Chapter 6

Arithmetic Properties for Certain

Restricted /-Regular Partitions

6.1 Introduction

We recall from Section 1.8 that the generating functions for the restricted ¢-regular

partition functions pod,(n) and ped,(n) are given by

- n Jofefu
> pod(n)g” = 77 (6.1)
and
= n Jaf
> pedn)d” = 712 (6:2)

Recently, Veena and Fathima [122] proved that for a fixed positive integer k, pods(n)
is almost always divisible by 3*. Ray [102] studied the divisibility of pod,(n) modulo

p’ for any prime p. Singh [112] showed that the series Z ped,(2n+1)¢" is lacunary

n=0

modulo arbitrary powers of 2 for ¢t = 3, 5, and 9, and Z ped,(2n+1)q¢" is lacunary

n=0
modulo 2.

In this chapter, we study the arithmetic densities of pod;(2n), pod;(2n), and
pody(2n + 1) modulo arbitray powers of 2 and pod,(2n + 1), pod,5(4n + 1),

The contents of this chapter have been submitted for publication [119].
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pod;,(4n + 3), ped,5(4n + 2), and ped,;(4n + 3) modulo 2. To be specific, we prove
the following theorems.
Theorem 6.1. Let k be a positive integer. Then the series Zpodt(Qn)q" 18 lacu-

n=0
nary modulo 2% where t = 3 and 5.

Theorem 6.2. Let k be a positive integer. Then the series Zpodg(Zn + 1)q¢" s
n=0
lacunary modulo 2*.

Theorem 6.3. The series Zpod7(2n +1)q" is lacunary modulo 2.

n=0

Theorem 6.4. The series Z pod,3(4n+1)q" and Z ped5(4n+2)q" are lacunary
n=0 n=0

modulo 2.

Theorem 6.5. The series Z pod,;(4n+3)q" and Zped17(4n+3)q” are lacunary

n=0 n=0
modulo 2.

The eta-quotients associated with the generating functions mentioned in Theo-
rems do not satisfy the hypotheses of Theorem 4.2 of Cotron et al. [48]. We
employ Theorem 4.17 for proving Theorems [6.1] and We establish Theorems
6.3 using a result of Landau [81].

In 2017, Gireesh, Hirschhorn, and Naika [56] proved some internal congruences
for the function pods;(n). Hemanthkumar, Bharadwaj, and Naika [67] established
a number of infinite families of congruences for pody(n) modulo 16 and 32, and
some internal congruences modulo small powers of 3 using theta functions and g¢-
series manipulations. They also found a relation between pody(n) and pedg(n).
Using the theory of Hecke eigenforms, Veena and Fathima [122] proved some infinite
families of congruences for pods(n) modulo 3. With the aid of Ramanujan’s theta
functions, Saikia [107] established some infinite families of congruences for pod,(n)
modulo 2 and 3. Recently, Yu [134] proved some congruences for pods(n) and
podys(n) modulo 5, pod,(n) modulo 7, and podg(n) modulo 3, respectively using ¢-
series techniques. Ray [102] also proved an infinite family of internal congruence for
pods(n) modulo 3 and two multiplicative relations for pod;(n) and pod,(n) modulo

5 and 7, respectively.
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Congruences for ped,(n) have also been studied in the literature. Drema and
Saikia [52] proved congruences modulo 2 and 4 for ped,(n) when ¢ = 3, 5, 7, and
11. They also proved infinite families of congruences modulo 9, 12, 18, and 24 for
pedy(n). Very recently, Singh [112] established certain infinite families of congru-
ences for ped;(n) and pedy(n) modulo 2, 8, 12, and 18 using the theory of Hecke

eigenforms.

We prove new multiplicative relations for pod;(n), podg(n), peds(n), and pedg(n)

modulo small powers of 2. We state our results in the following theorems.

Theorem 6.6. Let k be a positive integer and p be a prime number such that p = 3

(mod 4). Let r be a non-negative integer such that p divides 4r + 3. Then

3p—1 4 3—
pod; <2pk+1n + 2pr + p2 ) = v(p) pod; <2pk_1n + %) (mod 2),
p

where v(p) is defined by

-1, ifp=3,7 (mod 20),
v(p) =

I, ifp=11,19 (mod 20).

Theorem 6.7. Let k be a positive integer and p be a prime such thatp =i (mod 12),
where i € {5,7,11}. Let r be a non-negative integer such that p divides 12r+i. Then

2 ) —

pod, (72p"'n + T2pr + 6pi — 1) = w(p) pod, (72pk_1n
p

where w(p) is defined by
, ifp=5 (mod 12),
1, ifp=7,11 (mod 12).

Theorem 6.8. Let k be a positive integer and p be a prime such that p =3 (mod 4).

Let r be a non-negative integer such that p divides 4r + 3. Then

3 1 4 3
peds <2pk+1n + 2pr + p2—i- ) = v(p) ped; <2pk_1n + %

where v(p) is as defined in Theorem [6.6]

) (a2,

Theorem 6.9. Let k be a positive integer and p be a prime such thatp =i (mod 12),
where i € {5,7,11}. Let r be a non-negative integer such that p divides 12r+i. Then

M) (mod 8)

pedy (12p" 0+ 12pr + pi + 1) = w(p) ped, (12pk_1n + P
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where w(p) is as defined in Theorem [6.7

Theorem 6.10. Let k be a positive integer and p be a prime such that p = 1

(mod 12), where i € {5,7,11}. Let r be a non-negative integer such that p divides

12r + 1. Then
24 21 —
ped, (24pk+1n + 24pr 4+ 2p1 + 1) = w(p) pedy (24pk_1n i r+21—p
p

where w(p) is as defined in Theorem [6.7

) (mod 12),

Theorem 6.11. Let k be a positive integer and p be a prime such that p = 2

(mod 3). Let r be a non-negative integer such that p divides 3r + 2. Then
12r+8+p

ped, (12pk+1n + 12pr + 8p + 1) = (—p) ped, (12pk—1n n ;

) (mod 18).

The results of this chapter are proved with the aid of the theory of modular

forms and Hecke eigenforms. In Section [6.2] we establish Theorems [6.1H6.5| whereas

Theorems [6.6H6.11] are deduced in Section [6.3]

6.2 Proofs of Theorems [6.1-6.5

Proof of Theorem [6.1. Putting ¢ = 3 in (6.1]) and then using (2.18) of [130], we have

~ Jafsfiz  fafie (f4f6f16f224 N fofisfe ) ‘

2 pody(a" = E et =T B funfes T TR o

Extracting the even powers of ¢ from the above, we find that

00 2
> pody(2n)q" JsJia
n=0

" fifafo

Let

R P(96)
AG = 1=y =500y

Using the binomial theorem, we have

n2 " (962)
72" (1922)

A (2) = 1 (mod 2¥1).

Define By(z) by

a n(642)n%(962) 2o n(642)n%""2(962)
Bilz) = <n<8z>n<32z>n<19zz>) B = B2 (1922)
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which under modulo 25+ reduces to

77(642)7}2(962) f64f926 k41
Bi.(z) = = mod 2 . 6.4
(2) n(82)n(322)n(1922) qf8f32f192 ( ) (64)
Combining and (6.4)), we find that
Bi(z) =) _pods(2n)¢*™*'  (mod 2¢H). (6.5)
n=0

Now, By(z) is an eta-quotient with N = 192. Our goal is to prove that Bj(z) is
a modular form for all & > 3. We know that the cusps of I'(192) are represented
by fractions ¢/d , where d | 192 and ged(c,d) = 1. By Theorem 4.16, we find that
Bi(2) is holomorphic at a cusp ¢/d if and only if

L= (257 4 4) ged(d,96)* = ged(d,8) ged(d, 64)>
' ged(d, 192)? ged(d,192)2 © “ged(d, 192)2
2
B ged(d, 32) 9 _1>0.

ged(d, 192)2

From the following table, we conclude that £ > 0 for all d | 192 for k > 3.

d such that d]192 gfs(zc(zflfg);y ggcﬁgf’lggzz); ggcfid(g’f;z); ggc(ﬁ%g;z); Value of £
1,2,4,8 1 1 1 1 3 (2" -38)
16 1/4 1 1 1 3(28—2)
32 1/16 1 1 1 3x2F—3/2
64 1/64 1/4 1 1/4 9/8
3,6,12,24 1/9 1/9 1/9, 1 3 x 2k
48 1/36 1/9 1/9 1 3x 2842
96 1/144 1/9 1/9 1 3x2"+5/2
192 1/576 1/36 1/9 1/4 1/8

Hence, By(z) is holomorphic at every cusp c¢/d for all £ > 3. The weight of
92" 242928 +1

By (z) is 2F°! and the associated character is given by yg(e) =
[ ]

Thus, By(z) € Mar—1 (I'0(192), xs). Again, the Fourier coefficients of By(z) are all

integers. Therefore by Theorem 4.17, the Fourier coefficients of By(z) are almost

divisible by m = 2*. Due to ([6.5]), this holds for pod;(2n). Hence, Z pods;(2n)q"
n=0

is lacunary modulo 2F.
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Now, we prove the lacunarity of Z pods(2n)¢™ modulo 2.
n=0

Putting £ =5 in (6.1) and then employing Theorem 2.1 of [69], we have

w Jofsfao  fafao [ fsfa f1of40f4>
2 pods (" = = (f§f4o T

Extracting the even powers of ¢ from both sides of the above, we find that

o f4f10
ZPOd B = (6.6)

o

Let

ﬁ 40n 772(402,)
vt (1 —q80” — n(802)

In view of the binomial theorem, we have

72 (402)

¢ @) = " 502)

=1 (mod 2°th).

Define Dy(z) by

Delz) = n(162)1°(402) iy = 162 (40)
BT \n(d2)n(82)1(202)n(802)  n(4z)n(82)n(202)n2+1(802)
which under modulo 25t reduces to

_ 1(162)n°(402) — fref3o mod 2F+1
Dk(Z)_7](42)77(83)77(20Z)77(802) f4f8f20f80 (mod 2775, (6.7)

Combining and (6.7, we obtain

e}

Di(z) = ) _pods(2n)g™*"  (mod 2*1). (6.8)

n=0

Now, Di(z) is an eta-quotient with N = 80. We next prove that Dy (z) is a modular
form for all £ > 3. We know that the cusps of ['¢(80) are represented by fractions
c¢/d, where d | 80 and ged(c,d) = 1. By Theorem 4.16, we find that Dg(z) is
holomorphic at a cusp ¢/d if and only if

L= (22 4 6) ged(d, 40)* ged(d,4)? | ged(d,8)*  ged(d, 20)?
o ged(d, 80)2 ged(d, 80)2 ged(d,80)2  ged(d, 80)2
ged(d,16)* .
— = —-2"=-12>0.
ged(d, 80)? 20

From the following table, we conclude that £ > 0 for all d | 80 for k > 3.
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d such that d80 | A0, | 200, | Siaay | sge | sdane | Value of £
12,4 1 1 1 1 1 3 (28 —8)
8 1/4 1 1 1/4 1 3(2%-2)
16 1/16 1/4 1 1/16 1/4 3/2
5,10,20 1/25 1/25 1/25 1 1 3Ix 2k
40 1/100 1/25 1/25 1/4 1 3x2F418/5
80 1/400 | 1/100 1/25 1/16 1/4 3/10

Hence, Di(z) is holomorphic at every cusp ¢/d for all k > 3. Thus, Dy(z) €
M1 (T'9(80)). Now, using Theorem 4.17 and and arguing similarly as in
the earlier proof, we establish the lacunarity of Zp0d5(2n)q” modulo 2%. This

n=0

completes the proof of Theorem [6.1] O

Proof of Theorem [6.3. Putting ¢ =9 in (6.1]) and then using (3.14) of [127], we have

S pod () — 2fofn _ fobn ( fisdly qf2f6f36>
A fifafis fufis \f2fofss fifi
We extract the odd powers of ¢ from above to arrive at
= fofsfts
podg(2n 4+ 1)¢" = . 6.9
nZ:O 9( ) f12f6f9 ( )

Let

Using the binomial theorem, we have

E*(z) = 0

1 d 2K,
an (182) (mo )

Define Fy(z) by

e n(22)n(32)n?(182) 2y 77(22)77(3z)772k+1_1(9z)
A0 = (M omien ) B ) = S aiss)
which under modulo 2**! reduces to

Fk(Z) 77(22)77(32)772(182) — qf2f3f128 (mod 2k;+1)‘ (610)

n?(2)n(62)n(92) — * fifefo
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Combining and (|6.10]), we arrive at

Fi(z) = podg(2n+ 1)¢""  (mod 2*). (6.11)

n=0

Now, F(z) is an eta-quotient with N = 18. We next prove that Fj(z) is a modular
form for all £ > 3. We know that the cusps of I'g(18) are represented by fractions ¢/d,
where d | 18 and ged(c,d) = 1. By Theorem 4.16, we find that Fi(z) is holomorphic

at a cusp ¢/d if and only if
L= (22— 9) ged(d, 9)? ged(d,2)* , ged(d,6)?
' ged(d,18)2  “ged(d, 18)2  ged(d, 18)2
ged(d,3)* 36
ged(d, 18)2  ged(d, 18)2

+6 —2k42>0.

From the following table, we conclude that £ > 0 for all d | 18 for k > 3.

d such that d|18 ggc‘;d(gffg); ggc(f(gff’g); ggczd((dcffg; ggc‘;d(gffg; Value of £
1 1 1 1 1 3(2% —8)
2 1 1/4 1 1/4 0
3 1/9 1 1 1 3 x 2F
6 1/9 1/4 1 1/4 0
9 1/81 1/9 1/9 1 3 x 2%
18 1/81 | 1/36 1/9 1/4 4/3

Hence, Fi(z) is holomorphic at every cusp ¢/d for all k& > 3. Thus, Fi(z) €

Mor-1 (T'9(18)). Again, using Theorem 4.17 and proceeding in a similar manner as
in the proof of Theorem (6.1, we prove the lacunarity of Z podgy(2n + 1)¢" due to

n=0

(6.11f). Thus, we complete the proof. n

Proofs of Theorems are based on Lemma 4.19 due to Landau [81].

Since the proofs are similar in nature, we only proof of Theorems and
here and then present the outlines for the proof of Theorem

Proof of Theorem[6.5. Putting ¢ =7 in (6.1)), we get

ipod7(n)q” _ofihs _Ju Jr (mod 2). (6.12)
n=0

hfife T o A
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2f7

Employing the relation 1 = fS+qfifi +q (mod 2) from [78], and then

fi fi
extracting the terms involving odd powers of ¢ from the both sides of (6.12)), we
arrive at
> pod;(2n+1)¢" = frfis (mod 2). (6.13)
n=0

Again, from (4.24), we have

o

fi= Z (=1)ngBntl/2 = Z "B t/2 (mod 2),  where | ¢ |< 1. (6.14)

n=—oo n=—0oo

Magnifying (6.14) by ¢ — ¢7 and ¢ — ¢**, we find that

= Z q7n(3n+1)/2 (mod 2) and f145 Z q7n(3n+1) (I’IlOd 2). (615)

n=—oo n=—oo

Combining (6.13]) and (6.15) and then applying Lemma 4.19, we complete the

proof. O

Proof of Theorem[6.5 Putting ¢ = 17 in (6.1)) and (6.2), we get

n_J2firfes _ @_ 1
;p‘)d”m)q “hides B e M0 (6.16)

Again, Zhao, Jin, and Yao [135] proved the following congruence relation:

1 [o@) .
i = nEZO As(2n)¢™" +qfs +¢°f3, (mod 2), (6.17)
- n fofir
where ngo Ag(n)q" = P

Employing (6.17) in (6.16)) and then extracting the terms involving odd powers
of ¢ from the both sides, we find that

Z pody;(2n + 1)q" = fofss + ¢ f3, - (mod 2). (6.18)

n=0

1
Jihir
Again, applying (6.17)) in (6.18]), and extracting the terms involving odd powers

of ¢, we have

> podi;(4n+3)q" = qfi f 4+ ¢*f (mod 2). (6.19)

n=0
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From (3.66), we have

=) (=020 4 1)g" 2 =3 g2 (mod 2). (6.20)
n=0 n=0

Magnifying (6.20) by ¢ — ¢'7, we find that

b= g™ (mod 2). (6.21)

n=0
From (6.20]) and (6.21)) and Lemma 4.19, we observe that the first term of the
right hand side of (6.19) is lacunary modulo 2. Also, taking r(n) = s(n) = 17n(n +
1)/2 in Lemma 4.19, we conclude that the second term of the right hand side of (/6.19)

is also lacunary modulo 2. Thus, we establish the lacunarity of Z pod,,(4n+3)q".

n=0
Proceeding in a similar manner, we find that
Y pedi(An+3)¢" = L + ¢ f{ f (mod 2). (6.22)
n=0

Now, we consider 7(n) = s(n) = n(n+1)/2 in Lemma 4.19, and observe that the
first term of the right hand side of is lacunary modulo 2. And from (/6.20]) and
and Lemma 4.19, we conclude that ;cohe second term of the right hand side of
(6.22]) is also lacunary modulo 2. Hence, Z ped;;(4n + 3)¢" is lacunary modulo 2.
This completes the proof of Theorem n:O n

Proof of Theorem[6.4 The proof of Theorem [6.4] is similar in nature as the above
proof. So, we only note the generating functions of the corresponding functions

modulo 2 and the choices of 7(n) and s(n) for each of them.

7
Using % = 24 qf3 fos + % f3, + q7% (mod 2) from [38], we can easily obtain
1 2
Z pod;3(4n + 1)¢" = fofiz  (mod 2) (6.23)
n=0
and
Z ped,;(4n + 2)¢" = qf1f6  (mod 2). (6.24)
n=0

We complete the proof from the following table.
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Generating Function r(n) s(n)
Z pod,s(4n + 1)¢" fafis n(Bn+1) | 13n(3n+1)/2
n=0
Z ped,;(4n + 2)q¢" f1f26 n(Bn+1)/2 | 13n(3n+1)
n=0

6.3 Proofs of Theorems [6.6-6.11

Proof of Theorem[0.6 Putting ¢ =5 in (6.1)), we have

ipod5(n)q" _J2fsf = Ju fs5 (mod 2).

= fifafio  f2 S
Now, applying the relation ﬁ— = fl +q§5 (mod 2) from [78], and then extracting
1 1
the terms with even powers of ¢, we find that
Zpod5(2n)q” = fifs (mod 2), (6.25)
n=0

which gives

z:podg)@n)q‘”“rl = n(42)n(20z) (mod 2).

Let n(42)n(20z) = Za )¢". Then a(n) = 0 if n # 1 (mod 4) and for all
n=0

n > 0,

pods(2n) = a(4n + 1). (6.26)

By Theorem 4.15, we have n(4z)n(20z) € M, (FO(SO), ( O)) Since n(4z)n(20z2)
(

is a Hecke eigenform (see, for example [84]), hence (1.22) 1.23) yield

1.
7MWMWHQ:§X%WH<%?%<9 fzxmfpwq

n=0 n=0

Mm0+(:@>a(ﬂ):A@mm) (6.27)

b p

which gives

Putting » = 1 and noting that a(1) = 1, we obtain a(p) = A(p). Since a(p) =0
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for all p £ 1 (mod 4), we have A(p) = 0. From (6.27]), we obtain

a(pn) = (—1) (‘720> . (g) | (6.28)

Next, substituting n by 4p*n + 4r + 3 such that p divides 4r + 3 in (6.25)), we

have
3p—1 —20 dr +3 —
al4(p"n+pr+ P +1)=(-1)—)al4 p’“_ln+u +1).
4 p 4p
(6.29)
3p—1 dr +3 —
We note that p4 and ! +4 P are integer. Now, using and -
4

we arrive at

-1 —2 4 —
pod; <2pk+1n + 2pr + 3p2 ) =(-1) <70> pod; (Zpkln + m) (mod 2).

2p
(6.30)
For a prime p = 3 (mod 4), we have
(_20) 1, ifp=3,7 (mod 20),
v —1, ifp=11,19 (mod 20).
Hence, we conclude the proof of the theorem from ([6.30)). [

Proof of Theorem[6.7. From (2.51) of [67], we have

Z pody(72n 4 5)¢" = 4f% (mod 16),

n=0
which gives

Zp0d9(72n +5)¢"?*" " = 4n*(122)  (mod 16).

n=0
Let n?(122) := Z b(n)q". Then b(n) =0if n £ 1 (mod 12) and for all n > 0,
n=0

pody(72n +5) = b(12n + 1). (6.31)

1

By Theorem 4.15, we have n*(122) € M, (Fo 144) ( )) Since n?(12z) is a

Hecke eigenform (see, for example [84]), hence (1.22) (1.23) yield

P(12:) | T, = f} (atm+ (2 o (%)) 0 =209 gammn, (6.32)
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which gives

b(pn) + (_?1) b (ﬁ) — A(p)b(n). (6.33)

p
Putting n = 1 and noting that b(1) = 1, we obtain b(p) = A(p). Since b(p) = 0
for all p £ 1 (mod 12), we have A(p) = 0. From (6.33)), we obtain

bpn) = (—1) (_?1) b (%) | (6.34)

Let i € {5,7,11}. Suppose r is a non-negative integer such that the prime p =
(mod 12) divides 12r + 4. Then substituting n by 12p*n + 12r +4 in (6.34]), we have

1 1 12 +i —
b2 (P e+ 2o 1) = —0 (22 ) (12 (i 2 TP L)
12 P 12p

(6.35)
We note that pi1; ! and % are integer. Now, using and ,
we arrive at :
pody (72p"'n + T2pr + 6pi — 1) = (—1) <_?) pod, (72pk1n + W) (mod 16).
(6.36)
For a prime p Z 1 (mod 12), we have
(_1) 1, ifp=5 (mod 12),
r/) —1, ifp=7,11 (mod 12).
Hence, we conclude the proof of the theorem from (6.36)). O

Proof of Theorem[6.8. From (3.4) of [112], we have

- n_ fofsfa
2_peds(2n+1)a" = 55

which under modulo 2 gives

Z peds(2n + 1)¢* ! = n(42)n(202)  (mod 2).
n=0
Proceeding similarly as the proof of Theorem [6.6] we complete the proof. O

Proof of Theorem[6.9. First we recall the following identity from [52, (8.4)]:

o0

Z pedy(6n +2)¢" = 2f2  (mod 8).

n=0
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Extracting the terms involving even powers of ¢ on both side of the anbove
equation, we find that

g pedy(12n + 2)¢" = 2f2  (mod 8),
n=0
which gives

Z pedy(12n + 2)¢"*" ! = 2?(122)  (mod 8).

n=0
Again, proceeding in a similar manner as in the proof of Theorem [6.7], we com-

plete the proof. O

Proof of Theorem[6.10, From (3.20) of [112], we have
Z pedy(4n + 3)¢" = 3fF (mod 12).
n=0

Extracting the the terms involving even powers of ¢ on both sides of the equation,

we get

Zped9(8n +3)¢" = 3f; (mod 12).

n=0

Again, extracting the the terms involving ¢®" on both sides of the equation, we get

[e.e]

Z pedy(24n + 3)¢" = 3f  (mod 12),
n=0
which gives
Zpedg(ﬂn +3)¢™?" ! = 31?(122)  (mod 12).
n=0

Proceeding as similar to the proof of Theorem [6.7, we arrive at the desired
result. ]

Proof of Theorem[6.11. From (10.3) of [52], we have

[e.9]

Z pedy(12n +5)¢" = 6  (mod 18),

n=0

which gives

Zpedg(un +5)¢*" ™ = 61°(32)  (mod 18).

n=0
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Let n8(3z2) := Ze(n)q". Then ¢(n) =0if n # 1 (mod 3) and for all n > 0,
n=0

pedy(12n +5) = e(3n +1). (6.37)

By Theorem 4.15, we have %(3z) € My (T'9(9)). Since n°(3z) is a Hecke eigenform
(see, for example [84]), hence (1.22) and (1.23) yield

P3| T,= 3 (e<pn> tpe (g)) P =AD)S eme (639

which gives

e(pn) +p e (g) = A(p)e(n). (6.39)

Putting n = 1 and noting that e(1) = 1, we obtain e(p) = A(p). Since e(p) = 0
for all p £ 1 (mod 3), we have A(p) = 0. From (6.39)), we obtain

n
ctom) = (-p) ¢ (%), (6.40)
Next, substituting n by 3p*n + 3r + 2 such that p divides 3r + 2 in (6.40)), we
have
2p—1 3 2 —
el3 pk+1n+pr+p— +1)=(-p)el3 pk_1n+u +1].
3 3p
(6.41)
2p—1 3r+2—p . .
We note that 3 and 3 are integer. Now, using (/6.37]) and (6.41]),
P
we obtain
pedg (12p n+ 12pr 4+ 8p + 1) = (—p) pedgy | 12p""'n + ——— (mod 18),
p
which concludes the proof of the theorem. O
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