
Chapter 6

Arithmetic Properties for Certain

Restricted ℓ-Regular Partitions

6.1 Introduction

We recall from Section 1.8 that the generating functions for the restricted ℓ-regular

partition functions podℓ(n) and pedℓ(n) are given by
∞∑
n=0

podℓ(n)q
n =

f2fℓf4ℓ
f1f4f2ℓ

(6.1)

and
∞∑
n=0

pedℓ(n)q
n =

f4fℓ
f1f4ℓ

. (6.2)

Recently, Veena and Fathima [122] proved that for a fixed positive integer k, pod3(n)

is almost always divisible by 3k. Ray [102] studied the divisibility of podp(n) modulo

pj for any prime p. Singh [112] showed that the series
∞∑
n=0

pedt(2n+1)qn is lacunary

modulo arbitrary powers of 2 for t = 3, 5, and 9, and
∞∑
n=0

ped7(2n+1)qn is lacunary

modulo 2.

In this chapter, we study the arithmetic densities of pod3(2n), pod5(2n), and

pod9(2n+ 1) modulo arbitray powers of 2 and pod7(2n+ 1), pod13(4n+ 1),

The contents of this chapter have been submitted for publication [119].
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pod17(4n+ 3), ped13(4n+ 2), and ped17(4n+ 3) modulo 2. To be specific, we prove

the following theorems.

Theorem 6.1. Let k be a positive integer. Then the series
∞∑
n=0

podt(2n)q
n is lacu-

nary modulo 2k where t = 3 and 5.

Theorem 6.2. Let k be a positive integer. Then the series
∞∑
n=0

pod9(2n + 1)qn is

lacunary modulo 2k.

Theorem 6.3. The series
∞∑
n=0

pod7(2n+ 1)qn is lacunary modulo 2.

Theorem 6.4. The series
∞∑
n=0

pod13(4n+1)qn and
∞∑
n=0

ped13(4n+2)qn are lacunary

modulo 2.

Theorem 6.5. The series
∞∑
n=0

pod17(4n+3)qn and
∞∑
n=0

ped17(4n+3)qn are lacunary

modulo 2.

The eta-quotients associated with the generating functions mentioned in Theo-

rems 6.1–6.5 do not satisfy the hypotheses of Theorem 4.2 of Cotron et al. [48]. We

employ Theorem 4.17 for proving Theorems 6.1 and 6.2. We establish Theorems

6.3–6.5 using a result of Landau [81].

In 2017, Gireesh, Hirschhorn, and Naika [56] proved some internal congruences

for the function pod3(n). Hemanthkumar, Bharadwaj, and Naika [67] established

a number of infinite families of congruences for pod9(n) modulo 16 and 32, and

some internal congruences modulo small powers of 3 using theta functions and q-

series manipulations. They also found a relation between pod9(n) and ped9(n).

Using the theory of Hecke eigenforms, Veena and Fathima [122] proved some infinite

families of congruences for pod3(n) modulo 3. With the aid of Ramanujan’s theta

functions, Saikia [107] established some infinite families of congruences for pod3(n)

modulo 2 and 3. Recently, Yu [134] proved some congruences for pod5(n) and

pod25(n) modulo 5, pod7(n) modulo 7, and pod9(n) modulo 3, respectively using q-

series techniques. Ray [102] also proved an infinite family of internal congruence for

pod3(n) modulo 3 and two multiplicative relations for pod5(n) and pod7(n) modulo

5 and 7, respectively.
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Congruences for pedℓ(n) have also been studied in the literature. Drema and

Saikia [52] proved congruences modulo 2 and 4 for pedt(n) when t = 3, 5, 7, and

11. They also proved infinite families of congruences modulo 9, 12, 18, and 24 for

ped9(n). Very recently, Singh [112] established certain infinite families of congru-

ences for ped5(n) and ped9(n) modulo 2, 8, 12, and 18 using the theory of Hecke

eigenforms.

We prove new multiplicative relations for pod5(n), pod9(n), ped5(n), and ped9(n)

modulo small powers of 2. We state our results in the following theorems.

Theorem 6.6. Let k be a positive integer and p be a prime number such that p ≡ 3

(mod 4). Let r be a non-negative integer such that p divides 4r + 3. Then

pod5

(
2pk+1n+ 2pr +

3p− 1

2

)
≡ v(p) pod5

(
2pk−1n+

4r + 3− p

2p

)
(mod 2),

where v(p) is defined by

v(p) =

−1, if p ≡ 3, 7 (mod 20),

1, if p ≡ 11, 19 (mod 20).

Theorem 6.7. Let k be a positive integer and p be a prime such that p ≡ i (mod 12),

where i ∈ {5, 7, 11}. Let r be a non-negative integer such that p divides 12r+i. Then

pod9

(
72pk+1n+ 72pr + 6pi− 1

)
≡ w(p) pod9

(
72pk−1n+

72r + 6i− p

p

)
(mod 16),

where w(p) is defined by

w(p) =

−1, if p ≡ 5 (mod 12),

1, if p ≡ 7, 11 (mod 12).

Theorem 6.8. Let k be a positive integer and p be a prime such that p ≡ 3 (mod 4).

Let r be a non-negative integer such that p divides 4r + 3. Then

ped5

(
2pk+1n+ 2pr +

3p+ 1

2

)
≡ v(p) ped5

(
2pk−1n+

4r + 3 + p

2p

)
(mod 2),

where v(p) is as defined in Theorem 6.6.

Theorem 6.9. Let k be a positive integer and p be a prime such that p ≡ i (mod 12),

where i ∈ {5, 7, 11}. Let r be a non-negative integer such that p divides 12r+i. Then

ped9

(
12pk+1n+ 12pr + pi+ 1

)
≡ w(p) ped9

(
12pk−1n+

12r + i+ p

p

)
(mod 8),
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where w(p) is as defined in Theorem 6.7.

Theorem 6.10. Let k be a positive integer and p be a prime such that p ≡ i

(mod 12), where i ∈ {5, 7, 11}. Let r be a non-negative integer such that p divides

12r + i. Then

ped9

(
24pk+1n+ 24pr + 2pi+ 1

)
≡ w(p) ped9

(
24pk−1n+

24r + 2i− p

p

)
(mod 12),

where w(p) is as defined in Theorem 6.7.

Theorem 6.11. Let k be a positive integer and p be a prime such that p ≡ 2

(mod 3). Let r be a non-negative integer such that p divides 3r + 2. Then

ped9

(
12pk+1n+ 12pr + 8p+ 1

)
≡ (−p) ped9

(
12pk−1n+

12r + 8 + p

p

)
(mod 18).

The results of this chapter are proved with the aid of the theory of modular

forms and Hecke eigenforms. In Section 6.2, we establish Theorems 6.1–6.5 whereas

Theorems 6.6–6.11 are deduced in Section 6.3.

6.2 Proofs of Theorems 6.1–6.5

Proof of Theorem 6.1. Putting ℓ = 3 in (6.1) and then using (2.18) of [130], we have
∞∑
n=0

pod3(n)q
n =

f2f3f12
f1f4f6

=
f2f12
f4f6

(
f4f6f16f

2
24

f 2
2 f8f12f48

+ q
f6f48f

2
8

f 2
2 f16f24

)
.

Extracting the even powers of q from the above, we find that
∞∑
n=0

pod3(2n)q
n =

f8f
2
12

f1f4f24
. (6.3)

Let

A(z) :=
∞∏
n=1

(1− q96n)2

(1− q192n)
=
η2(96z)

η(192z)
.

Using the binomial theorem, we have

A2k(z) =
η2

k+1
(96z)

η2k(192z)
≡ 1 (mod 2k+1).

Define Bk(z) by

Bk(z) :=

(
η(64z)η2(96z)

η(8z)η(32z)η(192z)

)
A2k(z) =

η(64z)η2
k+1+2(96z)

η(8z)η(32z)η2k+1(192z)
,
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which under modulo 2k+1 reduces to

Bk(z) ≡
η(64z)η2(96z)

η(8z)η(32z)η(192z)
≡ q

f64f
2
96

f8f32f192
(mod 2k+1). (6.4)

Combining (6.3) and (6.4), we find that

Bk(z) ≡
∞∑
n=0

pod3(2n)q
8n+1 (mod 2k+1). (6.5)

Now, Bk(z) is an eta-quotient with N = 192. Our goal is to prove that Bk(z) is

a modular form for all k ≥ 3. We know that the cusps of Γ0(192) are represented

by fractions c/d , where d | 192 and gcd(c, d) = 1. By Theorem 4.16, we find that

Bk(z) is holomorphic at a cusp c/d if and only if

L :=
(
2k+2 + 4

) gcd(d, 96)2

gcd(d, 192)2
− 24

gcd(d, 8)2

gcd(d, 192)2
+ 3

gcd(d, 64)2

gcd(d, 192)2

− 6
gcd(d, 32)2

gcd(d, 192)2
− 2k − 1 ≥ 0.

From the following table, we conclude that L ≥ 0 for all d | 192 for k ≥ 3.

d such that d|192 gcd(d,8)2

gcd(d,192)2
gcd(d,32)2

gcd(d,192)2
gcd(d,64)2

gcd(d,192)2
gcd(d,96)2

gcd(d,192)2
Value of L

1,2,4,8 1 1 1 1 3
(
2k − 8

)
16 1/4 1 1 1 3

(
2k − 2

)
32 1/16 1 1 1 3× 2k − 3/2

64 1/64 1/4 1 1/4 9/8

3,6,12,24 1/9 1/9 1/9, 1 3× 2k

48 1/36 1/9 1/9 1 3× 2k + 2

96 1/144 1/9 1/9 1 3× 2k + 5/2

192 1/576 1/36 1/9 1/4 1/8

Hence, Bk(z) is holomorphic at every cusp c/d for all k ≥ 3. The weight of

Bk(z) is 2k−1 and the associated character is given by χ8(•) =

(
22

k+2+232
k+1

•

)
.

Thus, Bk(z) ∈ M2k−1 (Γ0(192), χ8). Again, the Fourier coefficients of Bk(z) are all

integers. Therefore by Theorem 4.17, the Fourier coefficients of Bk(z) are almost

divisible by m = 2k. Due to (6.5), this holds for pod3(2n). Hence,
∞∑
n=0

pod3(2n)q
n

is lacunary modulo 2k.
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Now, we prove the lacunarity of
∞∑
n=0

pod5(2n)q
n modulo 2k.

Putting ℓ = 5 in (6.1) and then employing Theorem 2.1 of [69], we have
∞∑
n=0

pod5(n)q
n =

f2f5f20
f1f4f10

=
f2f20
f4f10

(
f8f

2
20

f 2
2 f40

+ q
f10f40f

3
4

f 3
2 f8f20

)
.

Extracting the even powers of q from both sides of the above, we find that
∞∑
n=0

pod5(2n)q
n =

f4f
3
10

f1f2f5f20
. (6.6)

Let

C(z) :=
∞∏
n=1

(1− q40n)2

(1− q80n)
=
η2(40z)

η(80z)
.

In view of the binomial theorem, we have

C2k(z) =
η2

k+1
(40z)

η2k(80z)
≡ 1 (mod 2k+1).

Define Dk(z) by

Dk(z) :=

(
η(16z)η3(40z)

η(4z)η(8z)η(20z)η(80z)

)
C2k(z) =

η(16z)η2
k+1+3(40z)

η(4z)η(8z)η(20z)η2k+1(80z)
,

which under modulo 2k+1 reduces to

Dk(z) ≡
η(16z)η3(40z)

η(4z)η(8z)η(20z)η(80z)
≡ q

f16f
3
40

f4f8f20f80
(mod 2k+1). (6.7)

Combining (6.6) and (6.7), we obtain

Dk(z) ≡
∞∑
n=0

pod5(2n)q
4n+1 (mod 2k+1). (6.8)

Now, Dk(z) is an eta-quotient with N = 80. We next prove that Dk(z) is a modular

form for all k ≥ 3. We know that the cusps of Γ0(80) are represented by fractions

c/d, where d | 80 and gcd(c, d) = 1. By Theorem 4.16, we find that Dk(z) is

holomorphic at a cusp c/d if and only if

L :=
(
2k+2 + 6

) gcd(d, 40)2
gcd(d, 80)2

− 20
gcd(d, 4)2

gcd(d, 80)2
− 10

gcd(d, 8)2

gcd(d, 80)2
− 4

gcd(d, 20)2

gcd(d, 80)2

+ 5
gcd(d, 16)2

gcd(d, 80)2
− 2k − 1 ≥ 0.

From the following table, we conclude that L ≥ 0 for all d | 80 for k ≥ 3.
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d such that d|80 gcd(d,4)2

gcd(d,80)2
gcd(d,8)2

gcd(d,80)2
gcd(d,16)2

gcd(d,80)2
gcd(d,20)2

gcd(d,80)2
gcd(d,40)2

gcd(d,80)2
Value of L

1,2,4 1 1 1 1 1 3
(
2k − 8

)
8 1/4 1 1 1/4 1 3

(
2k − 2

)
16 1/16 1/4 1 1/16 1/4 3/2

5,10,20 1/25 1/25 1/25 1 1 3×2k

40 1/100 1/25 1/25 1/4 1 3× 2k + 18/5

80 1/400 1/100 1/25 1/16 1/4 3/10

Hence, Dk(z) is holomorphic at every cusp c/d for all k ≥ 3. Thus, Dk(z) ∈

M2k−1 (Γ0(80)). Now, using Theorem 4.17 and (6.8) and arguing similarly as in

the earlier proof, we establish the lacunarity of
∞∑
n=0

pod5(2n)q
n modulo 2k. This

completes the proof of Theorem 6.1.

Proof of Theorem 6.2. Putting ℓ = 9 in (6.1) and then using (3.14) of [127], we have
∞∑
n=0

pod9(n)q
n =

f2f9f36
f1f4f18

=
f2f36
f4f18

(
f18f

3
12

f 2
2 f6f36

+ q
f 2
4 f6f36
f 3
2 f12

)
.

We extract the odd powers of q from above to arrive at
∞∑
n=0

pod9(2n+ 1)qn =
f2f3f

2
18

f 2
1 f6f9

. (6.9)

Let

E(z) :=
∞∏
n=1

(1− q9n)2

(1− q18n)
=
η2(9z)

η(18z)
.

Using the binomial theorem, we have

E2k(z) =
η2

k+1
(9z)

η2k(18z)
≡ 1 (mod 2k+1).

Define Fk(z) by

Fk(z) :=

(
η(2z)η(3z)η2(18z)

η2(z)η(6z)η(9z)

)
E2k(z) =

η(2z)η(3z)η2
k+1−1(9z)

η2(z)η(6z)η2k−2(18z)
,

which under modulo 2k+1 reduces to

Fk(z) ≡
η(2z)η(3z)η2(18z)

η2(z)η(6z)η(9z)
≡ q

f2f3f
2
18

f 2
1 f6f9

(mod 2k+1). (6.10)
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Combining (6.9) and (6.10), we arrive at

Fk(z) ≡
∞∑
n=0

pod9(2n+ 1)qn+1 (mod 2k+1). (6.11)

Now, Fk(z) is an eta-quotient with N = 18. We next prove that Fk(z) is a modular

form for all k ≥ 3. We know that the cusps of Γ0(18) are represented by fractions c/d,

where d | 18 and gcd(c, d) = 1. By Theorem 4.16, we find that Fk(z) is holomorphic

at a cusp c/d if and only if

L :=
(
2k+2 − 2

) gcd(d, 9)2

gcd(d, 18)2
+ 9

gcd(d, 2)2

gcd(d, 18)2
− 3

gcd(d, 6)2

gcd(d, 18)2

+ 6
gcd(d, 3)2

gcd(d, 18)2
− 36

gcd(d, 18)2
− 2k + 2 ≥ 0.

From the following table, we conclude that L ≥ 0 for all d | 18 for k ≥ 3.

d such that d|18 gcd(d,2)2

gcd(d,18)2
gcd(d,3)2

gcd(d,18)2
gcd(d,6)2

gcd(d,18)2
gcd(d,9)2

gcd(d,18)2
Value of L

1 1 1 1 1 3(2k − 8)

2 1 1/4 1 1/4 0

3 1/9 1 1 1 3× 2k

6 1/9 1/4 1 1/4 0

9 1/81 1/9 1/9 1 3× 2k

18 1/81 1/36 1/9 1/4 4/3

Hence, Fk(z) is holomorphic at every cusp c/d for all k ≥ 3. Thus, Fk(z) ∈

M2k−1 (Γ0(18)). Again, using Theorem 4.17 and proceeding in a similar manner as

in the proof of Theorem 6.1, we prove the lacunarity of
∞∑
n=0

pod9(2n + 1)qn due to

(6.11). Thus, we complete the proof.

Proofs of Theorems 6.3–6.5 are based on Lemma 4.19 due to Landau [81].

Since the proofs are similar in nature, we only proof of Theorems 6.3 and 6.5

here and then present the outlines for the proof of Theorem 6.4.

Proof of Theorem 6.3. Putting ℓ = 7 in (6.1), we get
∞∑
n=0

pod7(n)q
n =

f2f7f28
f1f4f14

≡ f14
f2

· f7
f1

(mod 2). (6.12)
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Employing the relation
f7
f1

≡ f 6
1 + qf 2

1 f
4
7 + q2

f 8
7

f 2
1

(mod 2) from [78], and then

extracting the terms involving odd powers of q from the both sides of (6.12), we

arrive at
∞∑
n=0

pod7(2n+ 1)qn ≡ f7f14 (mod 2). (6.13)

Again, from (4.24), we have

f1 =
∞∑

n=−∞

(−1)nqn(3n+1)/2 ≡
∞∑

n=−∞

qn(3n+1)/2 (mod 2), where | q |< 1. (6.14)

Magnifying (6.14) by q → q7 and q → q14, we find that

f7 ≡
∞∑

n=−∞

q7n(3n+1)/2 (mod 2) and f14 ≡
∞∑

n=−∞

q7n(3n+1) (mod 2). (6.15)

Combining (6.13) and (6.15) and then applying Lemma 4.19, we complete the

proof.

Proof of Theorem 6.5. Putting ℓ = 17 in (6.1) and (6.2), we get
∞∑
n=0

pod17(n)q
n =

f2f17f68
f1f4f34

≡ f68
f2

· 1

f1f17
(mod 2). (6.16)

Again, Zhao, Jin, and Yao [135] proved the following congruence relation:

1

f1f17
≡

∞∑
n=0

∆8(2n)q
2n + qf 3

2 + q5f 3
34 (mod 2), (6.17)

where
∞∑
n=0

∆8(n)q
n =

f2f17
f 3
1 f34

.

Employing (6.17) in (6.16) and then extracting the terms involving odd powers

of q from the both sides, we find that
∞∑
n=0

pod17(2n+ 1)qn ≡ f2f34 + q2f 3
34 ·

1

f1f17
(mod 2). (6.18)

Again, applying (6.17) in (6.18), and extracting the terms involving odd powers

of q, we have
∞∑
n=0

pod17(4n+ 3)qn ≡ qf 3
1 f

3
17 + q3f 6

17 (mod 2). (6.19)
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From (3.66), we have

f 3
1 =

∞∑
n=0

(−1)n(2n+ 1)qn(n+1)/2 ≡
∞∑
n=0

qn(n+1)/2 (mod 2). (6.20)

Magnifying (6.20) by q → q17, we find that

f 3
17 ≡

∞∑
n=0

q17n(n+1)/2 (mod 2). (6.21)

From (6.20) and (6.21) and Lemma 4.19, we observe that the first term of the

right hand side of (6.19) is lacunary modulo 2. Also, taking r(n) = s(n) = 17n(n+

1)/2 in Lemma 4.19, we conclude that the second term of the right hand side of (6.19)

is also lacunary modulo 2. Thus, we establish the lacunarity of
∞∑
n=0

pod17(4n+3)qn.

Proceeding in a similar manner, we find that
∞∑
n=0

ped17(4n+ 3)qn ≡ f 6
1 + q2f 3

1 f
3
17 (mod 2). (6.22)

Now, we consider r(n) = s(n) = n(n+1)/2 in Lemma 4.19, and observe that the

first term of the right hand side of (6.22) is lacunary modulo 2. And from (6.20) and

(6.21) and Lemma 4.19, we conclude that the second term of the right hand side of

(6.22) is also lacunary modulo 2. Hence,
∞∑
n=0

ped17(4n+ 3)qn is lacunary modulo 2.

This completes the proof of Theorem 6.5

Proof of Theorem 6.4. The proof of Theorem 6.4 is similar in nature as the above

proof. So, we only note the generating functions of the corresponding functions

modulo 2 and the choices of r(n) and s(n) for each of them.

Using
f13
f1

≡ f 3
4 + qf 5

2 f26 + q6f 3
52 + q7

f 7
26

f2
(mod 2) from [38], we can easily obtain

∞∑
n=0

pod13(4n+ 1)qn ≡ f2f13 (mod 2) (6.23)

and
∞∑
n=0

ped13(4n+ 2)qn ≡ qf1f26 (mod 2). (6.24)

We complete the proof from the following table.
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Generating Function r(n) s(n)
∞∑
n=0

pod13(4n+ 1)qn f2f13 n(3n+ 1) 13n(3n+ 1)/2

∞∑
n=0

ped13(4n+ 2)qn f1f26 n(3n+ 1)/2 13n(3n+ 1)

6.3 Proofs of Theorems 6.6–6.11

Proof of Theorem 6.6. Putting ℓ = 5 in (6.1), we have
∞∑
n=0

pod5(n)q
n =

f2f5f20
f1f4f10

≡ f10
f2

· f5
f1

(mod 2).

Now, applying the relation
f5
f1

≡ f 4
1+q

f 6
5

f 2
1

(mod 2) from [78], and then extracting

the terms with even powers of q, we find that
∞∑
n=0

pod5(2n)q
n ≡ f1f5 (mod 2), (6.25)

which gives
∞∑
n=0

pod5(2n)q
4n+1 ≡ η(4z)η(20z) (mod 2).

Let η(4z)η(20z) :=
∞∑
n=0

a(n)qn. Then a(n) = 0 if n ̸≡ 1 (mod 4) and for all

n ≥ 0,

pod5(2n) = a(4n+ 1). (6.26)

By Theorem 4.15, we have η(4z)η(20z) ∈M1

(
Γ0(80),

(
−20

•

))
. Since η(4z)η(20z)

is a Hecke eigenform (see, for example [84]), hence (1.22) and (1.23) yield

η(4z)η(20z) | Tp =
∞∑
n=0

(
a(pn) +

(
−20

p

)
a

(
n

p

))
qn = λ(p)

∞∑
n=0

a(n)qn,

which gives

a(pn) +

(
−20

p

)
a

(
n

p

)
= λ(p)a(n). (6.27)

Putting n = 1 and noting that a(1) = 1, we obtain a(p) = λ(p). Since a(p) = 0
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for all p ̸≡ 1 (mod 4), we have λ(p) = 0. From (6.27), we obtain

a(pn) = (−1)

(
−20

p

)
a

(
n

p

)
. (6.28)

Next, substituting n by 4pkn + 4r + 3 such that p divides 4r + 3 in (6.28), we

have

a

(
4

(
pk+1n+ pr +

3p− 1

4

)
+ 1

)
= (−1)

(
−20

p

)
a

(
4

(
pk−1n+

4r + 3− p

4p

)
+ 1

)
.

(6.29)

We note that
3p− 1

4
and

4r + 3− p

4p
are integer. Now, using (6.26) and (6.29),

we arrive at

pod5

(
2pk+1n+ 2pr +

3p− 1

2

)
≡ (−1)

(
−20

p

)
pod5

(
2pk−1n+

4r + 3− p

2p

)
(mod 2).

(6.30)

For a prime p ≡ 3 (mod 4), we have(
−20

p

)
=

1, if p ≡ 3, 7 (mod 20),

−1, if p ≡ 11, 19 (mod 20).

Hence, we conclude the proof of the theorem from (6.30).

Proof of Theorem 6.7. From (2.51) of [67], we have
∞∑
n=0

pod9(72n+ 5)qn ≡ 4f 2
1 (mod 16),

which gives
∞∑
n=0

pod9(72n+ 5)q12n+1 ≡ 4η2(12z) (mod 16).

Let η2(12z) :=
∞∑
n=0

b(n)qn. Then b(n) = 0 if n ̸≡ 1 (mod 12) and for all n ≥ 0,

pod9(72n+ 5) = b(12n+ 1). (6.31)

By Theorem 4.15, we have η2(12z) ∈ M1

(
Γ0(144),

(
−1

•

))
. Since η2(12z) is a

Hecke eigenform (see, for example [84]), hence (1.22) and (1.23) yield

η2(12z) | Tp =
∞∑
n=0

(
a(pn) +

(
−1

p

)
a

(
n

p

))
qn = λ(p)

∞∑
n=0

a(n)qn, (6.32)
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which gives

b(pn) +

(
−1

p

)
b

(
n

p

)
= λ(p)b(n). (6.33)

Putting n = 1 and noting that b(1) = 1, we obtain b(p) = λ(p). Since b(p) = 0

for all p ̸≡ 1 (mod 12), we have λ(p) = 0. From (6.33), we obtain

b(pn) = (−1)

(
−1

p

)
b

(
n

p

)
. (6.34)

Let i ∈ {5, 7, 11}. Suppose r is a non-negative integer such that the prime p ≡ i

(mod 12) divides 12r+ i. Then substituting n by 12pkn+12r+ i in (6.34), we have

b

(
12

(
pk+1n+ pr +

pi− 1

12

)
+ 1

)
= (−1)

(
−1

p

)
b

(
12

(
pk−1n+

12r + i− p

12p

)
+ 1

)
.

(6.35)

We note that
pi− 1

12
and

12r + i− p

12p
are integer. Now, using (6.31) and (6.35),

we arrive at

pod9

(
72pk+1n+ 72pr + 6pi− 1

)
≡ (−1)

(
−1

p

)
pod9

(
72pk−1n+

72r + 6i− p

p

)
(mod 16).

(6.36)

For a prime p ̸≡ 1 (mod 12), we have(
−1

p

)
=

1, if p ≡ 5 (mod 12),

−1, if p ≡ 7, 11 (mod 12).

Hence, we conclude the proof of the theorem from (6.36).

Proof of Theorem 6.8. From (3.4) of [112], we have
∞∑
n=0

ped5(2n+ 1)qn =
f 4
2 f5f20
f 3
1 f4f

2
10

,

which under modulo 2 gives
∞∑
n=0

ped5(2n+ 1)q4n+1 ≡ η(4z)η(20z) (mod 2).

Proceeding similarly as the proof of Theorem 6.6, we complete the proof.

Proof of Theorem 6.9. First we recall the following identity from [52, (8.4)]:
∞∑
n=0

ped9(6n+ 2)qn ≡ 2f 2
2 (mod 8).
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Extracting the terms involving even powers of q on both side of the anbove

equation, we find that
∞∑
n=0

ped9(12n+ 2)qn ≡ 2f 2
1 (mod 8),

which gives
∞∑
n=0

ped9(12n+ 2)q12n+1 ≡ 2η2(12z) (mod 8).

Again, proceeding in a similar manner as in the proof of Theorem 6.7, we com-

plete the proof.

Proof of Theorem 6.10. From (3.20) of [112], we have
∞∑
n=0

ped9(4n+ 3)qn ≡ 3f 2
6 (mod 12).

Extracting the the terms involving even powers of q on both sides of the equation,

we get
∞∑
n=0

ped9(8n+ 3)qn ≡ 3f 2
3 (mod 12).

Again, extracting the the terms involving q3n on both sides of the equation, we get
∞∑
n=0

ped9(24n+ 3)qn ≡ 3f 2
1 (mod 12),

which gives
∞∑
n=0

ped9(24n+ 3)q12n+1 ≡ 3η2(12z) (mod 12).

Proceeding as similar to the proof of Theorem 6.7, we arrive at the desired

result.

Proof of Theorem 6.11. From (10.3) of [52], we have
∞∑
n=0

ped9(12n+ 5)qn ≡ 6f 8
1 (mod 18),

which gives
∞∑
n=0

ped9(12n+ 5)q3n+1 ≡ 6η8(3z) (mod 18).
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Let η8(3z) :=
∞∑
n=0

e(n)qn. Then c(n) = 0 if n ̸≡ 1 (mod 3) and for all n ≥ 0,

ped9(12n+ 5) = e(3n+ 1). (6.37)

By Theorem 4.15, we have η8(3z) ∈M4 (Γ0(9)). Since η
8(3z) is a Hecke eigenform

(see, for example [84]), hence (1.22) and (1.23) yield

η8(3z) | Tp =
∞∑
n=0

(
e(pn) + p e

(
n

p

))
qn = λ(p)

∞∑
n=0

e(n)qn, (6.38)

which gives

e(pn) + p e

(
n

p

)
= λ(p)e(n). (6.39)

Putting n = 1 and noting that e(1) = 1, we obtain e(p) = λ(p). Since e(p) = 0

for all p ̸≡ 1 (mod 3), we have λ(p) = 0. From (6.39), we obtain

e(pn) = (−p) e
(
n

p

)
. (6.40)

Next, substituting n by 3pkn + 3r + 2 such that p divides 3r + 2 in (6.40), we

have

e

(
3

(
pk+1n+ pr +

2p− 1

3

)
+ 1

)
= (−p) e

(
3

(
pk−1n+

3r + 2− p

3p

)
+ 1

)
.

(6.41)

We note that
2p− 1

3
and

3r + 2− p

3p
are integer. Now, using (6.37) and (6.41),

we obtain

ped9

(
12pk+1n+ 12pr + 8p+ 1

)
≡ (−p) ped9

(
12pk−1n+

12r + 8 + p

p

)
(mod 18),

which concludes the proof of the theorem.
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