Chapter 7

Arithmetic and Asymptotic Properties for
Some Functions Related to the Least r-

Gaps in Partitions

7.1 Introduction

The arithmetic functions related with the notion of minimal excludants and the
least r-gaps in partitions are introduced in introductory chapter of the thesis. We
refer to Section 1.9 of Chapter 1 for the definitions of the functions relevant in this

chapter and their generating functions.

Baruah, Bhoria, Eyyunni, and Maji [24] proved the following refinement result

for the expression of omex(n) of Andrews and Newman [6].

Theorem 7.1 (Baruah, Bhoria, Eyyunni and Maji [24]). We have

© )2 . \2 00 N2 N2
Z oomex(n)q" = (C4 0o 1 (4 0)s and Z o.mex(n)q" = (4 0)x = (@)
n=0 n=0

2 2 ’

where o,mex(n) and g.mex(n) are as defined in Section 1.9.

They also obtained congruences for o,mex(n) and o.mex(n) and studied the k-th

moments of minimal excludants.

The contents of this chapter have been submitted for publication [23].
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In their paper, Ballantine and Merca [11] found new identities relating p(n)
and S,(n). They also found the generating function for o,mex(n) as stated in the

following theorem.

Theorem 7.2 (Ballantine and Merca [11]). We have

N w_ @ fa
nZ:OUTmeX(n)q (69w (@5 AL (-1

For further works on mex related functions and minimal excludants for other
restricted partitions, we refer the readers to [7, 11, 12, 17, 40, 49, 70, 71, 74, 75, 77,
101].

In this chapter, we present an alternative proof of Theorem

In the following three theorems, we obtain the generating functions for o, ;mex(n),

oremex(n), o,moex(n), and a,(n).

Theorem 7.3. We have

zar mex(n)g" = 5(M, (a) + N:(0)), (7.2
3 oemex(ng” = S(M () — (o)) (7.3)
where
M, (q) Z;ﬁr( "= (7.4)
and

Theorem 7.4. We have

i o,moex(n)q" = fzj’" 5
n=0 flfr f4'r‘

Theorem 7.5. We have
]_ m(m+1)
a.(n -1)"mg" 2.
> = £ 31y

Note that Theorem[7.3]is analogous to Theorem [7.1] of Baruah, Bhoria, Eyyunni,
and Maji [24].
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An overpartition of n, as defined by Corteel and Lovejoy [47], is a non-increasing
sequence of positive integers whose sum is n in which the first occurrence (equiv-
alently, the final occurrence) of a number may be overlined. In 2015, Andrews [4]
introduced the combinatorial objects which he called singular overpartitions and
showed that these singular overpartitions, which depend on two parameters k and
1, can be enumerated by the function Ukz(n) which gives the number of overparti-
tions of n in which no part is divisible by k and only parts = +i (mod k) may be

overlined.

Andrews and Newman [7] studied a generalization mex, ,(7) of mex(m) defined
to be the smallest positive integer congruent to a modulo A that is not a part of
the partition 7. Let pa.(n) and p,,(n) denote the number of partitions 7 with

mex,(7) = a (mod 24) and mexy ,(7) = A+ a (mod 2A4), respectively.

In the next theorem, we establish connections of o,mex(n) and a,(n) with C},;(n)

and p q(n), respectively.

Theorem 7.6. For alln >0 and r > 1, we have
(i) o,mex(n) = Cy,r(n),
(it) a.(n) = prr(n).

Asymptotic behaviours of various partition functions and related ¢-products have
been studied extensively after Hardy and Ramanujan [66] proved an asymptotic
formula satisfied by p(n). Using the circle method, they proved the following result

for the unrestricted partition function p(n):

1 ( 2n>
p(n) exp | T/ — as n — oo.

~ 4v/3n

Grabner and Knopfmacher [59] obtained a Hardy-Ramanujan-type asymptotic

formula for the smallest gap of a partition. Their results can be stated as:

1 2n
omex(n) ~ mexp ™ 3 as n — oo.

Kaur, Bhoria, Eyyunni, and Maji [77] studied the minimal excludant over par-

titions into distinct parts and derived an asymptotic formula for the corresponding
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function. Recently, Barman and Singh [18] found the following Hardy-Ramanujan-

type asymptotic formulae for o,mex(n) and o.mex(n):

(n) (n) ~ — 2n 5
oomex(n) ~ oemex(n) ~ ———exp | T/ — as n — oo.
84v/6n3 P 3

The result of Grabner and Knopfmacher for omex(n) can be deduced as an easy

consequence of this result.

We study the asymptotic behaviour of o, mex(n) and o,moex(n) using Ingham’s

Tauberian theorem (see [73]). More specifically, we prove the following theorems.

Theorem 7.7. We have

( ) 1 2n
ormex(n) ~ ———exp | T/ —
4+/6n3r2 3

as n — oQ.

Theorem 7.8. We have

( ) 1 2n
o,moex(n) ~ ————exp | T/ —
2v/24n3r2 P 3

as n — oQ.

As a corollary of Theorems and [7.7, we obtain the following asymptotic

formula for Andrews’ singular overpartition function Cj,.,.(n).

Corollary 7.9. We have

ol 1 2n
e ) e\ s

as n — oQ.

Next, we focus on the arithmetic properties of these functions. Ray [101] found
infinite families of congruences for omex(n) modulo 4. Baruah, Bhoria, Eyyunni,
and Maji [24] proved the following Ramanujan-type congruences for o,mex(n) and

oe.mex(n) modulo 4 and 8:
oomex(2n +1) =0 (mod 4),

oomex(4n +1) =0 (mod 8),

gemex(4n) =0 (mod 4).
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They also posed the two conjectural congruences for o,mex(n) and o.mex(n)
modulo 16 and 8. Using g-series manipulations and the theory of modular forms,

Du and Tang [53] settled these conjectures.

Barman and Singh [18] discovered some infinite families as well as individual
Ramanujan-type congruences o,mex(n) and o.mex(n). For example, they proved
that

oemex(10n +7) =0 (mod 4), for r € {6,8},

2

-1
o mex (2p2n—|—kp+p 3 ) =0 (mod 4),

where p is a prime congruent to 5, 7 or 11 modulo 12 and & is odd integer satisfying

1<k <np.

In this chapter, we prove some arithmetic relations between o, ,mex(n) and
oremex(n) for r = 2 and 3. With the help of some identities of Ahlgren [1] and
Cooper, Hirschhorn, and Lewis [46], we obtain the following families of identities

satisfied by these functions.

Theorem 7.10. Let n > 0, k > 0, and 1 < s < p — 1 be positive integers and
p=7,11,13,17,19,23 (mod 24) be a prime. We have

5 2k+2_1 5 2k+2_1
09 o,INex p2k+2n + p%HS + M = 09 .Mex p2k+2n + p%Hs + 5M
; 24 ’ 24
(7.6)

Theorem 7.11. Letn >0, k>0, and 1 < s < p—1 be positive integers and p =5

(mod 6) be a prime. We have
2k+2 _ |

p2k+2 1
3 ) = 03 .mex (p2k+2n —|—p2k+ls + —) .

03 oMexX <p2k+2n +p2k;+18 + p .

(7.7)

Again, using two identities of Newman [86] and the theory of Lucas sequences,
we prove the following families of congruence properties relating o ,mex(n) with

oy .mex(n) and o3 ,;mex(n) with o3 .mex(n) modulo any positive integer M > 2.

Theorem 7.12. Let p be a prime with p = 1 (mod 24) and M > 2 be an integer.
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Let G,(k) and Hy(k) be defined by

Gk +2) = (%) Gk + 1) — (E)L G (k), (7.8)
Hy(k +2) = 7 (5@2; 1)) Hy(k+1) — (E)Lﬁp(/ﬁ), (7.9)

with G,(0) =0, G,(1) = 1, Hy(0) = 1, H,(1) = 0, v.(n) defined as in (7.5) and
Rg, (M) be the rank of Gp(n) modulo M.

(a) Forn, k>0 with p{(24n+5), we have

Rg, (M)(k+1)-1 _
09,,Mmex (pRGp(M)(kH)_ln n 5 (p Gp - 1))

5 Rg, (M)(k+1)—1 1
= 0y ,mex <pRGp(M)(k:+1)—1n+ (P P - ) (mod M).

(7.10)

(b) If v, (%) =0 (mod M), then we have

5 (pRGp(M)k+1 . 1))

24

5 (pRGp(M)]C+1 . 1)
24

09 oMex (pRGP Mkt

RGP (M)k+1n +

) (mod M).  (7.11)

= 0y .mex (p

Theorem 7.13. Let p be a prime with p = 1 (mod 6) and M > 2 be an integer.
Let U, (k) and V,(k) be defined by

U, (k +2) =5 (p%) Uy(k+1) — (—)LUp(k), (7.12)

1 _
itk +2) = (P57 ) i+ 0 - (22) e (713)
L
with U,(0) = 0, Uy,(1) = 1, V,(0) = 1, V(1) = 0, v.(n) defined as in and
Ry, (M) be the rank of Uy(n) modulo M.

(a) Forn, k>0 with p{ (3n+ 1), we have

Ry, (M)(k+1)—1 _
03,01MEX <pRUp(M)(k+1)—1n L P o 1)
| 3
pRUp(M)(k+1)—l _
- e (pRUp(M)(kH)_ln " 3 ) (mod M). (7.14)
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-1
(b) If 73 (pT) =0 (mod M), then we have

Ru, (M)k+1p | D

Ry, (M)k+1 _ 1 )

03 0Mex (p 3

phup (ML _
= 03 .mex <pRUp(M)k’+1n - 3 ) (mod M). (7.15)

Employing a result of Ono and Taguchi [88] on the nilpotency of Hecke operators,
Singh and Barman [17, 113] found certain infinite families of congruences for Cy,.,.(n)
modulo arbitrary powers of 2 (see [113, Theorems 1.3 and 1.4]) and p,, modulo 2
(see [17, Theorems 1.3 and 1.4]). Those results along with Theorem give new

families of congruences for o,mex(n) and p,,(n). We state them in the following.

Theorem 7.14. Let r = 2% with o > 0 an integer. Then there exists an integer
¢ > 0 such that for every d > 1 and distinct primes py, ..., Perq coprime to 6, we

have

24

whenever n is coprime to py,. .., Perd-

o Dord - 1—-3.9¢
o,mex (pl Petd 1t + )EO (mod 2)

Theorem 7.15. Let r = 2% with o > 0 an integer. Then there exists an integer
k > 0 such that for every ¢ > 1 and distinct primes si,--+ ,Spr¢ coprime to 6, we

have

. : 1—3.9¢
a, (Sl Akl ;4+ 5 ) =0 (mod 2)

whenever n is coprime to Sy, -+ , Sgie.

Similar infinite families of congruences for Cy,,(n) and p,,(n) can be also de-

duced for r = 3 - 2¢.

Chakraborty and Ray [40] proved that o,mex(n) is lacunary modulo 2* for r = 2
and 3. Using a result of Singh and Barman [113] on the density of Cy,,(n) for
some general values of 7 (see [113, Theorem 1.1]), we find the arithmetic densities of
oromex(n) and o, .mex(n) modulo arbitrary powers of 2. To be specific, we prove

the following two theorems.

Theorem 7.16. Let k be a fized positive integer. Then for r = 2%m, where « is
nonnegative integer and m is odd integer with 2% > m, the series Zarvomex(n)q"

n=0
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and Zar,emex(n)q” are lacunary modulo 2F. And, consequently, meex(n)q
n=0 n=0
is lacunary modulo 2F.

n

Barman and Singh [17] also studied the density properties of p,,.(n) for certain
values of r (see [17, Theorems 1.1 and 1.2]). In view of their result and Theorem

m, we have the following result regarding the lacunarity of a,(n) modulo 2.
Theorem 7.17. For r = 2% and 3 - 2%, where o > 1, the series Zar(n)q” is
n=0
lacunary modulo 2.
Recently, Ray [101] studied the parity distribution of omoex(n) (see [101, The-

orems 1.4 and 1.5]). As a consequence of their result, we have the following result

on the distribution of ¢, moex(n) modulo 2.

Theorem 7.18. For every positive integer n and r, we have
{1<n< X :o.moex(n)=t (mod2)} > o loglog X,

where t € {0,1} and oy is a constant.

We organize the chapter in the following way. In Section we present an
alternative proof of Theorem and establish Theorems We prove the
asymptotic results in the Theorems [7.7 and in Section by using a Taube-
rian theorem of Ingham [73]. Employing certain identities of Ahlgren [1], Cooper,
Hirschhorn, and Lewis [46] and Newman [86], we prove Theorems and
Theorems in Sections [7.4] and [7.5] respectively. The remaining theorems
are deduced in Section [7.6] We conclude the chapter by mentioning some possible

directions for future study in Section [7.7]
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7.2 Proofs of the Theorems [7.2-7.6

7.2.1 An alternative proof of Theorem [7.2

Proof. Let p,mex(m,n) be the number of partitions 7 of n such that r-mex(7) i.e.,

least r-gap of 7, is m. We have

M(Z, Q) L= Z Z pr—meX(ma n)zmqn

_ qur~1+r.2+...+r(m—1) (1 + qm I qm(r—l))

n#m
1 - m =1 m m(r—1) m
=D Do (L4 44 (1 - ™)
14)oo T
1 - m r-m(m_l) rm
" (¢9) 2 =™,
P70 =1

Differentiating M (z, q) with respect to z and putting z = 1, we find that

= 0
Y omex(n)q" = =M (z.q)|,_,

n=0
1 > m(m—
- o S )
m

(¢ @)oo “~
1 > m(m+1) > m(m+1)
= (m+1)g¢" 2 =Y mqg" :
(¢; 4)oo <m:o mzzo
1 ad Tm(m«l»l)
= q
(¢ )007;0

140



7.2.2 Proof of Theorem (7.3

Proof. Let p?_ ..(2m+1,n) be the number of partitions of n with odd r-mex 2m+1.
Then we have

= i i Pyomex(2m 4 1,m) 22" g

n=0 m=0

_ Z 22m+1qr~1+7’~2+.--+7”-2m (1 + q2m+1 I q(2m+1)(r—1))

m=0 I a-q¢

n7é2m+1
1 00 - - 2m(zm+1) 1— qT(2m+1) oml
:(q;q)mzz R T (t=a"")
1 Z 22m+1 r 2m(2m+1> (1 - qr(2m+1)) ) (7.16)

Differentiating M;(z, q) with respect to z and putting z = 1, we have

s 0
Z o omex(n)q" = %Ml (2,9) |z:1

_ 1 2(27” + 1) 72"1(2"“'1) (1 . qr(2m+1))

Z(zm + 1)q 27n(2m+1) Z(Qm + l)qr (2m+1)2(2m+2))

i@m n 1>qr_ 2m(2;n+1) Z 2m 4 2 (2m+1)2(2m+2)

(2m+1)(2m+2)
+ Z 7
oo oo
m(m+1) r (2m+1)(2m+2)
m + 1 q" + E q 2
m=0

m=0
> (m+1) > (2m+1)(2m+2)
- <22m+2 S 3 g )
oo m=0 m=0

8

OO m= 0

m=0
= ( )( )
2m~+1)(2m+2
—+ 2 E qT'2>

m=0

1 > 2m(2m+1) > (2m+1)(2m+2)
=5 (@) T =)
2(¢; 4)oo ( mz::() 2

m=0
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+ 2 Z (2m+1)(2m+2))
1 2m(2m+1) > (2m+1)(2m+2)
B
2(¢: q)oo —

m=0
__ ((qr.qr)S + iqr'm(”ﬁm)
2(¢; @)oo e

m=0
_L(ff_‘_f_g?") zl(f_gr_‘_f_’?)
2f1 fr 2 fl fr fl
Again, using the expressions for o,mex(n) and o, ,mex(n) in the relation
o,mex(n) = o, ,mex(n) + o, .mex(n),

we find the expression for o, .mex(n).

7.2.3 Proof of Theorem |7.4

Proof. Let prmoex(2m + 1,n) be the number of partitions 7 of n with
r-moex(m) = 2m + 1. Then we have

My(2,q) : =D > Prmoex(2m + 1,n) 2" q"

n=0 m=0
9]

_ Z Z2m+1qr~1+r-3+~~+r(2m—1) (1 + q2m+1 4t q(2m+1)(r—1))

n;téan—l—l
RN =4 1 — gmtt !
Y Oom:()
1 S m T'm2 r(sm
= s e =)

B <q;};>w > @m41)g™ (1—¢Cm)
1 = o0
wa (Z:O(Zm o ZZl (2m — 1)q )
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1 2
(4 ¢)oc ( mz_:l )

— 1 <q2r_q2r) (_qr,q2r)2 — f25r ]
(@) U ffRfR
O
7.2.4 Proof of Theorem (7.5
Proof. Putting z =1 in Mi(z,q) in (7.16)), we have
Zar n)q" = Mi(z,q)|,_,
1 b 2m(2m—+1)
_ pe SRS RT ) r(2m+1)
= q 2 1— q
(45 4)oo mzo ( )
1 > sz(2m+1) > T(2m+1)(2m+2)
MONEERE WES S
q o0 0 m=0
= LSy
(¢59)o0 2=
O

7.2.5 Proof of Theorem (7.6

Proof. Putting k = 4r and i = 7 in the generating function of C},;(n) (see [113, Eq.
(1.1) ]), we have

i (1) I S G T S S

2 oo

Comparing the coefficients of ¢ on both sides of the above equation, we arrive

at

U4m (n) = o,mex(n).
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Again, let p,,(n) denote the number of partitions 7 of n such that mex,.,.(7) = r
(mod 2r). Andrews and Newman [7, Lemma 9] proved that the generating function

for p,,(n) is given by

= n 1 - n, -2t = n
Y pr)g" = ——Y (-1)"¢""2 = a,(n)q"
n=0 (q’ Q)oo n=0 n=0

Comparing the coefficients of ¢ on both sides of the above equation, we find that

Prr(n) = ar(n).

Thus, we complete the proof of Theorem [7.6] ]

7.3 Proofs of Theorems |7.7| and |7.8

Proofs of Theorems and are based on the following result of Ingham [73]

regarding the asymptotic behaviour of coefficients of a power series.
[e.e]

Theorem 7.19. Let C(q) := Z c(n)q" be a power series with radius of convergence
n=0
1. Assume that {c(n)} is weakly increasing sequence of nonnegative real numbers.

If there are constants p,v € R and A > 0 such that
C(e™) ~ uy”e%, asy — 0T,

then we have
2v+1

H Ad 2V An
cln)~ —— € as n — Q.
( ) Qﬁnm,js

First we prove the following lemma about the weakly increasing nature of o, mex(n)

using combinatorial arguments.

Lemma 7.20. The sequences {o,mex(n)} and {o,moex(n)} are weakly increasing.

Proof. Let us construct a map ¥ : P(n) — P(n + 1) as the following:
(1) if r-mex(m) # 1, then W(7) is the partition of n+ 1 with 1 added as a part to 7.
(2) if r-mex(7) = 1, then ¥(7) is the partition of n 4+ 1 with 1 added to the largest

part of m, that is, the largest part of 7 is increased by 1.

Also, we note that for two distinct partitions m and 7y of P(n), we have W(m)

and W(my) are also distinct, which implies that the map W is injective. Also, for any
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7 € P(n), r-mex(7) is invariant under the map W. Hence for n > 1, we have
o,mex(n) < o,mex(n + 1)
and the sequence {o,mex(n)} is weakly increasing.

Next, we show that the sequence {o,moex(n)} is also weakly increasing. We
construct the map ® : P(n) — P(n+1) in a similar fashion to the previous map ¥:
(1) if r-moex(7) # 1, then ®() is the partition of n + 1 with 1 added as a part to
.

(2) if r-moex(7) = 1, then ®() is the partition of n+ 1 with 1 added to the largest

part of m, that is, the largest part of 7 is increased by 1.

Then by proceeding via similar lines of arguments, we conclude that the sequence

{o,moex(n)} is weakly increasing.

Now, we are in a position to prove Theorems [7.7] and [7.§|

Proof of Theorem [7.7. We recall the generating function of o, mex(n)

7
flfr‘

X, (q) == Zarmex(n)q"

Using the transformation formula for the Dedekind’s eta-function [79, p. 121],

one can show that, for t — 0T,

1 t a2
Y S T 7.17
hen. Ve (747

In view of (7.17)), we have

1 =
X.(e™") ~

e 6t ast — 0T,
2/r

Also, from the above lemma, we know that the sequence {o,mex(n)} is weakly

increasing sequence of nonnegative real numbers. Therefore, we invoke Theorem
1 2
7.19 with p = ——=, v =0, and A = 5 to obtain

NG

1 2n
o,mex(n) ~ ————e"V'3 as n — oo.
(n) 4+/6n372
Thus, we complete the proof. O
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Proof of Theorem[7.8. Recall that the generating function for o,moex(n) is given
by

. f5
Y,.(q) := o,moex(n)q" = T
Using ([7.17), we obtain
1 22
Y, (e7") ~ et as t—0+.

V2r

From Lemma [7.20, we know that {o,moex(n)} is weakly increasing sequence.

Also, Y,.(q) has real nonnegative coefficients. Hence, employing Theorem with
2

1
= ——,v=0and A = %, we arrive at

Vo

1 2n
o,moex(n) ~ ———e"V's as n — oo,
rmoex(n) v/ 240312
which completes the proof. O

7.4 Proofs of Theorems |7.10 and [7.11

First, we proof some necessary lemmas.

Lemma 7.21. Let ~,.(n) is defined as in (7.5). Then, forn >0 and r > 1, we have

oromex(n) = o, .mex(n) + y.(n).

Proof. We have

st = (£ + )
2 oromex(n)g _Z(flfr+f1
1

L f_f) A

; 2 (flfr fl * f1

= Z oremex(n)q” + Z ¥ (n)q". (7.18)
n=0 n=0

Comparing the coefficients of ¢ on both sides of the above, we complete the proof.

]

Lemma 7.22. Letn >0, k>0, 1 < s < p—1 be positive integers, p be a prime
congruent to 7,11,13,17,19,23 (mod 24) and ~,(n) defined as in (7.5)). Then, we
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have

5 2k+2 1
- <p2k+2n+p2k+ls+ (p o )) —0

Proof. Firstly, we note the following two identities involving v2(n) from [1, 46]:

21
Yo <pn + L) =Y (E> , when p=7,13 0r 23 (mod 24),
p

24

21
Yo <pn + M) = —7 (ﬁ> , when p=11,170r 19 (mod 24).

24 P
Case 1: When p = 11,17,19 (mod 24):
Let e = —1, Then for p = 11,17,19 (mod 24), we have

e ) (5)

Replacing n by pn + s, 1 < s < p — 1 in the above equation, we have

5(p? — 1
Y2 (p2n+ps+—(p24 )) =0.

Also, replacing n by pn in (7.19)), we find that

(s 20) i

[terating the above identity, we obtain

e (p%n + w) =y, (n).

24
5(p? — 1
Replacing n by p*n + ps + % in the above, we arrive at
5 2k+2 1
- <p2k+2n+p2k+ls+ (p o )) —0.

Case 2: When p = 7,13,23 (mod 24):
For p =17,13,23 (mod 24), we have

e 52) )

(7.19)

(7.20)

(7.21)

(7.22)

(7.23)

Now, repeating the same steps as in the Case 1 with ¢ = 1, we complete the proof

of Lemma [7.22]

Proof of Theorem[7.10, Putting r = 2 in Lemma [7.21] we have

o20mex(n) = oy .mex(n) + y2(n).

2%+2 _ )

24

5)
Next, replacing n by p?**2n + p**ls + (p
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in the above equation and



employing Lemma [7.22] we complete the proof of Theorem [7.10] O

Proof of Theorem[7.11 The proof of Theorem [7.11] is similar to that of Theorem
Hence, we skip the details of the proof. We only mention an useful identity
involving ~3(n) which was conjectured by Cooper, Hirschhorn, and Lewis [46], and

proved by Ahlgren [1]:

p?—1 n
3 | pn + 5 =13 ) when p=5 (mod 6). (7.24)

]

7.5 Proofs of Theorems |7.12| and |7.13

Firstly, we state some lemmas related to (a,b)-Lucas sequence S(n) and the dual

sequence T(n) defined by
S(n) = aS(n — 1) — bS(n — 2) (7.25)
and
T(n) = al(n — 1) — bT(n —2) (7.26)
where S(0) =0, (1) =1, T(0) = 1, and T(1) = 0.

The first two lemmas are based on relations between (a, b)-Lucas sequence S(n)
and their dual sequences T'(n). while the next two lemmas provide information

regarding Rg(M).

Lemma 7.23. [126, Lemma 2.2] Let S(n) and T'(n) be given by (7.25)) and (7.26]),

respectively. For n,k > 0, we have
Sn+k)=Sk)S(n+1)+T(k)S(n) (7.27)
and

T(n+k) = Sk)T(n+1) + T(k)T(n). (7.28)

Lemma 7.24. [126, Lemma 2.5] Let S(n) and T'(n) be defined by (7.25)) and (7.26]),

respectively. For n > 0, we have
aS(n)+T(n)=Sn+1). (7.29)
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Lemma 7.25. [126, Lemma 2.1] Let M > 2 be an integer and let S(n) be given
t

by (7.25). Suppose that M = prz (k; > 1) is the prime factorization of M and
i=1

ged(M,b) = 1. Then, Rg(M) exists and

~+

H Ypi+1) (7.30)

Lemma 7.26. [126, Lemma 2.3] Let S(n) be defined by (7.25)) and let Rs(M) denote
the rank of S(n) modulo M. For k > 0, we have

S(Rs(M)k) =0 (mod M). (7.31)

Next, we prove the following lemma involving v2(n).

Lemma 7.27. Let p be a prime with p =1 (mod 24) and ~,.(n) is defined by (7.5)).

We have
- (pkn+ 5@24_ D ) (pn + ) + Hy(K)p(n),  (7.32)
where G, (k) and H,(k) are defined by
Gk +2) = ( ) G,k + 1) (;) Gk (7.33)
and
Hy(k +2) = 7 ( ) Hy(k+1) (]23)L H,(k), (7.34)

with G,(0) = Hy(1) =0 and G,(1) = H,(0) =

Proof. We prove the lemma by induction on & using the method of Xia [126] based
on Newman'’s identities and Lucas sequences. Since G,(0) = H,(1) = 0 and

Gp(1) = Hy(0) = 1, we have is true for k = 0 and £ =1. We now assume that
is true for £k =m and k = m + 1 for some m > 0, which gives

o (i + XY = Gy (0 + 22 4 ) (139

24 24
and
5(pmtt —1 5(p—1
Yo (pmHn + (p 51 )> =Gy(m+ 1)y (pn + (p24 )> + Hy(m + 1)ya(n).

(7.36)

For primes p =1 (mod 24), Newman [86] proved the following relation involving
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Ya(n)
5(p—1)

72 (pn+ %) =72 (%) 72(n) — (%)Lw 7. p24 . (7:37)

o(p—1
Replacing n by pn + (p2 1 ) in ((7.37), we have

P ) () o S2) ()
(7.38)

5(p™ —1
M in ((7.38) and then employing ([7.35)) and

Again, replacing n by p™n + 1

(7.36)), we find that
5 m+2 1
,.)/2 (pm+2n T (p 24 ))

(S S () o B2
20+ tyn 1))

=2 <5(p2; U) (Gp(m + 1) (pn + =5

SO RCIC R T A0)

p
e 2572) (o (52 - (2) )

o) (o0 (M) im0 = (2) Hy(m))

5(p—1
= <pn + (p24 )) Gp(m +2) + v (n)H,(m + 2),
which implies that (7.32) holds for & = m + 2 also. Hence, by the principle of
O

mathematical induction, we complete the proof of the lemma.

Now, we are in a position to prove Theorem [7.12]

Proof of Theorem[7.13. First we substitute (7.37) in (7.32)). Thus

V2 (pk” + %)
_p—-1)
— ) | (5(1’2; ! ) () — (E)Lw 2 + Hy(k)12(n)
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_5(p—1)

(7.39)

Since G,(k) and H,(k) are Lucas sequences as defined by ((7.33) and (7.34).
Using Lemma [7.24] we find that

o (%) G, (k) + Hy(k) = G,k + 1). (7.40)
Employing in , we have
5(pF — 1) 2 Sl
-1\ _ 2 24
o (1 ) = Gyth 1t = (2) Gyt | ——

(7.41)

For any Lucas sequence S(n), the existence of Rg(M) is guaranteed by Lemma

Therefore, R¢, (M) also exists.

Replacing k by Re,(M)(k+1) — 1 in (7.41)), we obtain

Ra, (M)(k+1)—1
’m@ﬁ%wm“*%+5wcp 1»

24
, _5(p—1)
= Gy (R, (k4 D)) = (2) Gy, ()b + 1) = 1) | —— 2
L
(7.42)
Again, in view of Lemma for k > 0, we have
Gy (R, (M)k) =0 (mod M). (7.43)
Invoking (7.43)) in (7.42), we find that
RGP(M)(k:—I—l)—l -1
oy (pFesnen-1, | 50 )
24
, _5(p-1)
=— (5) Gp(Ra,(M)(k+1) = 1)y, TM (mod M). (7.44)
L
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_5(p—1)

Now, if p{ (24n + 5), then 7, 24 | — 0 and from (7.44), we have
p

5(pRGp (M)(k+1)—-1 __ 1)
24

5(p—1)
24

Y <pch(M)(k+1)—1n + ) =0 (mod M). (7.45)

Moreover, if p { (24n + 5) and o (
that

) =0 (mod M), then ([7.37)) implies

24
Replacing k by Re,(M)k in (7.32) and then using (7.46)) in the resulting identity,
we find that

2 (pRGP(M Yo+

Y (pn + M) =0 (mod M). (7.46)

5(pfteMOF — 1)
24

5(p—1)
24

) = Hp (RUP(M)k) 'yg(n) (mod M)

Again, replacing n by pn + in the above congruence and then employing

(7.46)), we have

5 Rea, (M)k+1 __ 1
Yo (pRGp(M)k+1n+ (per )

24

) =0 (mod M). (7.47)
Next, we put r = 2 in Lemma to arrive at
090mex(n) = og .mex(n) + yo(n). (7.48)

We complete the proof of the theorem by employing (7.45)) and (7.47)) in (7.48)).
[l

Proof of Theorem[7.13. The proof of Theorem [7.13]is similar to the proof of Theo-
rem [7.12, Thus, we omit the details and mention only a lemma involving 73(n) and

an identity due to Newman [86].

Lemma 7.28. Let p be a prime with p =1 (mod 6) and v.(n) is defined by (7.5)).

We have
o (04 2 ) = Gt (20 ) 4 Vilhato, (749
where Uy(k) and V,(k) are defined by
Up(k+2) = 74 (?) Uyl +1) - (?)L Uy (k) (7.50)
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k2 = (257 ) ik + = () v (751)
with U,(0) = V,(1) = 0 and U,(1) = V,(0) = 1.
We also need the following identity for v3(n) from Newman [86]:
1 1 3 -t
N ] =
[

7.6 Proofs of the remaining theorems

7.6.1 Proof of Theorems |[7.14-7.15

Proof. Singh and Barman [113, Theorem 1.3] proved the following infinite family of
congruences for C},;(n):

Let r = 2% with o > 0 an integer. Then there exists an integer ¢ > 0 such that for

every d > 1 and distinct primes pq, ..., pe.rq coprime to 6, we have
_ e Derg M4 1—3.2%
Carr b1 Petd =0 (mod 2%
’ 24
whenever n is coprime to py, ..., Perqg-

The above result together with Theorem [7.6] gives Corollary [7.14]

Similarly, Corollary can be deduced easily from Theorem 1.3 of [17] and
Theorem [.6]

7.6.2 Proof of Theorem |7.16

From ([7.4) and the proof of Theorem we have

o0 2 o0 -
> Bu(n)g" = J{if =3 Cualn)g".
n=0 r

n=0
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Singh and Barman [113, Theorem 1.1] proved that the series Z€4T7T(n)q” is
n=0

lacunary modulo arbitrary powers of 2 whenever r = 2%m with « is a nonnegative

integer and m is positive odd satisfying 2¢ > m. This implies that the series

Z Br(n)q" is lacunary modulo arbitrary powers of 2 for these specific values of .
n=0

oo
Using a similar analysis, we can easily show that the series Z’yr(n)q” is also

n=0
lacunary modulo arbitrary powers of 2 for these values of r. Then the theorem

follows from the above observations and (7.2]) and (7.3]).

7.6.3 Proof of Theorem |7.17

Proof. Barman and Singh [17, Theorems 1.1 and 1.2] proved that for all « > 1 and

r=2%and 3-2%, the series Z prr(n)g" is lacunary modulo 2. This result together
n=0

with Theorem [7.6] gives us Theorem [7.17] O

7.6.4 Proof of Theorem |7.18

Proof. From Theorem [7.4] we have

o 5 1 o0

Z o.moex(n)q" = fi’" == Zamoex(n)q” (mod 2),
n—=0 fl fr f4r

which implies that

o.moex(n) = omoex(n) (mod 2). (7.53)

In view of the above equation and Theorems 1.4 and 1.5 of [101], we deduce the

corollary.

7.7 Concluding remarks

(1) In this chapter, we have deduced some arithmetic properties relating o, ;mex(n)

and o, .mex(n) for r = 2 and 3. An interesting problem may be to find exact
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congruences for these two functions. It is also highly desirable to explore more

arithmetic properties of a,.(n) and o,moex(n) for general values of r.

Chern [43] studied maex of a partition which is defined as the greatest part
smaller than the largest part of the partition which is missing from that par-
tition. It will be interesting to study its generalization analogous to the least
r-gap or r-mex. This generalization may be called as the greatest r-gap or
r-maex of an integer partition and be defined as the greatest part smaller
than the largest part of the partition which occurs less than r times in that

partition.

Baruah, Bhoria, Eyyunni and Maji [24] studied the k-th moments of the min-
imal excludants. In a similar way, the k-th moments of least r-gaps may also

be studied.
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