuemmerle, T. (2022). Frontier metrics for a process-based understanding of deforestation dynamics. *Environmental Research Letters*, 17(9).
- Bazyar, A., Zarrinpoor, N., and Safavian, A. (2021). Optimal design of a sustainable natural gas supply chain network under uncertainty. *Chemical Engineering Research and Design*, 176:60–88.
- Bella, G. (2018). Estimating the tourism induced environmental Kuznets curve in France. *Journal of Sustainable Tourism*, 26(12):2043–2052.
- Benschop, T. (2023). *Deforestation: Accelerating climate change and threatening biodiversity*. https://blogs.worldbank.org/en/opendata/deforestation-accelerating-climate-change-and-threatening-biodiversity
- Bhardwaj, B. (2013). Future of Carbon Trading: A Business That Works for Global Environment. International Journal of Science, Environment and Technology, 2(1):115– 121.
- Bilgen, S. (2016). The environmental effects of coal-related activities. *Energy Sources, Part A: Recovery, Utilization and Environmental Effects*, 38(22):3283–3289.
- Birkhofer, K., Smith, H. G., and Rundlöf, M. (2016). Environmental Impacts of Organic Farming. In *Encyclopedia of Life Sciences*.
- Boamah, E. O. (2022). Mandatory carbon disclosure and green committees. *Economics Letters*, 219:110767.
- Boamah, K. B., Du, J., Bediako, I. A., Boamah, A. J., Abdul-Rasheed, A. A., and Owusu, S.M. (2017). Carbon dioxide emission and economic growth of China—the role of

international trade. Environmental Science and Pollution Research, 24:13049–13067.

- Boutabba, M. A. (2014). The impact of financial development, income, energy and trade on carbon emissions: Evidence from the Indian economy. *Economic Modelling*, 40:33–41.
- Bui, D. T. (2020). Transmission channels between financial development and CO2 emissions:A global perspective. *Heliyon*, 6(11).
- Burchart-Korol, D., Krawczyk, P., Czaplicka-Kolarz, K., Turek, M., and Borkowski, W. (2014). Development of Sustainability Assessment Method of Coal Mines. *Journal of Sustainable Mining*, 13(4):5–11.
- Central Electricity Regulatory Commission. (2023). Report on Short-term Power Market in India: 2022-23.
- Çetinkaya, O. A., Çatik, A. N., Balli, E., Manga, M., and Destek, M. A. (2024). Assessing the influence of green innovation and environmental policy stringency on CO2 emissions in BRICS. *Environment, Development and Sustainability*.
- Chan, Y. T., and Wong, Y. F. (2020). Estimating the tourism-induced province-specific environmental Kuznets curve: Evidence from panel analyses of Chinese provinces. *International Journal of Tourism Research*, 22(6):751–766.
- Chandio, A. A., Jiang, Y., Rehman, A., and Rauf, A. (2020). Short and long-run impacts of climate change on agriculture: an empirical evidence from China. *International Journal of Climate Change Strategies and Management*, 12(2):201–221.
- Chen, J., Lü, S., Zhang, Z., Zhao, X., Li, X., Ning, P., and Liu, M. (2018). Environmentally friendly fertilizers: A review of materials used and their effects on the environment. *Science of the Total Environment*, 613–614:829–839.
- Chen, S., Chen, X., and Xu, J. (2016). Impacts of climate change on agriculture: Evidence from China. *Journal of Environmental Economics and Management*, 76:105–124.
- Chen, X., Li, Y., and Yang, Y. (2022). Research on the Decoupling Relationship between CO2 Emissions and Economic Growth in Zhejiang Province. *Polish Journal of Environmental Studies*, 31(3):2039–2047.
- Chowdhury, S., Khan, S., Sarker, M. F. H., Islam, M. K., Tamal, M. A., and Khan, N. A. (2022). Does agricultural ecology cause environmental degradation? Empirical evidence from Bangladesh. *Heliyon*, 8(6).
- CPCB. (2016). Final Document on Revised Classification of Industrial Sectors Under Red,

Orange, Green and White Categories.

- Cramer, J. C., and Cheney, R. P. (2000). Lost in the ozone: Population growth and ozone in California. *Population and Environment*, 21(3):315–338.
- Crow, D. J. G., Balcombe, P., Brandon, N., and Hawkes, A. D. (2019). Assessing the impact of future greenhouse gas emissions from natural gas production. *Science of the Total Environment*, 668:1242–1258.
- Danish, Ozcan, B., and Ulucak, R. (2021). An empirical investigation of nuclear energy consumption and carbon dioxide (CO2) emission in India: Bridging IPAT and EKC hypotheses. *Nuclear Engineering and Technology*, 53(6):2056–2065.
- Das, D., Srinivasan, R., and Sharfuddin, A. (2011). Fossil fuel consumption, carbon emissions and temperature variation in India. *Energy and Environment*, 22(6):695–709.
- De Ponti, T., Rijk, B., and Van Ittersum, M. K. (2012). The crop yield gap between organic and conventional agriculture. *Agricultural Systems*, 108:1–9.
- Demena, B. A., and Afesorgbor, S. K. (2020). The effect of FDI on environmental emissions: Evidence from a meta-analysis. *Energy Policy*, 138:111192.
- Dey, S., Sreenivasulu, A., Veerendra, G. T. N., Rao, K. V., and Babu, P. S. S. A. (2022). Renewable energy present status and future potentials in India: An overview. *Innovation* and Green Development, 1(1):100006.
- Dinca, C., Rousseaux, P., and Badea, A. (2007). A life cycle impact of the natural gas used in the energy sector in Romania. *Journal of Cleaner Production*, 15(15):1451–1462.
- Dinda, S. (2004). Environmental Kuznets Curve Hypothesis: A Survey. *Ecological Economics*, 49:431–455.
- Diya'Uddeen, B. H., Daud, W. M. A. W., and Aziz, A. R. A. (2011). Treatment technologies for petroleum refinery effluents: A review. *Process Safety and Environmental Protection*, 89(2):95–105.
- Dogan, E., and Seker, F. (2016). The influence of real output, renewable and non-renewable energy, trade and financial development on carbon emissions in the top renewable energy countries. *Renewable and Sustainable Energy Reviews*, 60:1074–1085.
- Dogan, E., and Turkekul, B. (2016). CO2 emissions, real output, energy consumption, trade, urbanization and financial development: testing the EKC hypothesis for the USA. *Environmental Science and Pollution Research*, 23(2):1203–1213.

- Doggart, N., Morgan-Brown, T., Lyimo, E., Mbilinyi, B., Meshack, C. K., Sallu, S. M., and Spracklen, D. V. (2020). Agriculture is the main driver of deforestation in Tanzania. *Environmental Research Letters*, 15(3).
- Dong, B., Ma, X., Zhang, Z., Zhang, H., Chen, R., Song, Y., Shen, M., and Xiang, R. (2020). Carbon emissions, the industrial structure and economic growth: Evidence from heterogeneous industries in China. *Environmental Pollution*, 262(23):114322.
- Driscoll, A. W., Conant, R. T., Marston, L. T., Choi, E., and Mueller, N. D. (2024). Greenhouse gas emissions from US irrigation pumping and implications for climate-smart irrigation policy. *Nature Communications*, 15.
- Du, Q., Lu, X., Yu, M., Yan, Y., and Wu, M. (2020). Low-carbon development of the construction industry in china's pilot provinces. *Polish Journal of Environmental Studies*, 29(4):2617–2629.
- Durham, T. C., and Mizik, T. (2021). Comparative economics of conventional, organic, and alternative agricultural production systems. *Economies*, 9(2):64.
- Eckstein, D., Künzel, V., and Schäfer, L. (2021). Global Climate Risk Index 2021.
- Ehrlich, P. R., and Holdren, J. P. (1971). Impact of Population Growth. *Science*, 171(3977):1212–1217. http://www.plantphysiology.org/content/136/1/2483.short
- Elfaki, K. E., Khan, Z., Kirikkaleli, D., and Khan, N. (2022). On the nexus between industrialization and carbon emissions: evidence from ASEAN+3 economies. *Environmental Science and Pollution Research*, 29(21):31476–31485.
- Elmobarak, W. F., Hameed, B. H., Almomani, F., and Abdullah, A. Z. (2021). A Review on the Treatment of Petroleum Refinery Wastewater Using Advanced Oxidation Processes. *Catalysts*, 11(7):782.
- Elsalih, O., Sertoglu, K., and Besim, M. (2020). Environmental performance, comparative advantage of crude oil and the role of institutional quality. *Environmental Science and Pollution Research*, 27(3):3489–3496.
- Elsayih, J., Datt, R., and Tang, Q. (2021). Corporate governance and carbon emissions performance: empirical evidence from Australia. *Australasian Journal of Environmental Management*, 28(4):433–459.
- Emir, F., Udemba, E. N., and Philip, L. D. (2024). Determinants of carbon emissions: nexus among carbon emissions, coal, agriculture, trade and innovations. *Environment*,

Development and Sustainability, 26:17237–17251.

- Energy Institute Statistical Review of World Energy. (2023). *Statistical Review of World Energy 2023* (Vol. 72).
- EPA. (2023). Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2021. https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks-1990-2021.
- Erdogan, S., Fatai Adedoyin, F., Victor Bekun, F., and Asumadu Sarkodie, S. (2020). Testing the transport-induced environmental Kuznets curve hypothesis: The role of air and railway transport. *Journal of Air Transport Management*, 89:101935.
- Etokakpan, M. U., Akadiri, S. Saint, and Alola, A. A. (2021). Natural gas consumptioneconomic output and environmental sustainability target in China: an N-shaped hypothesis inference. *Environmental Science and Pollution Research*, 28(28):37741– 37753.
- Evenett, S., Jakubik, A., Martín, F., and Ruta, M. (2024). The return of industrial policy in data. In *IMF Working Papers*.
- Farhani, S., and Balsalobre-Lorente, D. (2020). Comparing the Role of Coal to Other Energy Resources in the Environmental Kuznets Curve of Three Large Economies. *Chinese Economy*, 53(1):82–120.
- Farooq, U., Bhanja, N., Rather, S. R., and Dar, A. B. (2024). From pollution to prosperity: Using inverted N-shaped environmental Kuznets curve to predict India's environmental improvement milestones. *Journal of Cleaner Production*, 434:140175.
- Fatai Adedoyin, F., Agboola, P. O., Ozturk, I., Bekun, F. V., and Agboola, M. O. (2021). Environmental consequences of economic complexities in the EU amidst a booming tourism industry: Accounting for the role of brexit and other crisis events. *Journal of Cleaner Production*, 305:127117.
- Fujii, H., and Managi, S. (2013). Which industry is greener? An empirical study of nine industries in OECD countries. *Energy Policy*, 57:381–388.
- Fujii, H., and Managi, S. (2016). Economic development and multiple air pollutant emissions from the industrial sector. *Environmental Science and Pollution Research*, 23(3):2802– 2812.
- Gao, J., Guan, C., Zhang, B., and Li, K. (2021). Decreasing methane emissions from China's

coal mining with rebounded coal production. Environmental Research Letters, 16(12).

- Gill, A. R., Hassan, S., and Haseeb, M. (2019). Moderating role of financial development in environmental Kuznets: a case study of Malaysia. *Environmental Science and Pollution Research*, 26:34468–34478.
- Global Carbon Project. (2022). *Global Carbon Budget* 2022. https://www.globalcarbonproject.org/carbonbudget/
- Goñi, E., and Maloney, W. F. (2017). Wy don't poor countries do R&D? Varying rates of factor returns across the development process. *European Economic Review*, 94:126–147.
- Grossman, G. M., and Krueger, A. B. (1991). Environmental Impacts of a North American Free Trade Agreement. *NBER Working Papers 3914*.
- Grossman, G. M., and Krueger, A. B. (1995). Economic Growth and the Environment. *The Quarterly Journal of Economics*, 110(2):353–377.
- Guan, N., Liu, L., Dong, K., Xie, M., and Du, Y. (2023). Agricultural mechanization, largescale operation and agricultural carbon emissions. *Cogent Food and Agriculture*, 9(1).
- Gujarati, D. N., and Porter, D. C. (2004). Basic Econometrics. In *McGraw-Hill/Irwin* (4th Editio).
- Halicioglu, F. (2009). An econometric study of CO2 emissions, energy consumption, income and foreign trade in Turkey. *Energy Policy*, 37(3):1156–1164.
- Hang, Y., Wang, Q., Zhou, D., and Zhang, L. (2019). Factors influencing the progress in decoupling economic growth from carbon dioxide emissions in China's manufacturing industry. *Resources, Conservation and Recycling*, 146:77–88.
- Hao, Y., Huang, Z., and Wu, H. (2019). Do Carbon Emissions and Economic Growth Decouple in China? An Empirical Analysis Based on Provincial Panel Data. *Energies*, 12(12):2411.
- Hasheminasab, H., Gholipour, Y., Kharrazi, M., and Streimikiene, D. (2018). A novel Metric of Sustainability for petroleum refinery projects. *Journal of Cleaner Production*, 171:1215–1224.
- Hassan, S. A., Nosheen, M., Rafaz, N., and Haq, I. (2021). Exploring the existence of aviation Kuznets curve in the context of environmental pollution for OECD nations. *Environment, Development and Sustainability*, 23(10):15266–15289.

Hassoun, A. E. R., Bantelman, A., Canu, D., Comeau, S., Galdies, C., Gattuso, J. P., Giani, M.,

Grelaud, M., Hendriks, I. E., Ibello, V., Idrissi, M., Krasakopoulou, E., Shaltout, N., Solidoro, C., Swarzenski, P. W., and Ziveri, P. (2022). Ocean acidification research in the Mediterranean Sea: Status, trends and next steps. *Frontiers in Marine Science*, 9.

- He, B., and Yu, Q. (2021). Product sustainable design for carbon footprint during product life cycle. *Journal of Engineering Design*, 32(9):478–495.
- He, D., Liu, H., He, K., Meng, F., Jiang, Y., Wang, M., Zhou, J., Calthorpe, P., Guo, J., Yao, Z., and Wang, Q. (2013). Energy use of, and CO2 emissions from China's urban passenger transportation sector Carbon mitigation scenarios upon the transportation mode choices. *Transportation Research Part A: Policy and Practice*, 53:53–67.
- Heydarzadeh, Z., Mac Kinnon, M., Thai, C., Reed, J., and Brouwer, J. (2020). Marginal methane emission estimation from the natural gas system. *Applied Energy*, 277:115572.
- Hille, E. (2018). Pollution havens: international empirical evidence using a shadow price measure of climate policy stringency. In *Empirical Economics* (Vol. 54, Issue 3). Springer Berlin Heidelberg.
- Hirshfeld, D. S., and Kolb, J. A. (2012). Analysis of energy use and CO2 emissions in the U.S. refining sector, with projections for 2025. *Environmental Science and Technology*, 46(7):3697–3704.
- Hong, S., Khim, J. S., Ryu, J., Kang, S. G., Shim, W. J., and Yim, U. H. (2014). Environmental and ecological effects and recoveries after five years of the Hebei Spirit oil spill, Taean, Korea. Ocean and Coastal Management, 102:522–532.
- Howladar, M. F., Hashan, M., Rahman, M. M., Al Numanbakth, M. A., Sohail, M. A., and Shine, F. M. M. (2020). The quality of imported coal and its impact on environmental degradation. *Environment, Development and Sustainability*, 22(1):251–263.
- Htike, M. M., Shrestha, A., and Kakinaka, M. (2022). Investigating whether the environmental Kuznets curve hypothesis holds for sectoral CO2 emissions: evidence from developed and developing countries. *Environment, Development and Sustainability*, 24:12712–12739.
- Hu, H., Chen, Q.-L., and He, J.-Z. (2022). The end of hunger: fertilizers, microbes and plant productivity. *Microbial Biotechnology*, 15(4):1050–1054.
- Hu, J. L., Chen, C. P., Chen, Y. H., and Tso, C. (2016). Energy consumption and CO2 emission in Taiwans iron-steel industries. *Energy Sources, Part B: Economics, Planning and Policy*, 11(1):87–95.

- Hu, X., Næss, J. S., Iordan, C. M., Huang, B., Zhao, W., and Cherubini, F. (2020). Recent global land cover dynamics and implications for soil erosion and carbon losses from deforestation. *Anthropocene*, 34:10029.
- Hua, X., and Boateng, A. (2015). Trade openness, financial liberalization, economic growth, and environment effects in the North-South: New static and dynamic panel data evidence. *Advances in Sustainability and Environmental Justice*, 17:253–289.
- Huang, Y., Chen, F., Wei, H., Xiang, J., Xu, Z., and Akram, R. (2022). The Impacts of FDI Inflows on Carbon Emissions: Economic Development and Regulatory Quality as Moderators. *Frontiers in Energy Research*, 9.
- Huang, Y., Su, Y., Li, R., He, H., Liu, H., Li, F., and Shu, Q. (2020). Study of the spatiotemporal differentiation of factors influencing carbon emission of the planting industry in arid and vulnerable areas in northwest China. *International Journal of Environmental Research and Public Health*, 17(1).
- Hunjra, A. I., Tayachi, T., Chani, M. I., Verhoeven, P., and Mehmood, A. (2020). The moderating effect of institutional quality on the financial development and environmental quality nexus. *Sustainability (Switzerland)*, 12(9):3805.
- Hwang, J.-H., and Yoo, S.-H. (2014). Energy consumption, CO2 emissions, and economic growth: Evidence from Indonesia. *Quality and Quantity*, 48(1):63–73.
- Idrees, M., and Majeed, M. T. (2022). Income inequality, financial development, and ecological footprint: fresh evidence from an asymmetric analysis. *Environmental Science and Pollution Research*, 29:27924–27938.
- IEA. (2021). India Energy Outlook 2021. In IEA.
- IEA. (2023). CO2 Emissions in 2022. In IEA.
- Ige, O. E., Olanrewaju, O. A., Duffy, K. J., and Collins, O. C. (2022). Environmental Impact Analysis of Portland Cement (CEM1) Using the Midpoint Method. *Energies*, 15(7):2708.
- International Energy Agency. (2019). CO2 emission from fuel and combustion. In IEA. www.iea.org
- IPCC. (2007). Climate Change 2007: Impacts, Adaption and Vulnerability. In *Cambridge University Press*.
- IPCC. (2014). Climate Change 2014: Mitigation of Climate Change.

IPCC. (2019a). Climate Change and Land.

IPCC. (2019b). Global warming of 1.5°C. In Cambridge University Press.

IPCC. (2021). Climate change widespread, rapid, and intesifying.

IPCC. (2023). Climate Change 2023: Synthesis Report. In IPCC.

- Ipingbemi, O. (2009). Socio-economic implications and environmental effects of oil spillage in some communities in the Niger delta. *Journal of Integrative Environmental Sciences*, 6(1):7–23.
- Irish Aid Department of Foreign Affairs. (2016). Irish Aid Development Education Strategy 2017–2023. In Irish Aid, Department of Foreign Affairs.
- Itoo, H. H., and Ali, N. (2023). Analyzing the causal nexus between CO2 emissions and its determinants in India: evidences from ARDL and EKC approach. *Management of Environmental Quality: An International Journal*, 34(1):192–213.
- Ivanova, S., Vesnina, A., Fotina, N., and Prosekov, A. (2022). An Overview of Carbon Footprint of Coal Mining to Curtail Greenhouse Gas Emissions. *Sustainability*, 14(22):15135.
- Jalil, A., and Feridun, M. (2011). The impact of growth, energy and financial development on the environment in China: A cointegration analysis. *Energy Economics*, 33(2):284–291.
- Jiang, Y., and Tang, Q. (2023). Mandatory carbon reporting, voluntary carbon disclosure and ESG performance. *Pacific Accounting Review*, 35(4):534–561.
- Jing, L., El-Houjeiri, H. M., Monfort, J. C., Brandt, A. R., Masnadi, M. S., Gordon, D., and Bergerson, J. A. (2020). Carbon intensity of global crude oil refining and mitigation potential. *Nature Climate Change*, 10(6):526–532.
- Jozi, S. A., and Majd, N. M. (2014). Health, safety, and environmental risk assessment of steel production complex in central Iran using TOPSIS. *Environmental Monitoring and Assessment*, 186(10):6969–6983.
- Jun, W., Mahmood, H., and Zakaria, M. (2020). Impact of trade openness on environment in China. Journal of Business Economics and Management, 21(4):1185–1202.
- Jun, W., Mughal, N., Kaur, P., Xing, Z., Jain, V., and The Cong, P. (2022). Achieving green environment targets in the world's top 10 emitter countries: the role of green innovations and renewable electricity production. *Economic Research*, 35(1):5310–5335.

- Kahia, M., Kadria, M., Aissa, M. S. Ben, and Lanouar, C. (2017). Modelling the treatment effect of renewable energy policies on economic growth: Evaluation from MENA countries. *Journal of Cleaner Production*, 149:845–855.
- Kahouli, B. (2018). The causality link between energy electricity consumption, CO2 emissions,
 R&D stocks and economic growth in Mediterranean countries (MCs). *Energy*, 145:388–399.
- Kahrl, F., Li, Y., Su, Y., Tennigkeit, T., Wilkes, A., and Xu, J. (2010). Greenhouse gas emissions from nitrogen fertilizer use in China. *Environmental Science and Policy*, 13(8):688–694.
- Kang, S., Kim, G., Roh, J., and Jeon, E. (2022). Ammonia Emissions from NPK Fertilizer Production Plants: Emission Characteristics and Emission Factor Estimation. *International Journal of Environmental Research and Public Health*, 19(11):6703.
- Kanjilal, K., and Ghosh, S. (2013). Environmental Kuznet's curve for India: Evidence from tests for cointegration with unknown structural breaks. *Energy Policy*, 56:509–515.
- Kao, C., and Chiang, M. H. (2001). On the estimation and inference of a cointegrated regression in panel data. *Advances in Econometrics*, 15:179–222.
- Karlilar Pata, S., and Balcilar, M. (2024). Decarbonizing energy: Evaluating fossil fuel displacement by renewables in OECD countries. *Environmental Science and Pollution Research*, 31:31304–31313.
- Kasman, A., and Duman, Y. S. (2015). CO2 emissions, economic growth, energy consumption, trade and urbanization in new EU member and candidate countries: A panel data analysis. *Economic Modelling*, 44:97–103.
- Kiessling, S., Darabkhani, H. G., and Soliman, A. H. (2024). Greater Energy Independence with Sustainable Steel Production. *Sustainability*, 16(3):1174.
- Kirikkaleli, D., and Adebayo, T. S. (2021). Do renewable energy consumption and financial development matter for environmental sustainability? New global evidence. *Sustainable Development*, 29(4):583–594.
- Kirkulak, B., Qiu, B., and Yin, W. (2011). The impact of FDI on air quality: Evidence from China. *Journal of Chinese Economic and Foreign Trade Studies*, 4(2):81–98.
- Koshta, N., Bashir, H. A., and Samad, T. A. (2021). Foreign trade, financial development, agriculture, energy consumption and CO2 emission: testing EKC among emerging

economies. Indian Growth and Development Review, 14(1):50-80.

- Kousar, S., Ahmed, F., Pervaiz, A., and Bojnec, Š. (2021). Food insecurity, population growth, urbanization and water availability: The role of government stability. *Sustainability*, 13(22):12336.
- Kroeker, K. J., Kordas, R. L., Crim, R., Hendriks, I. E., Ramajo, L., Singh, G. S., Duarte, C. M., and Gattuso, J.-P. (2013). Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. *Global Change Biology*, 19(6):1884–1896.
- Kukah, A. S. K., Xiaohua, J., Osei-Kyei, R., and Perera, S. (2024). How carbon trading contributes to reduction in emission of greenhouse gases: a narrative literature review. *Journal of Facilities Management*.
- Kumar. J, C. R., and Majid, M. A. (2020). Renewable energy for sustainable development in India: current status, future prospects, challenges, employment, and investment opportunities. *Energy, Sustainability and Society*, 10:2.
- Kumari, R., Banerjee, A., Kumar, R., Kumar, A., Saikia, P., and Khan, M. L. (2019). Deforestation in India: Consequences and Sustainable Solutions. In *Deforestation around the World*. IntechOpen.
- Kuznets, S. (1955). Economic Growth and Income Inequality. *The American Economic Review*, 45(1):1–28.
- Kwasniewski, V., Blieszner, J., and Nelson, R. (2016). Petroleum refinery greenhouse gas emission variations related to higher ethanol blends at different gasoline octane rating and pool volume levels. *Biofuels, Bioproducts and Biorefining*, 10(1):36–46.
- Leal, P. H., and Marques, A. C. (2022). The evolution of the environmental Kuznets curve hypothesis assessment: A literature review under a critical analysis perspective. *Heliyon*, 8(11).
- Lee, K. H., Min, B., and Yook, K. H. (2015). The impacts of carbon (CO2) emissions and environmental research and development (R&D) investment on firm performance. *International Journal of Production Economics*, 167:1–11.
- Li, C., Liu, X., Bai, X., and Umar, M. (2020). Financial development and environmental regulations: The two pillars of green transformation in China. *International Journal of Environmental Research and Public Health*, 17(24):9242.

- Liddle, B. (2013). The energy, economic growth, urbanization nexus across development: Evidence from heterogeneous panel estimates robust to cross-sectional dependence. *Energy Journal*, 34(2):223–244.
- Lin, B., Omoju, O. E., Nwakeze, N. M., Okonkwo, J. U., and Megbowon, E. T. (2016). Is the environmental Kuznets curve hypothesis a sound basis for environmental policy in Africa? *Journal of Cleaner Production*, 133:712–724.
- Lin, B., Omoju, O. E., and Okonkwo, J. U. (2015). Impact of industrialisation on CO2 emissions in Nigeria. *Renewable and Sustainable Energy Reviews*, 52:1228–1239.
- Liu, G., Jia, F., Yue, Q., Ma, D., Pan, H., and Wu, M. (2016). Decoupling of nonferrous metal consumption from economic growth in China. *Environment, Development and Sustainability*, 18(1):221–235.
- Liu, J., Tong, D., Zheng, Y., Cheng, J., Qin, X., Shi, Q., Yan, L., Lei, Y., and Zhang, Q. (2021). Carbon and air pollutant emissions from China's cement industry 1990-2015: Trends, evolution of technologies, and drivers. *Atmospheric Chemistry and Physics*, 21(3):1627– 1647.
- Liu, L., Pang, L., Wu, H., Hafeez, M., and Salahodjaev, R. (2023). Does environmental policy stringency influence CO2 emissions in the Asia Pacific region? A nonlinear perspective. *Air Quality, Atmosphere and Health*, 16:2499–2508.
- Liu, Q., Wang, S., Zhang, W., Zhan, D., and Li, J. (2018). Does foreign direct investment affect environmental pollution in China's cities? A spatial econometric perspective. *Science of the Total Environment*, 613–614:521–529.
- Liu, Y., Cheng, X., and Li, W. (2021). Agricultural chemicals and sustainable development: the agricultural environment Kuznets curve based on spatial panel model. *Environmental Science and Pollution Research*, 28(37):51453–51470.
- Liu, Y., Kuang, Y., Huang, N., Community, M., and Wu, Z. (2009). CO2 emission from cement manufacturing and Its driving forces In China. *International Journal of Environment and Pollution*, 37(4):369–382.
- Liu, Y., and Lai, X. (2021). EKC and carbon footprint of cross-border waste transfer: Evidence from 134 countries. *Ecological Indicators*, 129:107961.
- Lucas, R. E. (1988). On the mechanics of economic development. *Journal of Monetary Economics*, 22(1):3–42.

- Lv, D., Wang, R., and Zhang, Y. (2021). Sustainability Assessment Based on Integrating EKC with Decoupling: Empirical Evidence from China. *Sustainability*, 13(2):1–22.
- Mahlia, T. M. I. (2002). Emissions from electricity generation in Malaysia. *Renewable Energy*, 27(2):293–300.
- Mahmood, H., Alkhateeb, T. T. Y., and Furqan, M. (2020). Industrialization, urbanization and CO2 emissions in Saudi Arabia: Asymmetry analysis. *Energy Reports*, 6:1553–1560.
- Majeed, Y., Khan, M. U., Waseem, M., Zahid, U., Mahmood, F., Majeed, F., Sultan, M., and Raza, A. (2023). Renewable energy as an alternative source for energy management in agriculture. *Energy Reports*, 10:344–359.
- Malav, M. K., Kumar, S., Malav, L. C., and Kharia, S. (2015). Carbon Trading: The Future Money Venture for India. *Biotech Articles*.
- Malhi, G. S., Kaur, M., and Kaushik, P. (2021). Impact of climate change on agriculture and its mitigation strategies: A review. *Sustainability*, 13(3):1318.
- Managi, S., and Ranjan, P. (2008). Environmental productivity and Kuznets curve in India. *Ecological Economics*, 65(2):432–440.
- Mani, M., and Wheeler, D. (1998). In search of pollution havens? Dirty industry in the world economy, 1960 to 1995. *The Journal of Environment and Development*, 7(3):215–247.
- Martínez-Zarzoso, I., and Maruotti, A. (2011). The impact of urbanization on CO2 emissions: Evidence from developing countries. *Ecological Economics*, 70(7):1344–1353.
- Martínez-Zarzoso, I., Vidovic, M., and Voicu, A. M. (2016). Are the Central East European Countries Pollution Havens? *Journal of Environment and Development*, 26(1):25–50.
- Mastalerz, M., and Drobniak, A. (2013). Variations in CO2 emissions from Pennsylvanian coals of the eastern part of the Illinois Basin. *International Journal of Coal Geology*, 108:10–17.
- Mateo-Márquez, A. J., González-González, J. M., and Zamora-Ramírez, C. (2020). Countries' regulatory context and voluntary carbon disclosures. *Sustainability Accounting, Management and Policy Journal*, 11(2):383–408.
- McCarthy, B., Anex, R., Wang, Y., Kendall, A. D., Anctil, A., Haacker, E. M. K., and Hyndman, D. W. (2020). Trends in Water Use, Energy Consumption, and Carbon Emissions from Irrigation: Role of Shifting Technologies and Energy Sources. *Environmental Science and Technology*, 54(23):15329–15337.

- McGranahan, G., Songsor, J., Surjadi, C., Kjellen, M., and Jacobi, P. (2001). *The citizens at risk: from urban sanitation to sustainable cities*. Earthscan.
- Mehta, L., Adam, H. N., and Srivastava, S. (2022). *The Politics of Climate Change and Uncertainty in India*. Routledge.
- Menegat, S., Ledo, A., and Tirado, R. (2022). Greenhouse gas emissions from global production and use of nitrogen synthetic fertilisers in agriculture. *Scientific Reports*, 12(1).
- Mesa, J. A., Esparragoza, I., and Maury, H. (2019). Trends and Perspectives of Sustainable Product Design for Open Architecture Products: Facing the Circular Economy Model. *International Journal of Precision Engineering and Manufacturing - Green Technology*, 6(2):377–391.
- Ministry of Agriculture and Farmers Welfare. (2022). Agricultural statistics at a glance 2021.
- Ministry of Statistics and Programme Implementation. (2011). *Index of Industrial Production* with Base 2011-12.
- Minlah, M. K., Zhang, X., Ganyoh, P. N., and Bibi, A. (2021). Does the environmental Kuznets curve for deforestation exist for Ghana? Evidence from the bootstrap rolling window Granger causality test approach. *Forestry Economics Review*, 3(1):38–52.
- Mishra, V., Asoka, A., Vatta, K., and Lall, U. (2018). Groundwater Depletion and Associated CO 2 Emissions in India. *Earth's Future*, 6(12):1672–1681.
- Mohanty, A., and Wadhawan, S. (2021). Mapping India's Climate Vulnerability.
- Müllera, H. S., Breinera, R., Moffatta, J. S., and Haista, M. (2014). Design and properties of sustainable concrete. *Procedia Engineering*, 95:290–304.
- Munir, K., and Ameer, A. (2018). Effect of economic growth, trade openness, urbanization, and technology on environment of Asian emerging economies. *Management of Environmental Quality: An International Journal*, 29(6):1123–1134.
- Murshed, M., Mahmood, H., Ahmad, P., Rehman, A., and Alam, M. S. (2022). Pathways to Argentina's 2050 carbon-neutrality agenda: the roles of renewable energy transition and trade globalization. *Environmental Science and Pollution Research*, 29(20):29949– 29966.
- Nabaweesi, J., Kigongo, T. K., Buyinza, F., Adaramola, M. S., Namagembe, S., and Nkote, I.
 N. (2024). Investigating the modern renewable energy-environmental Kuznets curve (REKC) hypothesis for East Africa Community (EAC) countries. *Technological*

Sustainability, 3(1):76–95.

- Naghavi, S., Ebrahimi-Khusfi, Z., and Mirzaei, A. (2022). Decoupling pollution-agricultural growth and predicting climate change impacts on decoupling index using Bayesian network in different climatic regions. *Environmental Science and Pollution Research*, 29(10):14677–14694.
- Narayan, P. K., and Smyth, R. (2007). A panel cointegration analysis of the demand for oil in the Middle East. *Energy Policy*, 35(12):6258–6265.
- Nasreen, S., and Anwar, S. (2015). The impact of economic and financial development on environmental degradation An empirical assessment of EKC hypothesis. *Studies in Economics and Finance*, 32(4):485–502.
- Nathaniel, S., Aguegboh, E., Iheonu, C., Sharma, G., and Shah, M. (2020). Energy consumption, FDI, and urbanization linkage in coastal Mediterranean countries: reassessing the pollution haven hypothesis. *Environmental Science and Pollution Research*, 27(28):35474–35487.
- Nayyar, D., and Nayyar, G. (2024). Made in India: Industrial Policy in a Changing World. *Journal of Industry, Competition and Trade*, 24:13.
- Nelson, T. P. (2013). An examination of historical air pollutant emissions from us petroleum refineries. *Environmental Progress & Sustainable Energy*, 32(2):425–432.
- Nguyen, L. H., Nguyen, T. D., Tran, T. V. N., Nguyen, D. L., Tran, H. S., Nguyen, T. L., Nguyen, T. H., Nguyen, H. G., Nguyen, T. P., Nguyen, N. T., Isawa, T., Ta, Y., and Sato, R. (2022). Steel slag quality control for road construction aggregates and its environmental impact: case study of Vietnamese steel industry—leaching of heavy metals from steel-making slag. *Environmental Science and Pollution Research*, 29(28):41983– 41991.
- Nica, I., Georgescu, I., and Kinnunen, J. (2024). An Autoregressive Distributed Lag and Environmental Kuznets Curve Approach : Linking CO 2 Emissions and Electricity Access in India., 16:11278.
- Nilimaa, J. (2023). Smart materials and technologies for sustainable concrete construction. *Developments in the Built Environment*, 15:100177.
- Numan, U., Ma, B., Meo, M. S., and Bedru, H. D. (2022). Revisiting the N-shaped environmental Kuznets curve for economic complexity and ecological footprint. *Journal*

of Cleaner Production, 365:132642.

- Nurdiawati, A., and Urban, F. (2022). Decarbonising the refinery sector: A socio-technical analysis of advanced biofuels, green hydrogen and carbon capture and storage developments in Sweden. *Energy Research and Social Science*, 84:102358.
- OECD. (2002). Indicators to measure decoupling of environmental pressure from economic growth. In OECD. https://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?doclanguage=en& cote=sg/sd(2002)1/final
- Office of Economic Adviser. (2022). Index of Eight Core Industries (Base: 2011-12=100) for June, 2022.
- Office of Economic Adviser. (2023). Index of eight core industries (Base: 2011-12=100) for March, 2023.
- Office of the Economic Adviser. (2009). Handbook of Industrial Policy And Statistics 2008-2009. In *Government of India*.
- Ohlan, R. (2015). The impact of population density, energy consumption, economic growth and trade openness on CO2 emissions in India. *Natural Hazards*, 79:1409–1428.
- Okolo, C. V., Wen, J., and Eze, J. O. (2023). Does tertiary education promote technological innovation sustainability? The role of national intellectual capital. An empirical evidence. *Economic Research-Ekonomska Istrazivanja*, 36(3).
- Omofonmwan, S. I., and Odia, L. O. (2009). Oil Exploitation and Conflict in the Niger-Delta Region of Nigeria. *Journal of Human Ecology*, 26(1):25–30.
- Opoku, E. E. O., and Aluko, O. A. (2021). Heterogeneous effects of industrialization on the environment: Evidence from panel quantile regression. *Structural Change and Economic Dynamics*, 59:174–184.
- Pal, D., and Mitra, S. K. (2017). The environmental Kuznets curve for carbon dioxide in India and China: Growth and pollution at crossroad. *Journal of Policy Modeling*, 39(2):371– 385.
- Palmer, J., and Neal, P. (1994). The Handbook of Environmental Education. In *British Journal* of Educational Studies (Vol. 26, Issue 1). Routledge.
- Panayotou, T. (1993). Empirical tests and policy analysis of environmental degradation at different stages of economic development. In *Pacific and Asian Journal of Energy* (Vol.

4, Issue 1).

- Pandey, S., and Mishra, M. (2021). Investigating Environmental Kuznets Curve: A Panel Data Analysis for India. *Review of Development and Change*, 26(2):137–152.
- Pata, U. K. (2018). The effect of urbanization and industrialization on carbon emissions in Turkey: evidence from ARDL bounds testing procedure. *Environmental Science and Pollution Research*, 25(8):7740–7747.
- Pata, U. K., and Aydin, M. (2020). Testing the EKC hypothesis for the top six hydropower energy-consuming countries: Evidence from Fourier Bootstrap ARDL procedure. *Journal of Cleaner Production*, 264.
- Pata, U. K., and Caglar, A. E. (2021). Investigating the EKC hypothesis with renewable energy consumption, human capital, globalization and trade openness for China: Evidence from augmented ARDL approach with a structural break. *Energy*, 216:119220.
- Pedroni, P. (2000). Fully modified OLS for heterogeneous cointegrated panels. In Advances in Econometrics (Vol. 15, pp. 93–130).
- Peng, X., Tao, X., Feng, K., and Hubacek, K. (2020). Drivers toward a Low-Carbon Electricity System in China's Provinces. *Environmental Science and Technology*, 54(9):5774–5782.
- Phiri, J., Malec, K., Kapuka, A., Maitah, M., Appiah-Kubi, S. N. K., Gebeltová, Z., Bowa, M., and Maitah, K. (2021). Impact of agriculture and energy on co2 emissions in zambia. *Energies*, 14(24):8339.
- Ponisio, L. C., M'gonigle, L. K., Mace, K. C., Palomino, J., Valpine, P. De, and Kremen, C. (2015). Diversification practices reduce organic to conventional yield gap. *Proceedings* of the Royal Society B: Biological Sciences, 282(1799).
- Pourmehdi, M., Paydar, M. M., and Asadi-Gangraj, E. (2020). Scenario-based design of a steel sustainable closed-loop supply chain network considering production technology. *Journal of Cleaner Production*, 277:123298.
- Preston, S. H. (1996). The effect of population growth on environmental quality. *Population Research and Policy Review*, 15(2):95–108.
- Prüss-Ustün, A., Wolf, J., Corvalán, C., Bos, R., and Neira, M. (2016). Preventing disease through healthy environments: A global assessment of the environmental burden of disease. In *World Health Organization* (Vol. 259).
- Qayyum, M., Ali, M., Nizamani, M. M., Li, S., and Yu, Y. (2021). Nexus between Financial

Development, Renewable Energy Consumption, Technological Innovations and CO2 Emissions: The Case of India. *Energies*, 14(15).

- Rai, S. K., and Rawat, A. (2022). Exploring the nexus between environment quality, economic development and industrialization in BRICS nations: the role of technological innovation and income inequality. *Environmental Science and Pollution Research*, 29(25):37842– 37853.
- Raihan, A., Begum, R. A., Nizam, M., Said, M., and Pereira, J. J. (2022). Dynamic impacts of energy use, agricultural land expansion, and deforestation on CO2 emissions in Malaysia. *Environmental and Ecological Statistics*, 29(3):477–507.
- Rajan, A., Ghosh, K., and Shah, A. (2020). Carbon footprint of India's groundwater irrigation. *Carbon Management*, 11(3):265–280.
- Rajput, N., Oberoi, S., and Arora, S. (2015). Carbon Trading in Indian Derivative Market: An Econometric Validation. *Global Journal of Enterprise Information* ..., 7(2).
- Ramirez, M. D. (2007). A panel unit root and panel cointegration test of the complementarity hypothesis in the Mexican case: 1960-2001. *Atlantic Economic Journal*, 35:343–356.
- Rana, R., and Sharma, M. (2019). Dynamic causality testing for EKC hypothesis, pollution haven hypothesis and international trade in India. *Journal of International Trade and Economic Development*, 28(3):348–364.
- Rashdan, M. O. J., Faisal, F., Tursoy, T., and Pervaiz, R. (2021). Investigating the N-shape EKC using capture fisheries as a biodiversity indicator: empirical evidence from selected 14 emerging countries. *Environmental Science and Pollution Research*, 28(27):36344– 36353.
- Ravishankara, A. R., Daniel, J. S., and Portmann, R. W. (2009). Nitrous oxide (N2O): The dominant ozone-depleting substance emitted in the 21st century. *Science*, 326(5949):123– 125.
- Ray, S., and Ray, I. A. (2011). Impact of Population Growth on Environmental Degradation:Case of India. *Journal of Economics and Sustainable Development*, 2(8):72–78.
- Rehan, R., and Nehdi, M. (2005). Carbon dioxide emissions and climate change: Policy implications for the cement industry. *Environmental Science and Policy*, 8(2):105–114.
- Rej, S., and Nag, B. (2022). Investigating the role of capital formation to achieve carbon neutrality in India. *Environmental Science and Pollution Research*, 29:60472–60490.

- Ren, S., Yin, H., and Chen, X. H. (2014). Using LMDI to analyze the decoupling of carbon dioxide emissions by China's manufacturing industry. *Environmental Development*, 9:61–75.
- Romer, P. M. (1986). Increasing Returns and Long-Run Growth. *Journal of Political Economy*, 94(5):1002–1037.
- Ru, M., Shindell, D. T., Seltzer, K. M., Tao, S., and Zhong, Q. (2018). The long-term relationship between emissions and economic growth for SO2, CO2, and BC. *Environmental Research Letters*, 13(12):124021.
- Saboori, B., Al-Mulali, U., Bin Baba, M., and Mohammed, A. H. (2016). Oil-Induced environmental Kuznets curve in organization of petroleum exporting countries (OPEC). *International Journal of Green Energy*, 13(4):408–416.
- Sadorsky, P. (2014a). The effect of urbanization and industrialization on energy use in emerging economies: Implications for sustainable development. American Journal of Economics and Sociology, 73(2):392–409.
- Sadorsky, P. (2014b). The effect of urbanization on CO2 emissions in emerging economies. *Energy Economics*, 41:147–153.
- Saikkonen, P. (1991). Asymptotically efficient estimation of cointegration regressions. *Econometric Theory*, 7(1):1–21.
- Sanjuán, M. A., Argiz, C., Mora, P., and Zaragoza, A. (2020). Carbon Dioxide Uptake in the Roadmap 2050 of the Spanish Cement Industry. *Energies*, 13(13):3452.
- Sarkodie, S. A., and Strezov, V. (2019). Effect of foreign direct investments, economic development and energy consumption on greenhouse gas emissions in developing countries. *Science of the Total Environment*, 646:862–871.
- Sehrawat, M., Giri, A. K., and Mohapatra, G. (2015). The impact of financial development, economic growth and energy consumption on environmental degradation Evidence from India. *Management of Environmental Quality: An International Journal*, 26(5):666–682.
- Serrenho, A. C., Mourão, Z. S., Norman, J., Cullen, J. M., and Allwood, J. M. (2016). The influence of UK emissions reduction targets on the emissions of the global steel industry. *Resources, Conservation and Recycling*, 107:174–184.
- Shahbaz, M., Haouas, I., Sohag, K., and Ozturk, I. (2020). The financial developmentenvironmental degradation nexus in the United Arab Emirates: the importance of growth,

globalization and structural breaks. *Environmental Science and Pollution Research*, 27(10):10685–10699.

- Shanmugavel, D., Rusyn, I., Solorza-Feria, O., and Kamaraj, S. K. (2023). Sustainable SMART fertilizers in agriculture systems: A review on fundamentals to in-field applications. *Science of the Total Environment*, 904:166729.
- Shao, Y., Li, J., and Zhang, X. (2022). The impact of financial development on CO2 emissions of global iron and steel industry. *Environmental Science and Pollution Research*, 29:44954–44969.
- Shapiro, A., D'Annunzio, R., Desclée, B., Jungers, Q., Kondjo, H. K., Iyanga, J. M., Gangyo, F. I., Nana, T., Obame, C. V., Milandou, C., Rambaud, P., Sonwa, D. J., Mertens, B., Tchana, E., Khasa, D., Bourgoin, C., Ouissika, C. B., and Kipute, D. D. (2023). Small scale agriculture continues to drive deforestation and degradation in fragmented forests in the Congo Basin (2015–2020). *Land Use Policy*, 134.
- Sharma, R., Shahbaz, M., Sinha, A., and Vo, X. V. (2021). Examining the temporal impact of stock market development on carbon intensity: Evidence from South Asian countries. *Journal of Environmental Management*, 297:113248.
- Shrivastava, S., and Unnikrishnan, S. (2021). Life cycle sustainability assessment of crude oil in India. *Journal of Cleaner Production*, 283:124654.
- Siddique, M. A., Akhtaruzzaman, M., Rashid, A., and Hammami, H. (2021). Carbon disclosure, carbon performance and financial performance: International evidence. *International Review of Financial Analysis*, 75:101734.
- Singhania, M., and Saini, N. (2021). Demystifying pollution haven hypothesis: Role of FDI. Journal of Business Research, 123:516–528.
- Sinha, A., and Shahbaz, M. (2018). Estimation of Environmental Kuznets Curve for CO2 emission: Role of renewable energy generation in India. *Renewable Energy*, 119:703– 711.
- Solarin, S. A., Al-Mulali, U., Musah, I., and Ozturk, I. (2017). Investigating the pollution haven hypothesis in Ghana: An empirical investigation. *Energy*, 124:706–719.
- Solarin, S. A., Al-Mulali, U., and Ozturk, I. (2017). Validating the environmental Kuznets curve hypothesis in India and China: The role of hydroelectricity consumption. *Renewable and Sustainable Energy Reviews*, 80:1578–1587.

- Song, M., and Wang, J. (2018). Environmental efficiency evaluation of thermal power generation in China based on a slack-based endogenous directional distance function model. *Energy*, 161:325–336.
- Sowby, R. B., and Capener, A. (2022). Reducing carbon emissions through water conservation: An analysis of 10 major U.S. cities. *Energy Nexus*, 7.
- Sreenu, N. (2022). Impact of FDI, crude oil price and economic growth on CO2 emission in India: - symmetric and asymmetric analysis through ARDL and non-linear ARDL approach. *Environmental Science and Pollution Research*, 29(28):42452–42465.
- Stapleton, S. O., Nadin, R., Watson, C., and Kellett, J. (2017). Climate change, migration and displacement. In *United Nations Development Programme*.
- Stock, J. H., and Watson, M. W. (1993). A Simple Estimator of Cointegrating Vectors in Higher Order Integrated Systems. *Econometrica*, 61(4):783–820.
- Stolarski, R. S., Douglass, A. R., Oman, L. D., and Waugh, D. W. (2015). Impact of future nitrous oxide and carbon dioxide emissions on the stratospheric ozone layer. *Environmental Research Letters*, 10.
- Strezov, V., and Chaudhary, C. (2017). Impacts of iron and steelmaking facilities on soil quality. *Journal of Environmental Management*, 203(Part 3):1158–1162.
- Suhendro, B. (2014). Toward green concrete for better sustainable environment. *Procedia Engineering*, 95:305–320.
- Summerbell, D. L., Barlow, C. Y., and Cullen, J. M. (2016). Potential reduction of carbon emissions by performance improvement: A cement industry case study. *Journal of Cleaner Production*, 135:1327–1339.
- Sun, W., Xu, X., Lv, Z., Mao, H., and Wu, J. (2019). Environmental impact assessment of wastewater discharge with multi-pollutants from iron and steel industry. *Journal of Environmental Management*, 245:210–215.
- Sunny, N., Bernardi, A., Danaci, D., Bui, M., Gonzalez-Garay, A., and Chachuat, B. (2022). A Pathway Towards Net-Zero Emissions in Oil Refineries. *Frontiers in Chemical Engineering*, 4.
- Syed, A., Raza, T., Bhatti, T. T., and Eash, N. S. (2022). Climate Impacts on the agricultural sector of Pakistan: Risks and solutions. *Environmental Challenges*, 6:100433.
- Taleghani, N. D., and Tyagi, M. (2017). Impacts of Major Offshore Oil Spill Incidents on

Petroleum Industry and Regional Economy. *Journal of Energy Resources Technology, Transactions of the ASME*, 139(2):022913.

- Tamazian, A., Chousa, J. P., and Vadlamannati, K. C. (2009). Does higher economic and financial development lead to environmental degradation: Evidence from BRIC countries. *Energy Policy*, 37(1):246–253.
- Tang, L., Xue, X., Jia, M., Jing, H., Wang, T., Zhen, R., Huang, M., Tian, J., Guo, J., Li, L., Bo, X., and Wang, S. (2020). Iron and steel industry emissions and contribution to the air quality in China. *Atmospheric Environment*, 237:117668.
- Tang, M. miao, Xu, D., and Lan, Q. (2023). How does education affect urban carbon emission efficiency under the strategy of scientific and technological innovation? *Frontiers in Environmental Science*, 11.
- Tao, M., Poletti, S., Wen, L., and Sheng, M. S. (2024). Modelling the role of industrial structure adjustment on China's energy efficiency: Insights from technology innovation. *Journal of Cleaner Production*, 441:140861.
- Tao, M., Sheng, M. S., and Wen, L. (2023). How does financial development influence carbon emission intensity in the OECD countries: Some insights from the information and communication technology perspective. *Journal of Environmental Management*, 335:117553.
- Tapio, P. (2005). Towards a theory of decoupling: Degrees of decoupling in the EU and the case of road traffic in Finland between 1970 and 2001. *Transport Policy*, 12(2):137–151.
- Taşdemir, F. (2022). Industrialization, servicification, and environmental Kuznets curve: nonlinear panel regression analysis. *Environmental Science and Pollution Research*, 29(5):6389–6398.
- Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R., and Polasky, S. (2002). Agricultural sustainability and intensive production practices. *Nature*, 418(6898):671–677.
- Udemba, E. N. (2020). Mediation of foreign direct investment and agriculture towards ecological footprint: a shift from single perspective to a more inclusive perspective for India. *Environmental Science and Pollution Research*, 27(21):26817–26834.
- Ugochukwu, C. N. C., and Ertel, J. (2008). Negative impacts of oil exploration on biodiversity management in the Niger De area of Nigeria. *Impact Assessment and Project Appraisal*, 26(2):139–147.

- Ullah, A., Khan, D., Khan, I., and Zheng, S. (2018). Does agricultural ecosystem cause environmental pollution in Pakistan? Promise and menace. *Environmental Science and Pollution Research*, 25:13938–13955.
- Ullah, R., Shivakoti, G. P., Kamran, A., and Zulfiqar, F. (2016). Farmers versus nature: managing disaster risks at farm level. *Natural Hazards*, 82:1931–1945.
- United Nations. (2014). Inclusive and Sustainable Industrial Development.
- United Nations. (2015). Paris Agreement.
- United Nations Department of Economic and Social Affairs, P. D. (2024). World Population Prospects 2024: Summary of Results. In United Nations Publication. www.un.org/development/ desa/pd/.
- United Nations Development Programme. (2022). Poverty-Environment Action (PEA) Policy Brief: PEA's Integrated Approach.
- United States Environmental Protection Agency. (2020). 2011-2020 Greenhouse Gas Reporting Program Sector Profile: Petroleum Refineries Sector. https://www.epa.gov/system/files/documents/2021-10/refineries_2020_sector_profile.pdf
- Uvarova, N. E., Ishkov, A. G., Akopova, G. S., Ginzburg, V. A., Romanov, K. V., Kruglova, N. Y., and Gytarsky, M. L. (2014). The update of methane emission parameters for natural gas operations in Russia. *Carbon Management*, 5(5–6):573–577.
- Vehmas, J., Kaivo-oja, J., and Luukkanen, J. (2003). Global Trends of Linking Environmental Stress and Economic Growth. In *Tutu Publications*.
- Venkata Sudhakar, C., and Umamaheswara Reddy, G. (2023). Impacts of cement industry air pollutants on the environment and satellite data applications for air quality monitoring and management. *Environmental Monitoring and Assessment*, 195:840.
- Vidyarthi, H. (2013). Energy consumption, carbon emissions and economic growth in India. *World Journal of Science, Technology and Sustainable Development*, 10(4):278–287.
- Villanthenkodath, M. A., Gupta, M., Saini, S., and Sahoo, M. (2021). Impact of Economic Structure on the Environmental Kuznets Curve (EKC) hypothesis in India. *Journal of Economic Structures*, 10:28.
- Wan, L., Wang, Z. L., and Yeong Ng, J. C. (2016). Measurement research on the decoupling effect of industries' carbon emissions-Based on the Equipment Manufacturing Industry in

China. *Energies*, 9(11):921.

- Wang, B., Cui, C. Q., Zhao, Y. X., Yang, B., and Yang, Q. Z. (2019). Carbon emissions accounting for China's coal mining sector: invisible sources of climate change. *Natural Hazards*, 99(3):1345–1364.
- Wang, C., and Wang, Z. H. (2017). Projecting population growth as a dynamic measure of regional urban warming. *Sustainable Cities and Society*, 32:357–365.
- Wang, G., Liu, P., Hu, J., and Zhang, F. (2022). Agriculture-Induced N2O Emissions and Reduction Strategies in China. *International Journal of Environmental Research and Public Health*, 19(19):12193.
- Wang, N., Zhang, X., Wang, Z., Chen, Y., and Li, S. (2023). Can financial development improve environmental quality? New findings from spatial measures of Chinese urban panel data. *Heliyon*, 9(7):e17954.
- Wang, X., Wei, Y., and Shao, Q. (2020). Decomposing the decoupling of CO2 emissions and economic growth in China's iron and steel industry. *Resources, Conservation and Recycling*, 152(10):104509.
- Wang, Y., Zhang, C., Lu, A., Li, L., He, Y., ToJo, J., and Zhu, X. (2017). A disaggregated analysis of the environmental Kuznets curve for industrial CO2 emissions in China. *Applied Energy*, 190:172–180.
- White, H. (1980). A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity. *Econometrica*, 48(4):817–838.
- Wollburg, P., Hallegatte, S., and Mahler, D. G. (2023). Ending extreme poverty has a negligible impact on global greenhouse gas emissions. *Nature*, 623:982–986.
- World Bank. (2009). World Development Report 2009: Reshaping Economic Geography. In World Bank (Vol. 157, Issue 2116).
- World Meteorological Organization. (2023). The Global Climate 2011-2020 (Issue 1338).
- Wu, L. kang, Feng, T. tian, Luo, H., Gong, X. lei, and Ge, J. ping. (2022). Testing environmental Kuznets curve hypothesis: considering the impact of Sino-US trade on three main industries in China. *Environmental Science and Pollution Research*, 29:54796–54812.
- Xin, Y., Yang, S., and Rasheed, M. F. (2023). Exploring the impacts of education and unemployment on CO2 emissions. *Economic Research-Ekonomska Istrazivanja*,

36(2):2110139.

- Xiong, Y., Kong, D., and Song, G. (2024). Research hotspots and development trends of green coal mining: Exploring the path to sustainable development of coal mines. *Resources Policy*, 92:105039.
- Xu, B., and Lin, B. (2016). Reducing CO2 emissions in China's manufacturing industry: Evidence from nonparametric additive regression models. *Energy*, 101:161–173.
- Xu, B., and Lin, B. (2017). Assessing CO2 emissions in China's iron and steel industry: A nonparametric additive regression approach. *Renewable and Sustainable Energy Reviews*, 72(June 2015):325–337.
- Xu, B., and Qu, H. (2022). Impact of the Design Industry on Carbon Emissions in the Manufacturing Industry in China: A Case Study of Zhejiang Province. *Sustainability*, 14(7):4261.
- Xu, L., Dong, T., and Zhang, X. (2022). Research on the Impact of Industrialization and Urbanization on Carbon Emission Intensity of Energy Consumption: Evidence from China. *Polish Journal of Environmental Studies*, 31(5):4413–4425.
- Xu, S., Wang, J., Sun, H., Huang, L., Xu, N., and Liang, Y. (2022). Life cycle assessment of carbon emission from natural gas pipelines. *Chemical Engineering Research and Design*, 185:267–280.
- Xu, Z., Baloch, M. A., Danish, Meng, F., Zhang, J., and Mahmood, Z. (2018). Nexus between financial development and CO2 emissions in Saudi Arabia: analyzing the role of globalization. *Environmental Science and Pollution Research*, 25(28):28378–28390.
- Yao, S., Zhang, S., and Zhang, X. (2019). Renewable energy, carbon emission and economic growth: A revised environmental Kuznets Curve perspective. *Journal of Cleaner Production*, 235:1338–1352.
- Yilanci, V., Bozoklu, S., and Gorus, M. S. (2020). Are BRICS countries pollution havens? Evidence from a bootstrap ARDL bounds testing approach with a Fourier function. *Sustainable Cities and Society*, 55:102035.
- Yoon, H., and Heshmati, A. (2021). Do environmental regulations affect FDI decisions? The pollution haven hypothesis revisited. *Science and Public Policy*, 48(1):122–131.
- Yu, Y., and Xu, W. (2019). Impact of FDI and R&D on China's industrial CO2 emissions reduction and trend prediction. *Atmospheric Pollution Research*, 10(5):1627–1635.

- Yuan, R., Liao, H., and Wang, J. (2022). A nexus study of carbon emissions and financial development in China using the decoupling analysis. *Environmental Science and Pollution Research*, 29:88224–88239.
- Yuping, L., Ramzan, M., Xincheng, L., Murshed, M., Awosusi, A. A., BAH, S. I., and Adebayo, T. S. (2021). Determinants of carbon emissions in Argentina: The roles of renewable energy consumption and globalization. *Energy Reports*, 7:4747–4760.
- Yuxiang, K., and Chen, Z. (2011). Financial development and environmental performance: Evidence from China. *Environment and Development Economics*, 16(1):93–111.
- Zafar, A., Ullah, S., Majeed, M. T., and Yasmeen, R. (2020). Environmental pollution in Asian economies: Does the industrialisation matter? *OPEC Energy Review*, 44(3):227–248.
- Zakaria, M., and Bibi, S. (2019). Financial development and environment in South Asia: the role of institutional quality. *Environmental Science and Pollution Research*, 26(8):7926– 7937.
- Zarei, J., Amin-Naseri, M. R., Fakehi Khorasani, A. H., and Kashan, A. H. (2020). A sustainable multi-objective framework for designing and planning the supply chain of natural gas components. *Journal of Cleaner Production*, 259:120649.
- Zhang, M., Liu, X., Wang, W., and Zhou, M. (2013). Decomposition analysis of CO2 emissions from electricity generation in China. *Energy Policy*, 52:159–165.
- Zhang, Y., Nakano, J., Liu, L., Wang, X., and Zhang, Z. (2015). Co-combustion and emission characteristics of coal gangue and low-quality coal. *Journal of Thermal Analysis and Calorimetry*, 120(3):1883–1892.
- Zhao, H., Guo, S., and Zhao, H. (2018). Characterizing the influences of economic development, energy consumption, urbanization, industrialization, and vehicles amount on PM2.5 concentrations of China. *Sustainability (Switzerland)*, 10(7).
- Zhao, H., Lu, X., and Shao, Z. (2019). Empirical analysis on Relationship between Water Footprint of China's Textile Industry and Eco-environment. *Ekoloji*, 28(107):1067–1076.
- Zhao, J., Jiang, Q., Dong, X., Dong, K., and Jiang, H. (2022). How does industrial structure adjustment reduce CO2 emissions? Spatial and mediation effects analysis for China. *Energy Economics*, 105:105704.
- Zheng, H., Yang, S., Lou, S., Gao, Y., and Feng, Y. (2021). Knowledge-based integrated product design framework towards sustainable low-carbon manufacturing. *Advanced*

Engineering Informatics, 48.

- Zhou, J., Guang, F., and Du, S. (2017). Decomposing the decoupling of carbon emissions and economic growth in China's power industry. *Polish Journal of Environmental Studies*, 26(5):2407–2418.
- Zhou, X., Zhang, J., and Li, J. (2013). Industrial structural transformation and carbon dioxide emissions in China. *Energy Policy*, 57:43–51.
- Zhu, A., Wang, Q., Liu, D., and Zhao, Y. (2022). Analysis of the Characteristics of CH4 Emissions in China's Coal Mining Industry and Research on Emission Reduction Measures. *International Journal of Environmental Research and Public Health*, 19(12).

APPENDICES

Appendix 1

Dataset on the core industries' CO₂ emissions (in kilo tonnes)

Year	Coal	Cement	Crude oil	Natural gas	Fertilizers	Electricity	Steel	Refinery products
2005	721469.7	59686.57	351646.2	50438.62	82486.02	602380.005	105378.999	28894.67
2006	773565.4	64905.4	368891.2	49442.02	88459.58	642400.024	132109.13	31330.68
2007	842478.2	68333.26	391027.8	52695.65	92434.58	706679.993	145047.898	34575.9
2008	910796.5	73244.73	412316.3	63046.6	94915.43	725400.024	164157.052	39519.65
2009	983948.2	81267.96	431609.9	112684.8	98777.4	793390.015	182976.836	42827.9
2010	1015983	86029.24	438373.5	134244.2	103744.2	823809.998	168687.782	42456.7
2011	1089807	91314.5	458909.2	136364.2	108826.3	864630.005	163375.381	43455.85
2012	1244606	100237.2	488554.1	125604.8	105825.3	994239.99	184473.272	45905.93
2013	1319999	107819.8	495642.1	110689.2	105433.5	1011330.02	199866.589	45661.6
2014	1447355	115824.9	511166.2	109467.5	106554.8	1129400.02	193873.415	44978.75
2015	1487461	117507.9	554788.7	106870.6	109077.2	1108949.95	186194.169	46954.33
2016	1529990	123281.3	613165.5	113622.5	105713.7	1102439.94	213433.351	50124.26
2017	1560988	121047.2	631087.4	118922	107068.9	1161630	230155.929	53030.19
2018	1677600	138964.9	655190.3	126201.2	110910.8	1263020.02	246311.511	54276.58
2019	1677654	143664.1	674011.5	128676	117882	1235140	-	-
2020	1588060	122908.2	603602.2	127635.4	126549.1	1121980	-	-
2021	1802312	149001.3	622148.2	133450.8	121516.2	-	-	-

(Author's compilation)

Year	Coal	Cement	Crude oil	Natural gas	Fertilizers	Electricity	Steel	Refinery products
2005	73.10	61.50	85.16	67.18	96.25	69.38	62.51	64.61
2006	77.02	68.73	88.29	66.78	99.05	74.41	69.67	72.15
2007	81.64	73.74	89.44	68.05	96.35	79.30	76.65	78.40
2008	89.14	79.09	89.18	69.45	89.59	81.98	78.08	81.29
2009	96.14	87.35	87.22	87.60	96.83	86.21	81.36	80.91
2010	98.59	92.25	96.31	112.02	98.67	90.76	90.67	82.13
2011	96.00	97.43	100.32	102.34	99.44	98.94	102.18	86.00
2012	103.70	105.40	99.70	89.80	97.70	103.50	106.00	105.00
2013	103.90	111.00	98.90	75.80	97.90	108.30	112.70	108.80
2014	110.90	118.20	98.60	71.60	98.60	124.00	122.20	108.80
2015	116.40	119.90	97.80	68.70	104.30	131.00	118.80	111.30
2016	119.30	126.10	94.60	65.50	107.30	140.20	129.80	119.80
2017	123.00	124.20	94.20	68.50	106.10	147.10	139.20	123.20
2018	131.60	142.80	91.10	68.40	105.50	156.40	145.00	129.00
2019	130.50	147.70	85.70	67.00	110.70	157.70	155.20	128.50
2020	132.00	126.30	80.80	59.30	112.30	154.10	134.60	116.40
2021	140.30	153.20	78.50	69.60	111.50	168.50	161.20	123.20

Dataset on the Index of Eight Core Industries

(Author's compilation)

Year	GDP (in trillions)	FDI (in billions)	AGR (in millions)	R&D
2005	58.61	7.27	233.80	4721
2006	63.30	20.03	245.87	5686
2007	68.14	25.23	265.83	6296
2008	70.95	43.41	270.67	6425
2009	76.33	35.58	265.24	7262
2010	83.26	27.40	288.34	8853
2011	87.36	36.50	305.12	8841
2012	91.83	24.00	310.72	9553
2013	97.00	28.15	324.88	10669
2014	103.76	34.58	333.60	12040
2015	112.50	44.01	329.16	12579
2016	122.20	44.46	343.13	13199
2017	131.78	39.97	366.20	14961
2018	138.98	42.12	382.36	16289
2019	146.40	50.61	394.15	19454
2020	139.39	64.36	408.25	23141
2021	147.32	44.73	419.74	26267

Dataset on the economic factors of industrial emissions

(Author's compilation) Note: GDP, FDI and AGR in Rupees; R&D in number of applications.

Year	IVA (in trillion)	EC (in thousand)	BANK (in thousand)	INDDEG
2005	17.02	137.59	543.85	3407
2006	19.27	151.56	728.73	3584
2007	20.82	171.29	766.66	3873
2008	21.65	189.42	1018.61	4308
2009	23.57	209.47	1178.41	4267
2010	25.43	236.75	1551.03	4416
2011	26.35	272.59	1835.77	5156
2012	27.21	352.29	2114.54	5100
2013	28.24	365.99	2397.56	5182
2014	30.22	384.42	2568.66	6168
2015	33.11	418.35	2695.18	6829
2016	35.67	423.52	2579.12	6753
2017	37.76	440.21	2634.15	7534
2018	39.77	468.61	2749.38	8928
2019	39.21	519.20	2794.37	9381
2020	38.87	532.82	2760.22	8962
2021	43.38	508.78	2985.28	17497

Dataset on the industrial factors of industrial emissions

(Author's compilation)

Note: IVA and BANK in Rupees; EC in Giga Watt Hour; INDEG in number of applications.

Year	POPD	URB	POV	EDU
2005	388.3501	148948853	985356100	89461792
2006	394.3151	152708895	975772349	91529432
2007	400.1399	156590178	964090487	96049056
2008	405.8721	160602956	951276859	101783936
2009	411.5580	164735263	937452643	101110384
2010	417.2668	169008985	922774081	107686864
2011	422.9872	173423824	907207005	113727864
2012	428.6599	177985310	890619917	119148200
2013	434.2582	182699244	872971245	119400528
2014	439.6781	187571674	854076648	129438992
2015	444.9317	192608941	833998885	129542056
2016	450.2357	197817657	813167782	132161360
2017	455.4689	203204785	792534309	129829192
2018	460.4493	208777575	771775436	131316880
2019	465.1946	214179435	750111142	130932816
2020	469.6596	219690187	727523311	134043304
2021	473.4187	225286595	703442032	138364336

Dataset on the demographic factors of industrial emissions

(Author's compilation)

Note: POPD in number of people per sq. km of land area; URB in number of people in urban agglomerations of more than 1 million; EDU in number of pupils.

Year	TCL	WS (in billions)	ENVTECH	CER
2005	62504.674	13.5	162	48230
2006	67410.508	14.2	202	12950789
2007	73,906.52	14.9	213	21066026
2008	85952.756	15.6	293	20117353
2009	79202.849	16.3	364	18738421
2010	51317.106	17	462	9413729
2011	88460.359	17	515	44173118
2012	95068.558	17	486	3550063
2013	80865.736	17	498	26846266
2014	139137.75	17	458	11264541
2015	116308.12	17	538	8940524
2016	175362.34	17	526	12529907
2017	189420.97	17	545	15787343
2018	132232.99	17	541	9506016
2019	121154.44	17	556	4287455
2020	137715.54	17	758	4245310
2021	132747.59	17	510	12225189

Dataset on the demographic factors of industrial emissions

(Author's compilation)

Note: TCL in hectare; WS in cubic metres; ENVTECH in number of patents; CER in units.

Dataset on the moderating variables

Year	SECP	INDSTR
2005	0.77	3.001815
2006	0.89	2.727865
2007	1.01	2.748199
2008	1.06	2.796941
2009	1.12	2.739192
2010	1.79	2.742767
2011	1.91	2.815614
2012	2.01	2.892526
2013	2.15	2.966769
2014	2.25	3.019422
2015	2.46	2.922714
2016	2.78	2.937236
2017	2.84	2.904893
2018	2.94	2.953405
2019	2.90	3.239673
2020	2.81	2.889105
2021	3.04	2.830828

(Author's compilation)

Note: SECP is the Environmental Policy Stringency Index; INDSTR is the ratio of Industrial Structure Improvement.

PUBLICATIONS AND CONFERENCES

I. Journal Articles:

- Gogoi, N., and Hussain, F. (2023). Investigating the environmental Kuznets curve hypothesis and pollution haven hypothesis in India: an ARDL approach. *International Journal of Sustainable Economy*, 16(1):16–44.
- Gogoi, N. (2023). The growth of the Indian agro-based industry and its emissions: industrial relevance of the environmental Kuznets curve hypothesis. *Indian Growth and Development Review*, 16(3):247–267.
- Gogoi, N., and Hussain, F. (2024). Application of the environmental Kuznets curve hypothesis in the Indian core industries: Towards a greener economy. *Review of Development Economics*, 28(4): 1718-1740.

II. Book Chapters:

- Maria, M.B. and Gogoi, N. (2023). Effect of gender diversity on banking performance in India. *Conteporary Issues in Commerce Mangement and Social Sector Development*, pages 1-12, ISBN:978-81-923478-7-5.
- Gogoi, N. and Maria, M.B. (2023). A study on firm performance of the Indian Automobile Industry and its determinants, *BizQuest-Volume 4: Insights into the Paradigm Shifts in Commerce, Economy and Society*, pages 76-94, ISBN:978-81-19567-11-9. Eureka Publications.

III. Conferences and Seminars:

- Paper presented in "Conversations on Research: IGIDR Ph.D. Colloquium" during 1-4 November 2022 entitled "Industrial growth and environmental degradation: An industry-specific environmental Kuznets curve approach".
- Paper presented in 'Sustainable Development: Business Policy & Management Practices' during 5-6 May 2023 entitled "Inorganic or organic fertilizers? Evidence from the Indian agro-based industry".
- Paper presented in international seminar "Research Symposium on Finance and Economic (RSFE) 2023" organized by IFMR Graduate School of Business, KREA

University during 14-16 June 2023 entitled "Financial Development as a Means of Augmenting Economic Growth and Reducing Environmental Degradation: An Indian Perspective".

- Paper presented in "International Seminar on Accounting, Finance, Business, and Social Sciences (ISAFBS'2023)" organized by Assam University, Alabama A& M University, and North Easter University during 14-16 September 2023 entitled "Application of the Environmental Kuznets Curve Hypothesis in the Indian Core Industries".
- Paper presented in "ISID National Conference Towards Industrial Transformation of India: Building an Inclusive, Sustainable, and Competitive Manufacturing Sector to Realize the 2047 Vision" during 4-6 October 2023 entitled "*Decoupling between Industrial Growth and Carbon Emission: Evidence from India's Core Industries*".
- Paper presented in "Symposium on Emerging Trends in Multidisciplinary Research" on March 18 2024 entitled "Indian core industries and environmental degradation: Relevance of the environmental Kuznets curve hypothesis".