
Chapter 1

Introduction

The thesis is primarily focused on three topics, namely, the Rogers-Ramanujan

continued fraction, some restricted partition functions, and the least r-gaps in par-

titions. We find some new modular identities involving the Rogers-Ramanujan con-

tinued fraction and corresponding Rogers-Ramanujan functions. We explore some

divisibility properties of certain restricted partition functions and two analogues of

the t-core partition function. We also obtain the generating functions for some func-

tions related to the least r-gaps in partitions and deduce arithmetic and asymptotic

properties of these functions.

The thesis consists of seven chapters including this introductory chapter. In the

following six sections, we refer to a few useful definitions as well as some background

material and in the remaining sections of this chapter, we present a brief outline of

the work done in the thesis.

1.1 The q-Pochhammer symbol and Ramanujan’s

theta functions

For complex numbers a, q with | q |< 1, and integers n ≥ 1, we define the usual

q-products as

(a; q)0 := 1, (a; q)n :=
n−1∏
k=0

(1− aqk), and (a; q)∞ := lim
n→∞

(a; q)n.
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Furthermore, for brevity, we set

fn := (qn; qn)∞ , (a1, a2, . . . , an; q) := (a1; q)∞(a2; q)∞ · · · (an; q)∞,

and (qr±; qs)∞ := (qr, qs−r; qs)∞, for positive integers r and s with r < s.

Ramanujan’s general theta function f(a, b) [29, Section 1.2] is defined by

f(a, b) :=
∞∑

n=−∞

an(n+1)/2bn(n−1)/2, |ab| < 1. (1.1)

Jacobi’s well-known triple product identity [26, p. 35, Entry 19] is given by

f(a, b) = (−a; ab)∞(−b; ab)∞(ab; ab)∞. (1.2)

Certain special cases of (1.1) are as follows:

φ(q) := f(q, q) =
∞∑

n=−∞

qn
2

=
f 5
2

f 2
1 f

2
4

, (1.3)

φ(−q) := f(−q,−q) =
∞∑

n=−∞

(−1)nqn
2

=
f 2
1

f2
, (1.4)

ψ(q) := f(q, q3) =
∞∑
n=0

qn(n+1)/2 =
f 2
2

f1
, (1.5)

ψ(−q) := f(−q,−q3) =
∞∑

n=−∞

(−q)n(n+1)/2 =
f1f4
f2

, (1.6)

f(−q) := f(−q,−q2) =
∞∑

n=−∞

(−1)nqn(3n−1)/2 = f1, (1.7)

f(q) := f(q,−q2) =
∞∑

n=−∞

qn(3n−1)/2 =
f 3
2

f1f4
, (1.8)

where the q-product representations arise from (1.2) and manipulation of the

q-products.

After Ramanujan, we also define

χ(q) := (−q; q2)∞ =
f 2
2

f1f4
. (1.9)

Replacing q by −q in (1.9), we have

χ(−q) = (q; q2)∞ =
f1
f2
. (1.10)

Throughout the thesis, we will use these theta functions frequently.
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1.2 The Rogers-Ramanujan continued fraction

The well-known Rogers-Ramanujan continued fraction R(q) is defined by

R(q) :=
q1/5

1 +

q

1+

q2

1 +

q3

1 + ···
, |q| < 1. (1.11)

The Rogers-Ramanujan identities, first proved by Rogers [104] and then redis-

covered by Ramanujan [95], are given by

G(q) :=
∞∑
n=0

qn
2

(q; q)n
=

1

(q; q5)∞(q4; q5)∞
(1.12)

and

H(q) :=
∞∑
n=0

qn(n+1)

(q; q)n
=

1

(q2; q5)∞(q3; q5)∞
, (1.13)

where G(q) and H(q) are known as the Rogers-Ramanujan functions.

Rogers [104] and Ramanujan [98] also proved that

R(q) = q1/5
H(q)

G(q)
. (1.14)

For occasional use in the sequel, we set

T (q) :=
H(q)

G(q)
= q−1/5R(q) =

(q; q5)∞(q4; q5)∞
(q2; q5)∞(q3; q5)∞

. (1.15)

1.3 Dissection of power series

For a positive integer t ≥ 2, the t-dissection of a power series P (q) in q is given by

P (q) = P0(q
t) + qP1(q

t) + q2P2(q
t) + · · ·+ qt−1Pt−1(q

t),

where Pj(q
t), 1 ≤ j ≤ t− 1 are power series in qt.

For example, we have the following 5-dissections of f1 and
1

f1
(see [29, pp. 161–

165]):

f1 = f25

(
1

T (q5)
− q − q2T (q5)

)
, (1.16)

1

f1
=
f 5
25

f 6
5

(
1

T 4(q5)
+

q

T 3(q5)
+

2q2

T 2(q5)
+

3q3

T (q5)
+ 5q4 − 3q5T (q5) + 2q6T 2(q5)
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− q7T 3(q5) + q8T 4(q5)

)
. (1.17)

1.4 Partitions of positive integers

A partition π = (π1, π2, . . . , πk) of a positive integer n is a non-increasing sequence of

positive integers such that
k∑

j=1

πj = n. Each πj is termed as a part of the partition.

If p(n) denotes the number of partitions of n, then its generating function due to

Euler (1707-1783) is given by
∞∑
n=0

p(n)qn =
1

f1
,

where by convention p(0) = 1. For example, p(4) = 5, since there are five partitions

of 4, namely, (4), (3,1), (2,2), (2,1,1), and (1,1,1,1).

Note that for an integer ℓ > 1, we say a partition of n is an ℓ-regular partition

if none of its parts are divisible by ℓ. The ℓ-regular partition function denoted by

bℓ(n) counts the number of ℓ-regular partitions of n. We consider bℓ(0) = 1 and

bℓ(n) = 0 when n < 0. The generating function for bℓ(n) is given by
∞∑
n=0

bℓ(n)q
n =

fℓ
f1

=
f(−qℓ)
f(−q)

. (1.18)

For example, b3(5) = 5 where the relevant partitions are (5), (4,1), (2,2,1), (2,1,1,1),

and (1,1,1,1 ,1).

A partition π of n can be represented graphically by a Ferrers-Young diagram.

The Ferrers–Young diagram of π = (π1, π2, . . . , πk) is an array of nodes with πi

nodes in the ith row. The (i, j)th hook is the set of nodes directly to the right of

(i, j)th node together with the set of nodes directly below it as well as the (i, j)th

node itself. The hook number, H(i, j), is the total number of nodes on the (i, j)th

hook. For a positive integer t ≥ 2, a partition of n is said to be t-core if none of

the hook numbers are divisible by t. We illustrate the Ferrers-Young diagram of the

partition (4, 3, 1) of 8 with hook numbers as follows:
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•6 •4 •3 •1

•4 •2 •1

•1

It is a 5-core. Furthermore, it is clear that for t ≥ 7, the partition (4, 3, 1) of 8 is a

t-core.

Suppose that ct(n) counts the number of t-cores of n, then the generating function

of ct(n) is given by (see [55, Eq. 2.1])
∞∑
n=0

ct(n)q
n =

(qt; qt)t∞
(q; q)∞

=
f t
t

f1
=
f t(−qt)
f(−q)

. (1.19)

In an existence result, Granville and Ono [60] proved that if t ≥ 4, then ct(n) > 0

for every nonnegative integer n.

Partition theory has been a topic of interest for the mathematicians since a

long time. Various properties of partitions, namely, arithmetic, asymptotic, com-

binatorial, etc., have been prominently studied in the literature by many authors.

Ramanujan [94, 97], in his pioneering work from the aspect of arithmetic properties

of partitions, proved the following congruences. For n ≥ 0,

p(5n+ 4) ≡ 0 (mod 5),

p(7n+ 5) ≡ 0 (mod 7),

and

p(11n+ 6) ≡ 0 (mod 11).

Ramanujan [94] also conjectured more general congruences for p(n) modulo arbitrary

powers of 5, 7, and 11.

Apart from congruences, another interesting topic of study in theory of partitions

is the study of distributions of various partition functions. To be precise, given an

integral power series F (q) :=
∞∑
n=0

a(n)qn and 0 ≤ r < M , the arithmetic density

δr(F,M ;X) is defined as

δr(F,M ;X) :=
# {0 ≤ n ≤ X : a(n) ≡ r (mod M)}

X
.

A well-known conjecture of Parkin and Shanks [89] regarding the density of even
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and odd values of p(n) states that

lim
X→∞

# {0 ≤ n ≤ X : p(n) ≡ c (mod 2)}
X

=
1

2
,

where c ∈ {0, 1}. This conjecture is still open.

An integral power series F is called lacunary modulo M if

lim
X→∞

δ0(F,M ;X) = 1,

that is, almost all of the coefficients of F are divisible by M . In one of the earliest

results regarding the arithmetic densities of partition functions, Gordon and Ono

[58] proved that bℓ(n) is lacunary modulo 2k for any fixed positive integer k.

1.5 Lucas sequences

For integers a and b, the (a, b)-Lucas sequence S(n) is defined by

S(n) = aS(n− 1)− bS(n− 2), (1.20)

where S(0) = 0 and S(1) = 1. The dual (a, b)-Lucas sequence T (n) of S(n) is given

by

T (n) = aT (n− 1)− bT (n− 2) (1.21)

with T (0) = 1 and T (1) = 0.

Also, for an integer M ≥ 2, the rank of (a, b)-Lucas sequence S(n) modulo M is

defined to be the least positive integer k such that S(k) ≡ 0 (mod M). We denote

the the rank of S(n) modulo M by RS(M).

For instance, the well-known Fibonacci sequence, F (n), is nothing but (1,-1)

Lucas sequence. Again, we have F (0) = 0, F (1) = 1, F (2) = 1, F (3) = 2,

F (4) = 3. Thus RF (2) = 3 and RF (3) = 4.

1.6 Modular forms and Hecke operators

The theory of modular forms has been instrumental in deducing a number of results

of the thesis. In this section, we recall some basic facts and definitions on modular
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forms. For more details, one can see [79] and [87].

Firstly, we define the matrix groups

SL2(Z) :=


a b

c d

 : a, b, c, d ∈ Z, ad− bc = 1

 ,

Γ0(N) :=


a b

c d

 ∈ SL2(Z) : c ≡ 0 (mod N)

 ,

Γ1(N) :=


a b

c d

 ∈ Γ0(N) : a ≡ d ≡ 1 (mod N)

 ,

and

Γ(N) :=


a b

c d

 ∈ SL2(Z) : a ≡ d ≡ 1 (mod N), and b ≡ c ≡ 0 (mod N)

 ,

where N is a positive integer. A subgroup Γ of SL2(Z) is called a congruence

subgroup if Γ(N) ⊆ Γ for some N and the smallest N with this property is called

the level of Γ. For instance, Γ0(N) and Γ1(N) are congruence subgroups of level N .

Let H denote the upper half of the complex plane. The group

GL+
2 (R) :=


a b

c d

 : a, b, c, d ∈ R and ad− bc > 0


acts on H by

a b

c d

 z = az + b

cz + d
. We identify ∞ with

1

0
and definea b

c d

 r
s
=
ar + bs

cr + ds
, where

r

s
∈ Q ∪ {∞}. This gives an action of GL+

2 (R) on the

extended upper half plane H∗ = H ∪ Q ∪ {∞}. Suppose that Γ is a congruence

subgroup of SL2(Z). A cusp of Γ is an equivalence class in P1 = Q∪{∞} under the

action of Γ.

The group GL+
2 (R) also acts on functions f : H → C. In particular, suppose

that γ =

a b

c d

 ∈ GL+
2 (R). If f(z) is a meromorphic function on H and ℓ is an

integer, then define the slash operator |ℓ by

(f |ℓγ)(z) := (det(γ))ℓ/2(cz + d)−ℓf(γz).

Definition 1.1. Let Γ be a congruence subgroup of level N . A holomorphic function
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f : H → C is called a modular form with integer weight ℓ on Γ if the following hold:

(1) We have

f

(
az + b

cz + d

)
= (cz + d)ℓf(z)

for all z ∈ H and and all

a b

c d

 ∈ Γ.

(2) If γ ∈ SL2(Z), then (f |ℓγ)(z) has a Fourier expansion of the form

(f |ℓγ)(z) =
∑
n≥0

Aγ(n)q
n
N ,

where q := e2πiz/N .

For a positive integer ℓ, the complex vector space of modular forms of weight ℓ

with respect to a congruence subgroup Γ is denoted by Mℓ(Γ).

Definition 1.2. [87, Definition 1.15] If χ is a Dirichlet character modulo N , then

we say that a modular form f ∈Mℓ(Γ1(N)) has Nebentypus character χ if

f

(
az + b

cz + d

)
= χ(d)(cz + d)ℓf(z)

for all z ∈ H and all

a b

c d

 ∈ Γ0(N). The space of such modular forms is denoted

by Mℓ(Γ0(N), χ).

The relevant modular forms for the results of this thesis arise from eta-quotients.

Recall that the Dedekind eta-function η(z) is defined by

η(z) := q1/24(q; q)∞ = q1/24
∞∏
n=1

(1− qn),

where q := e2πiz and z ∈ H. A function f(z) is called an eta-quotient if it is of the

form

f(z) =
∏
δ|N

η(δz)rδ ,

where N is a positive integer and rδ is an integer.

Finally, we recall the definition of Hecke operators. Let m be a positive integer

and f(z) =
∞∑
n=0

a(n)qn ∈ Mℓ(Γ0(N), χ). Then the action of Hecke operator Tm on
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f(z) is defined by

f(z)|Tm :=
∞∑
n=0

 ∑
d|gcd(n,m)

χ(d)dℓ−1a
(nm
d2

) qn.

In particular, if m = p is prime, then we have

f(z)|Tp :=
∞∑
n=0

(
a(pn) + χ(p)pℓ−1a

(
n

p

))
qn. (1.22)

We note that a(n) = 0 unless n is a nonnegative integer.

Definition 1.3. A modular form f(z) =
∞∑
n=0

a(n)qn ∈ Mℓ(Γ0(N), χ) is called a

Hecke eigenform if for every m ≥ 2, there exists a complex number λ(m) such that

f(z) | Tm = λ(m)f(z). (1.23)

1.7 Identities for the Rogers-Ramanujan contin-

ued fraction

Ramanujan found numerous identities for the Rogers-Ramanujan continued frac-

tion R(q) and the corresponding Rogers-Ramanujan functions G(q) and H(q) and

recorded them in his notebooks [98] and his lost notebooks [99]. After that, various

other mathematicians also worked on these functions and proved such identities.

We devote Chapter 2 to finding new identities for the Rogers-Ramanujan con-

tinued fraction and functions. We also deduce some partition theoretic relations

arising from some of those identities.

1.8 Arithmetic properties for some restricted par-

tition functions

In the thesis, we study congruence properties and density results of certain restricted

partitions. We introduce the other relevant restricted partitions in the following.

Andrews and Paule [8, 9] studied a combinatorial object called the k-elongated

partition diamonds. Let dk(n) count the partitions obtained by adding the links of
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the k–elongated plane partition diamonds of length n. Then the generating function

for dk(n) is given by
∞∑
n=0

dk(n)q
n =

fk
2

f 3k+1
1

. (1.24)

They obtained several generating functions and congruences for d1(n), d2(n), and

d3(n). Further divisibility properties of dk(n) are studied in [15, 50, 109, 115, 129].

In Chapter 3, we discover new infinite families of congruences as well as individual

congruences for the k-elongated plane partition diamonds function dk(n) modulo 2,

4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 32, 49, 64, 81, 128, 243, and 729 for

various values of k. We also refine an existence result of congruences for dk(n)

modulo powers of primes due to da Silva, Hirschhorn, and Sellers [50].

Recently, Gireesh, Ray, and Shivashankar [57] considered a new function at(n)

by substituting φ(−q) in place of f(−q) in the generating function (1.19) of ct(n),

namely,
∞∑
n=0

at(n)q
n =

φt(−qt)
φ(−q)

=
f2f

2t
t

f 2
1 f

t
2t

. (1.25)

Very recently, Bandyopadhyay and Baruah [14] introduced another analogue

bt(n) of ct(n), which is defined by
∞∑
n=0

bt(n)q
n =

ψt(−qt)
ψ(−q)

=
f2f

t
t f

t
4t

f1f4f t
2t

. (1.26)

In Chapter 4, we use the theory of modular forms and Hecke operators to find the

arithmetic densities and families of congruences for at(n) and bt(n) modulo powers

of primes for certain values of t.

We further define a partition k-tuple of n to be the k-tuple of partitions

(Λ1,Λ2, . . . ,Λk), such that the sum of all the parts equals n. In the thesis, we study

a class of restricted partitions called as the partitions k-tuple with t-cores. For

example, consider the tuple ((4,3,2), (5,1)). This is a 2-tuple whose hook numbers

of the individual tuples are not divisible by any integer t ≥ 7. So, this is a 2-tuple

t-core partition of 15 for t ≥ 7.

Let At,k(n) denote the number of partitions k-tuples of n with t-cores. Its gen-
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erating function is given by∑
n≥0

At,k(n)q
n =

(qt; qt)kt∞
(q; q)k∞

=
fkt
t

fk
1

. (1.27)

We study two restricted partition functions in Chapter 5. We employ dissections

of certain q-products and two identities of Newman [86] to prove new infinite families

of congruences as well as individual congruences for the 6-regular partition function

b6(n) and partition k-tuples with 5-cores, A5,k(n), for k = 2, 3, and 4. We also prove

some new infinite families of congruences modulo powers of primes for k-tuples with

p-cores, where p is a prime.

By imposing certain restrictions on the parts of ℓ-regular partitions of n, we

obtain the following partition functions. Let

(i) podℓ(n) denote the number of ℓ-regular partitions of n where the odd parts

are distinct and the even parts are unrestricted,

(ii) pedℓ(n) denote the number of ℓ-regular partitions of n where the even parts

are distinct and the odd parts are unrestricted.

For example, pod3(5) = 3 with the relevant partitions being (5), (4,1), (2,2,1); and

ped3(5) = 4 with the relevant partitions, namely, (5), (4,1), (2,1,1,1), (1,1,1,1,1).

The generating functions of podℓ(n) and pedℓ(n) are given by
∞∑
n=0

podℓ(n)q
n =

f2fℓf4ℓ
f1f4f2ℓ

(1.28)

and
∞∑
n=0

pedℓ(n)q
n =

f4fℓ
f1f4ℓ

. (1.29)

Arithmetic properties of podℓ(n) and pedℓ(n) are studied in [52, 56, 67, 102, 107,

112, 122]. In Chapter 6, we find the arithmetic densities of podℓ(n) for ℓ = 3, 5,

7, 13, 17, and pedt(n) and t = 13, 17 modulo 2 and arbitrary powers of 2 with the

aid of the theory of modular forms. We also prove new multiplicative relations for

pod5(n), pod9(n), ped5(n), and ped9(n) modulo small powers of 2 using the theory

of Hecke eigenforms.
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1.9 Minimal excludant and least r-gaps in parti-

tions

Let P(n) denote the set of all partitions of n. Andrews and Newman [6] introduced

the concept of the minimal excludant or “mex” of a partition. The mex of π is

the smallest positive integer which is not present in π. However, the term ‘minimal

excludant’ was first appeared on a paper of Fraenkel and Peled [54] where they

defined the minimal excludant for any set S of positive integers as the smallest

positive integer missing from that set. Andrews and Newman [6] also studied another

related concept called minimal odd excludant or moex of a partition π which is

the smallest odd positive integer missing from π. They deduced some arithmetic

properties of the mex related functions σmex(n), σmoex(n), and a(n), defined as

follows:

(i) σmex(n) :=
∑

π∈P(n)

mex(π),

(ii) σmoex(n) :=
∑

π∈P(n)

moex(π),

(iii) a(n) :=
∑

π∈P(n)
mex(π) is odd

1.

Andrews and Newman [6] also found the following generating functions:

(i)
∞∑
n=0

σmex(n)qn =
(q2; q2)∞

(q; q)∞(q; q2)∞
= (−q; q)2∞,

(ii)
∞∑
n=0

σmoex(n)qn = (−q; q)∞(−q; q2)2∞.

For n ≥ 0, Andrews and Newman [6] showed that σmex(n) ≡ a(n) (mod 2).

Recently, Baruah, Bhoria, Eyyunni, and Maji [24] refined the expression for σmex(n)

by introducing the following two functions:

(i) σomex(n) :=
∑

π∈P(n)
2∤mex(π)

mex(π),
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(ii) σemex(n) :=
∑

π∈P(n)
2|mex(π)

mex(π).

Let the smallest positive integer that does not appear at least r times as a part

of a partition π be defined as the least r-gap of π or gr(π). Ballantine and Merca

[11] studied the topic of least r-gaps in partitions and introduced two new partition

functions involving least r-gaps. One of these is Sr(n) defined by

Sr(n) =
∑

π∈P(n)

gr(π). In terms of “mex”, we write gr(π) = r-mex(π) and Sr(n) =

σrmex(n). We also define r-moex(π) to be the smallest odd positive integer that

does not appear at least r times in the partition π.

Apart from σrmex(n), we also study the functions σr,omex(n), σr,emex(n),

σrmoex(n), and ar(n), which are r-mex analogues of σomex(n), σemex(n), σmoex(n),

and a(n), defined by

(i) σr,omex(n) :=
∑

π∈P(n)
2∤r-mex(π)

r-mex(π),

(ii) σr,emex(n) :=
∑

π∈P(n)
2|r-mex(π)

r-mex(π),

(iii) σrmoex(n) :=
∑

π∈P(n)

r-moex(π),

(iv) ar(n) :=
∑

π∈P(n)
r-mex(π) is odd

1.

In Chapter 7, we find the generating functions of the arithmetic functions

σr,omex(n), σr,emex(n), σrmoex(n), and ar(n), which are related to the least r-gaps

or r-mex of partitions. We establish some of their connections with certain known

partition functions. We also explore some arithmetic as well as asymptotic properties

enjoyed by these functions.
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