Dedicated to

Maa & Deta

DECLARATION

I, Nivaj Gogoi, Research Scholar in the Department of Commerce, under the School of Management Sciences, Tezpur University, Assam, India, hereby declare that the thesis entitled "Industrial Growth and Environmental Degradation in India: Relevance of the Environmental Kuznets Curve Hypothesis" is a bonafide research undertaken by me under the supervision and guidance of Dr. Farah Hussain, Assistant Professor, Department of Commerce, Tezpur University, Assam, India. The work embodies the results of my original research and reflects achievement in this area of research. I also certify that, to the best of my knowledge, any help received in preparing this thesis, and all sources used have been acknowledged in this thesis.

This work has not been submitted elsewhere for award of any degree.

Place: Tezpun Date: 05.63.2025

Miraj Gogoi)

Registration No: TZ23001639 of 2023

तेजपुर विश्वविद्यालय/ TEZPUR UNIVERSITY

(संसद के अधिनियम द्वारा स्थापित केंद्रीय विश्वविद्यालय)

(A Central University established by an Act of Parliament)

तेजपुर-784028 :: असम/ TEZPUR-784028 :: ASSAM

(सर्वोत्तम विश्वविद्यालय के लिए कुलाध्यक्ष पुरस्कार, 2016 और भारत के 100 श्रेष्ठ उच्च शिक्षण संस्थानों में पंचम स्थान प्राप्त विश्वविद्यालय) (Awardee of Visitor's Best University Award, 2016 and 5" among India's Top 100 Universities, MHRD-NIRF Ranking, 2016)

Dr. Farah Hussain Assistant Professor Department of Commerce Tezpur University

Email: farah@tezu.ernet.in Phone: +91 9435832399 (M)

CERTIFICATE FROM THE SUPERVISOR

This is to certify that the thesis titled "Industrial Growth and Environmental Degradation in India: Relevance of the Environmental Kuznets Curve Hypothesis" submitted to the School of Management Sciences, Tezpur University, in part fulfilment for the award of the degree of Doctor of Philosophy in Commerce is a record of research work carried out by Mr. Nivaj Gogoi under my supervision and guidance. All help received by him from various sources has been duly acknowledged. No part of this thesis has been submitted elsewhere for award of any other degree.

Place: Sezpur Date: 05-03-2025

(Dr. Farah Hussain)

Assistant Professor

Department of Commerce

School of Management Sciences

ACKNOWLEDGEMENT

I would like to express my gratitude towards every individual who has helped me reach the completion of my thesis work. Each and every one of them has contributed to my research journey in their own unique way. Among all, I wish to mention a few individuals who have shown constant support during this journey.

First and foremost, my sincere gratitude is extended towards my supervisor, Dr. Farah Hussain, without whom this research work would not have been possible at all. Throughout the entire journey of my research work, her constant motivation and guidance have always encouraged me to look for more room to improve the quality of my research. Without a doubt, she has played the most prominent role in making my Ph.D. journey a successful one. Even amid her busy schedule, she never refused to provide adequate time and attention towards my work, whenever needed. Her command and expertise in the research field have always inspired me to grow as a researcher. Without her research experience, the smooth completion of my thesis would not have been possible. The aptitude that she has instilled in me as a researcher during this period will certainly play a great role in my future endeavours.

I would like to express my hearty gratitude towards my Doctoral Committee members, Prof. Santi Gopal Maji and Dr. Biswajit Ghose. I am grateful to them for providing me with their valuable time and effort whenever I approached them. I also offer my warm gratefulness towards my mentor, Dr. Prasenjit Roy, for his valuable advice to me beyond my academic challenges.

I would like to extend my gratefulness towards the entire faculty members of the Department including Dr. Reshma K. Tiwari, Dr. Dhritabrata Jyoti Bharadwaz, Dr. Satish Chandra Tiwari and Dr. Manish Kumar (ex-faculty member). I thank them all for never stopping believing in my capability. I take this opportunity also to thank the Doctoral Research Committee members of the Department of Commerce for their support in this journey in various ways. I am also grateful towards the staff members of the department Mr. Bibek Ranjan Deka, Mr. Nipen Dutta, Mr. Krishna Ram and Mr. Bijoy Domai (an exstaff member), for always being kind and caring towards me.

I thank Prof. Shambhu Nath Singh, Vice-Chancellor, Tezpur University, for allowing me the opportunity to join this university to conduct my research work and for providing with all the required facilities. I would like to express my appreciation to all the members of the Administrative Office, Tezpur University, for their sincere work and efforts in every possible way.

Without the presence of my fellow research scholars Ms. Mayuri Gogoi, Ms. Minnu Baby Maria, Mrs. Yeshi Ngima, Mr. Padum Chetry, Mr. Ashis Kashyap, Mr. Debarun Chakraborty and Mr. Biswajit Das, my research journey at this university would have surely fell short. I will always cherish the moments shared with them during this research period. I am also thankful to the rest of the members of the research scholar family in the department for their utmost support.

Last but not least, I thank Maa, Deta, Dada and Menam for always showing their constant support throughout my entire life. Their encouragement and confidence in me as a person have always pushed me to go beyond my limitations and do something good for society in return. I thank them all for their most sincere love, care and sacrifices for me.

LIST OF TABLES

Table no.	Table name	Page no
2.1	Reviews of articles on the IEKC hypothesis	38
2.2	Reviewed articles on drivers of environmental degradation	53
3.1	Decoupling scores	63
3.2	Average decoupling score range for industries	64
3.3	List of variables (Objective 2)	68
3.4	Diagnostic tests (Objective 2)	73
3.5	List of variables (Objective 3)	76
3.6	Diagnostic tests (Objective 3)	79
4.1	Decoupling elasticities of the coal industry in India	88
4.2	Decoupling elasticities of the crude oil industry in India	91
4.3	Decoupling elasticities of the natural gas industry in India	95
4.4	Decoupling elasticities of the cement industry in India	98
4.5	Decoupling elasticities of the fertilizers industry in India	101
4.6	Decoupling elasticities of the electricity industry in India	105
4.7	Decoupling elasticities of the steel industry in India	108
4.8	Decoupling elasticities of the refinery products industry in	111
	India	
4.9	Average score of the industries	116
5.1	Descriptive statistics	130
5.2	Correlation matrix (all variables)	131
5.3	DOLS results for the factors of industrial emissions	132
5.4	Correlation matrix (category-wise)	133
5.5	REM results for economic factors	137
5.6	REM results for industrial factors	140
5.7	REM results for demographic factors	142
5.8	REM results for environmental factors	145
5.9	Unit root test results	146
5.10	Robustness test results for the driving factors of industrial	148
	emissions	
5.11	Summarization of the results of hypotheses testing	150

6.1	Descriptive statistics	156
6.2	Correlation matrix	156
6.3	Unit root test results	157
6.4	FMOLS results for the inverted U-shaped IEKC Hypothesis	159
6.5	FMOLS results for the moderating role of environmental	161
	policy stringency	
6.6	FMOLS results for the moderating role of industrial	163
	structure improvement	
6.7	DOLS estimations for the inverted U-shaped IEKC	164
	Hypothesis	
6.8	DOLS estimations for the moderating role of environmental	165
	policy stringency	
6.9	DOLS estimations for the moderating role of industrial	166
	structure	
6.10	Estimation of the turning points	167
6.11	FMOLS results for the N-shaped IEKC	170
6.12	DOLS results for the N-shaped IEKC	171
6.13	Summarization of the results of hypotheses testing	172

LIST OF FIGURES

Figure no.	Figure name	Page no
1.1	Industry value added in India	3
1.2	Share of industry and services value added in the GDP of	3
	India	
1.3	Sectoral composition in gross value added in 2020-21	6
1.4	Global fossil fuel consumption by industries	8
1.5	Greenhouse gas emissions from industrial processes	10
1.6	Waste generation from selected industries	11
1.7	Greenhouse gas emissions from industrial processes in	12
	India	
1.8	Global temperature anomalies	14
1.9	Average global sea surface temperature (1880–2023)	15
1.10	Concentration of ozone in the stratosphere	16
1.11	Global Living Planet Index	16
1.12	Ice sheets melting in Antarctica and Greenland	17
1.13	Global Average Absolute Sea Level Change, 1880–2023	18
1.14	Global seawater acidification level	19
2.1	Number of publications on the EKC hypothesis worldwide	28
2.2	Number of publications on the EKC hypothesis in India	29
2.3	The inverted U-shaped EKC	31
2.4	The N-shaped EKC	32
2.5	The inverted U-shaped IEKC hypothesis	33
2.6	Tapio's elasticity of decoupling	48
3.1	Weightage percentage in IIP	57
4.1	Carbon emission levels of the core industries	85
4.2	Growth levels of the core industries	86
4.3	Frequencies of the decoupling elasticities in the coal	88
	industry	
4.4	Consumption of coal in India	90
4.5	Coal imports in India (in million tonnes	90

4.6	Frequencies of the decoupling elasticities in the crude oil	92
	industry	
4.7	Oil production and consumption in India	93
4.8	Oil imports in India	93
4.9	Frequencies of the decoupling elasticities in the natural gas	95
	industry	
4.10	Natural gas production and consumption in India	96
4.11	Natural gas imports in India	97
4.12	Frequencies of the decoupling elasticities in the cement	98
	industry	
4.13	Cement consumption in India	100
4.14	FDI in the Indian cement industry	100
4.15	Frequencies of the decoupling elasticities in the fertilizers	102
	industry	
4.16	Production and consumption of fertilizers in India	103
4.17	Application levels of manure and synthetic fertilizers in	103
	India	
4.18	Frequencies of the decoupling elasticities in the electricity	105
	industry	
4.19	Electricity generation capacity from renewable energy	107
	sources (in gigawatts)	
4.20	Sector-wise Growth of Installed Electricity Generation	107
	Capacity	
4.21	Frequencies of the decoupling elasticities in the steel	108
	industry	
4.22	Steel production in India	110
4.23	Consumption of steel in India	110
4.24	Frequencies of the decoupling elasticities in the refinery	112
	products industry	
4.25	Production of refinery products in India	113
4.26	Decoupling index values of the Indian core industries	114
4.27	Frequencies of the decoupling elasticity degrees in the	115
	Indian core industries	

LIST OF ABBREVIATIONS

Abbreviation Expansion

CPCB : Central Pollution Control Board

CEEW : Council on Energy, Environment, and Water

CER : Certified emission reduction

CH₄ : Methane

CMIE : Centre for Monitoring Indian Economy

CO₂ : Carbon dioxide

CRF : Controlled-release fertilizer

EKC : Environmental Kuznets curve

EPA : Environmental Protection Agency

EPWRF : Economic and Political Weekly Research Foundation

ETS : Emission Trading Scheme

FEM : Fixed-Effects Model

GDP : Gross domestic product

GHG : Greenhouse gas

ICI : Index of Eight Core Industries

IEA : International Energy Agency

IIP : Index of Industrial Production

IPCC : Intergovernmental Panel on Climate Change

IVA : Industrial value added

LPG : Liberalization, privatization and globalization

MoEF : Ministry of Environment and Forest

MoEFCC : Ministry of Environment, Forest and Climate Change

NDC : Nationally Determined Contribution

PM : Particulate matter

POOLS : Pooled Ordinary Least Squares

R&D : Research and development

REM : Random Effects Model

SDG : Sustainable Development Goals

SPCB : State Pollution Control Board

US : United States

WMO : World Meteorological Organization