Chapter 2

Identities for the Rogers-Ramanujan

Continued Fraction

2.1 Introduction

The Rogers-Ramanujan continued fraction R(q) and the corresponding Rogers-
Ramanujan functions G(q) and H(q) are defined in Section 1.2 (see (1.11), (1.12),
and (1.13)).

In his first letter to Hardy, written on January 16, 1913, Ramanujan astounded

Hardy by an elegant identity writing R°(g) as a rational expression in R(q°), namely,
1 —-2R(¢°) +4R*(¢°) — 3R*(¢°) + R*(¢°)

1+ R(¢°) + 4R2(¢°) + 2R3(¢°) + R*(¢°) -
This identity was also recorded by Ramanujan on p. 289 of his second notebook [98]

R°(q) = R(¢°)

(2.1)

and p. 365 of his lost notebook [99]. To the best of our knowledge, this is the only
identity of this sort. Proofs of (2.1)) were given by Rogers [105] in 1921, Watson
[124] in 1929, Ramanathan [93] in 1984, Yi [133] in 2001, and Gugg [62] in 20009.

In the literature, there are further modular identities relating R(q) with R(—q)

and R(q") for some positive integers n. Ramanujan recorded identities relating R(q)

The contents of this chapter have been published in Journal of the Korean Mathematical Society
[21].
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with R(—q), R(¢?), R(¢®), and R(q*) in the scattered places of his notebooks [98]
and the lost notebook [99] and proofs can be found in [105], [10], [28, Chapter 32],
and [5, Chapter 1]. In 1921, Rogers [105] found a relation connecting R(q) with
R(¢'"). Chan and Tan [42] found a relation connecting R(q) with R(q'?) in 1999,
and Yi [133] found another relation connecting R(q) with R(g") in 2001. We also
refer to Trott [121] for other modular identities discovered “experimentally” by using

Wolfram’s Mathematica.

The main focus of this chapter is to prove some new modular identities for R(q).

In the process, we also find several new relations for G(q) and H(q).

In the next theorem and corollary, we present some new identities analogous to

ED.

Theorem 2.1. We have

R(¢°) + R(¢*) — R(¢°)R(¢*)

R(g)R(q") = R )>+R( T (2.2)
R*(q)R(q?) () R(¢"°) = R(¢°)R(q") + R(¢*) (2.3)
R(q*) R(¢°)R(¢*°) + R(¢*) + R(¢°)R(¢*°)’ '

1 2 o N

where
D = R(¢°) (1+ R(¢")R*(¢"°) — R*(¢")R"(¢"))
and
N =1+ R(¢") + R*(¢°) + 2R(¢°)R(¢"°) + 2R*(¢") R(¢"°) — 2R(¢°) R*(¢"°)
+2R(¢°)R*(¢"°) — 2R*(¢°) R*(¢"°) + 2R (¢°) R*(¢"°) + R*(¢°) R*(¢"")
— R(¢°)R*(¢"°) + R*(¢*) R*(¢").

Corollary 2.2. We have

R*(q") . a0 1 - R(¢°)R(¢") — R(¢%)
R@wa‘mq)M¢WWM—R@%+M¢WWMM¢W 25)
R(g) _ R(¢°) + R(¢°)R(—¢") 2.6
RCq TR T RARC T -
R(¢*) R(g?* D

R@? R@ N (2.7)

where N and D are as stated in the previous theorem.

15



In the following theorem, we present new addition to the list of modular identities

for R(q) available in the literature.

Theorem 2.3. We have
R(q) |, R(¢°)

]‘ 2 3\
R RE) TR =1 B T Ry (28)
N R*(¢")R(¢®) — 2R(q)R(¢*)R(¢"®) + R(¢*)R?*(¢"°)
R) = T Ra ) — 2R R R + B 0
R = RORRG) % gy i - w1

R() = Rg)R(¢") . R(Q) B (q")R(¢°) + 2R(¢") R(¢™*) + R(q) R(¢") R*(¢™*)

R(q") R(¢*)R(q°%) + 2R(q) R*(¢*) R(q"?) + R2(¢"?) ’
(2.11)
R(¢%) = !
R(q)R(q*)R(q%)
2R(q)R(¢*)R(¢°)R(¢**) — R(¢")R(¢°)R*(¢"*) — R(¢")R(¢"*) R*(¢**)

g
—
L)
S—

g
—
Q

w
N—

g
S
Q

VR — 2RI R R + R@R() R
(2.12)
We prove ([2.2)—(2.9) by using dissection formulae for theta functions and certain
relations for the Rogers-Ramanujan functions whereas we derive (2.10)—(2.12)) from
some new relations for the Rogers-Ramanujan functions arising from the so-called

quintuple product identity (Eq. (2.49) in the next section).

In a brief communication, Ramanujan [96] gave two algebraic relations between

G(q) and H(q), namely,

H){G(@)}'" = PG({H (@} =1+ 11¢{G(q)H(q)}°

and

H(q)G(¢") - °G(a)H(q") = 1
and remarked that each of these formulae is the simplest of a large class. In fact,
these two identities are from a set of forty identities for G(¢q) and H(q) that Ra-
manujan never published. Ramanujan shared some of the identities with Rogers,
who proved ten of the identities in [105]. Watson had Ramanujan’s identities and he
proved eight identities (two of them already proven by Rogers) in the paper [125].

Watson prepared a handwritten list of the forty identities. In 1975, Birch found
Watson’s handwritten copy of them in the Oxford University Library and published
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it in [33]. Watson’s handwritten list of Ramanujan’s forty identities was finally pub-
lished in [99]. Eventually, the forty identities were proved with a combined effort of
Bressoud [34], Biagioli [32], Berndt, G. Choi, Y. -S. Choi, Hahn, Yeap, Yee, Yesi-
lyurt and Yi [31], and Yesilyurt [131, 132]. We refer to [5, Chapter 8| for a more

comprehensive detail.

Apart from Ramanujan’s forty identities for the Rogers-Ramanujan functions,
there are several other identities in the literature. In [30], Berndt and Yesilyurt
established new representations for G and H as linear combinations of G and H
at different arguments and used them in conjunction with some of the previously
proved forty identities to prove new identities for the Rogers-Ramanujan functions.
Work on further new identities for G(¢) and H(q) can also be found in the papers
by Robins [103], Chu [44], Gugg [61, 62, 63, 64, 65], Koike [80], Bringmann and
Swisher [35, 36], Bulkhali and Dasappa [37], and Baruah and Das [20].

In the following two theorems, we present some new relations for G(q) and H(q).

Theorem 2.4. We have
G(*)G(¢®) H()

H(¢) (6% q%)3
- x x 2.13
T ¢ (2.13)

H(q)G(¢°)  G(q) H (¢ ("% ¢*9)2,(¢"%; %),
H(q)G (% -2 G(a)H(q%) _ (¢4 )3(d":d")% (2.14)
H(P)H (@) " GG (%)% (@ ¢)% '
Theorem 2.5. Let
S = G*q)H(q")G(¢*) H*(¢")H ("),
T := H*(q)G(¢*)H(¢*)G*(¢")G(¢"),
U:=G(q)H*(q)H(¢°) — H*(¢*)G(¢*)H(¢*),
V=G (qH*(¢)G(¢°) — G°(¢*)G(¢*)H(¢),
W= H*(q)G(¢°)H(¢°) — G*(¢*)H? (¢*)H(¢*),
X =G (q)G(")H(¢") — G* () H (¢*)G(q?),
Y :=G*¢*)H(¢")G(q") — H*()G*(¢")G(¢P),
Z = H*q*)G(¢*)H(¢"*) — G*(q) H?(¢*)H (¢°)
We have
H(q)H*(¢*)G(q") + ¢G(a)G*(¢*) H (¢") _ xX(@)x(=¢") (2.15)
G(q)G(¢®)H(¢%)G(q"?) + ¢*H(q)H(¢*)G(¢%) H (") x(—a5)x(q"®)’ '
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UG(¢*)H(¢*)G(¢"?) = qVH(¢*)G(P)H(q"?)  x(¢°)x(=¢") (2.16)
VH(q?)H(q°)G(q"?) — PUG(*)G (%) H (¢*?)  x(—q%)x(q*®)’ '
WG(q)H(¢")G (™) = *XH()G(¢")H (™) sx(¢")x(=¢"*)x(=¢*)x(—=¢*)
¢*WG(q)G(q°)H(q*) — X H(q)H(¢%)G(¢*) X3 (—¢%) ’
(2.17)
SYH(q12)G<q24) _ qQTZG(qIZ)H(q24) X(qIO)X( qIZ)X(_qQO)X(_q3O) (2 18)
TZH(¢%)G(¢*) — ¢*SYG(¢q®)H (¢**) xX3(—¢%) C
V. R(q)R(¢%)
0 " R R 219
3/5
T = BQRERR) (2.20)
Y R(q) (2.21)

¢*Z ~ R(¢)R(q")
where x(q) == (—¢; ¢*)oo-

We organize the rest of the chapter as follows. In Section [2.2] we present the
preliminary results on Ramanujan’s theta functions, the Rogers-Ramanujan func-
tions, and some results arising from the quintuple product identity. In Section [2.3|
we prove Theorem by using dissection formulae for theta functions whereas Sec-
tion [2.4] is devoted to proving Theorem by using some theta function identities
arising from the quintuple product identity. In Section [2.5] we prove Theorem
and Corollary 2.2} In Section 2.6, we prove Theorem [2.3] Partition-theoretic results
may be derived from the identities in Theorems and 2.5 As for examples, in

Section [2.7] we present three such results arising from (2.13)), (2.14), and (2.15)). We

offer some concluding remarks in the final section.

2.2 Preliminary results and lemmas

Ramanujan’s general theta function f(a,b) is defined as in (1.1). In the following

two lemmas, we recall some preliminary identities of f(a,b).
Lemma 2.6. (Berndt [26, pp. 45-46, Entries 29-30])

f(a,b) + f(—a,—b) = 2f(a’b, ab?), (2.22)

f(a,b) — f(—a, —b) = 2af (2,@5193) , (2.23)
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and if ab = cd, then

fla,b)f(c,d) = f(ac,bd)f(ad, bc) + af (g, gabcd) f(g, %abcd) : (2.24)

Lemma 2.7. (Berndt [26, p. 51 and p. 350]) We have

f(a.q4°) = (=¢*)x(q), (2.25)
2y 90(_93)
fla,q%) = NER (2.26)

With the aid of the product representations (1.12) and (1.13) of G(¢) and H(q),
respectively, and (1.2), the following preliminary identities are apparent (see [31]

and [64] for proofs).

Lemma 2.8. We have

f(=¢*—¢°) = f(=9)G(q), f(=q,—¢") = (=) H(q), (2.27)
Gq)H(q) = J;<<__f)), (2.28)
1) = 1) = (- LD, (220
Flad) = F-0) g (2.30)
Fea=d) = F= ) (2:31)
=) = 1S (232
[4,4") = F(=AG(@H ("), (") = [(=¢)H(q)G(¢"). (2.33)
By manipulating g-products, it also follows easily that
Glog) = TR (g - BO L) (2.34)
0 = gyt (2.55)

where T'(¢) is as defined in (1.15).

In the following lemma, we recall two useful 5-dissection formulae from [26, p.

49 and p. 82].
Lemma 2.9. We have
0(q) = w(d®) +24f (4", ¢*) + 24" F(¢°, ¢*), (2.36)
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W) = (¢, 4") + af (@, a*) + ¢ (g*™). (2.37)
The two identities in the next lemma were recorded by Ramanujan on p. 56 and

p. 53, respectively, of his lost notebook [99] and proved first by Kang [76].

Lemma 2.10. If u = R(q) and v = R(¢*), then
Vq) 14 ww® — v

2 (q®) uv? ’ (2.38)
D (g®) 1—w? 14+ w?
() == + S + 1. (2.39)

The identities in the next lemma were also recorded by Ramanujan on p. 56 of

his lost notebook [99] and proved first by Kang [76] (Also see Son [116]).

Lemma 2.11. We have

e(q) +¢(q®) = 24" f(q,4") R (¢"), (2.40)
e(q) — ¢(@®) = 24" f(¢*, 4")R(q"), (2.41)
W) — qv(d") = ¢ f(q*, ¢°) R(q). (2.42)

The identities in the next lemma, which were recorded by Ramanujan in Chapter
19 of his second notebook [98, Entries 9(iii), 9(vi), 10(iv), 10(v)], [26, p. 258 and p.

262], readily follow from the previous lemma and (1.2).
Lemma 2.12. Let x(q) := (—¢; ¢*)oo. We have
0*(@) — ¢*(¢°) = 44f(¢.¢°) (@, 4") = dax (@) f(=a") f (™), (243)

2/ N 2/ B\ __ 4 2 3 790(_q5)f(_q5)
vie) = av(@) = fla. ) flaa) = == = e

(2.44)

The following two identities in the next lemma are from the list of forty identities
of Ramanujan and they played important roles in proving several other identities in
the list; see [125], [31], [5], and [132]. The identities can be easily proved by using
Lemma and some preliminary identities of Lemma [2.8]

Lemma 2.13. The following identities hold:

G(9)G(q") + qH (¢) H (¢*) = f((pil), (2.45)
G(q)G (") —qH () H (¢*) = ff(_q;;). (2.46)
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Next we recall two more relations on G(¢q) and H(gq). The first identity is from
the list of Ramanujan’s forty identities proved first by Rogers [105] and the second

one is from a recent paper by Baruah and Das [20].
Lemma 2.14. We have
4
P\—q
G H(g) - Gl H(g") = L) (247)

- f(=¢?)
16 3 6y (=) (—¢*)G(q"°)H (q"°)
U@ + GO = 5 ) fed)

In his lost notebook, Ramanujan [99, p. 207], recorded the quintuple product

+ 2q3f (2.48)

identity in the form
f(=Az,—2?)
f(—=x, —Az?)

which, by setting A\z®> = ¢* and x = —¢/B, may be transformed into (see Berndt

f(=22®) = f(=N22®, —\2®) + 2 f(—N, —\%2?),

[26, pp. 80-82, Theorem))
f(_327 _q2/82)
f(Bq,q/B)

For a comprehensive survey of the work on the quintuple product identity and

f(B’q,q’/B*) — B*f(q/ B, B*¢") = f(—¢°) (2.49)

a detailed analysis of various proofs, we refer to Cooper [45].

Now we state and prove some theta function identities arising from ([2.49)) which

will be used in Section [2.4] to prove Theorem [2.5]

The following relation on G(q) and H(q) was found by Gugg [63, 64] by using

some theta function identities arising from ([2.49)).

Lemma 2.15. We have
3¢f°(—4")
f= f(=*) f(=a°)
The identities in the following lemma were recorded by Ramanujan in his note-
books [98] and proofs based on can be found in [26, p. 379, Entry 10] and
[27, p. 188, Entry 36].

G (q)H(q) — G(¢*)H?(q) = (2.50)

Lemma 2.16. We have

7 .8 _ 2 13\ _ (5 f(=¢*,—¢)
f(=d" =) +af(=a". =) = [(=¢) F{E— (2.51)

411y g 4y _ pe_ 5 f(_C]»—Q4)
f(=¢", —=¢") —af(=q¢,—¢"*) = f( Q)—f(_qz’_q3), (2.52)
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3/ 7 8 3£3(_ 2 _ 13\ _ £3(_ 5

=", =)+ f (¢, —q7) f(q>f(_q3,_q12)’ (2.53)
3(_ A _ 11\ _ 3¢3¢ 14\ _ 3/ 5 f(=¢*,—4")

= =) - f(-a.—¢") f(Q)f(_q6’_q> (2.54)

In the following three lemmas, we state and prove some more useful theta func-

tion identities arising from (|2.49)).

Lemma 2.17. We have

F ) = af ) = g Lo, (2.55)
™)~ aflaa) = f(=7) L0200 (2.56)
P = ) = Pty L) (257
£t dh) =P = P(=¢°) %- (2.58)

Proof. Setting ¢ = ¢°/? and B = ¢*/? in (2.49)), we readily arrive at
(= —¢*)
fld", %) —af(d*d?) = F(=¢") ="
(¢".q) ( )= f(=a) Fa.q9
which is ([2.55)).

Let w = e*™/3, Putting ¢ = ¢°/? and B = w¢®/?, w?¢*/?,

in turn, in (2.49)), yields
f(_wq 7_w2q3>
fld',¢%) — aw’f(d*,¢7) = f(=¢° :
7.7 @ ¢%) = 1(=0) f(w?q, wq)

78\ 2 13\ _ ¢(_ 5 f(=*¢, —wg®)
@) —qwf(a”,qa”) = f(—q°) Fwg )

where the elementary identity f(a,b) = af (a™', a*b) has also been used. Multiplying

the previous three identities and then using (1.2), we find that

P %) = @ q")
_ (g f(=* =) f(~w@®, —*¢) f(—w*?, —wg?)
f(q. ¢ f(w?q, wqt) f(wg, w?q*)
_ P (0% 0°)o(@°: €)oo (W0 6°) oo (W03 4°) oo (W 4°) oo (w4 4°)
(=0 0°) oo (—0% 7)o (=005 ¢°) 0o (2 q; 4°) oo (—w2q%; ) oo (—W G5 4°) o
sy (0%50%)e(d”6")
= =2 (=% ") 0o (—¢"% ¢") 0

s J(=¢% ")
—f( Q) f(q3,q12) )
which is .
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Similarly, putting ¢ = ¢°/% and B = ¢*/? in (2.49)), we arrive at ([2.56)). Setting
q¢=¢"?and B = wq'/?, w?q¢"/?in (2.49) and then multiplying the resulting identities

and ([2.56)) together, we obtain ([2.58)). O]

Lemma 2.18. We have

i =)+ af (= =) = (=) L) (259
f=a", =)+ @ f(—q,—¢*) = f(=¢"") %, (2.60)
P =)+ PP ) = Peg) TED, (2.61)
= =)+ P(—¢. =) = P (=¢") %. (2.62)

Proof. Setting ¢ = ¢° and B = —¢* and B = —¢?, in turn, in (2.49)), we obtain
£59) and (60
The identities (2.61)) and (2.62)) can be proved in a similar way as in the proof

of the previous lemma. n

Lemma 2.19. We have

F(@d®,d"") —af(d".¢*) = f(—qm)%7 (2.63)
Faa) = 5. ) = p(-a) L LD, (264
P = Pl = P T, (2.65)
£ d®) = q.¢*) = f3(—q10)%- (2.66)

Proof. Putting ¢ = ¢° and B = ¢* and B = ¢?, in turn, in (2.49) yields (2.63)) and
(2.64). The identities ([2.65)) and ([2.66|) can be proved by proceeding as in the proof
of Lemma 2.17 O

2.3 Proof of Theorem (2.4

Proof of (2.13)). Setting a = q and b = ¢° in (1.1), we have

fla. ) =Y ¢

n=—oo
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It is easily checked that 3n? —2n = 0,1, or 3 modulo 5. Therefore, in the series

5n+2 5n+4

expansion of f(q,q°), the coefficients of the terms of the forms ¢ and ¢
vanish. To exploit this fact further, we try to find a 5-dissection of f(q,¢®). To that

end, first we see from Jacobi triple product identity, (1.2), that

F(4,0°) = (44" s0(—0": ¢°) (0% ¢°) oo = X (@)00(—¢). (2.67)

Next, from (2.43) and ([2.36]), we have

4qx(q)
1 20N _ 20,5
= e P )
1

= =) <(90(q25) +20f (4", ¢%) + 24* £ (°, 4"))" — 902(q5)> :

Employing ([2.43]) again in the above, and then dividing both sides by 4¢q, we obtain

X0) = S (q4f<q5, 0BV, 6®) + o) 1%, )

+af*(d", @) + o) f(@*, q*) + a" f2 (¢, q45)) : (2.68)

Now, employing the above identity and (2.37) with ¢ replaced by —¢?, in (2.67)),
we obtain the following 5-dissection of f(q,¢°):

fa.¢) = f(_q5);(_q20) (¢ £ a) F (0", 6®) + 0(a®) F(a, ¢

+qf2(q15,q35) +q3<p(q25)f(q5,q45) 4 q7f2(q5,q45))

x (f(@*,—4%®) = (=", ¢®) — (=) .

Sn+2 (

Extracting the terms of the form ¢ or ¢°***) from both sides of the above after

noting from our earlier observation that no such terms appear on the left-hand side,

we find that
F(@, ) (=", ¢®) + @ o(¢®)(—q™) — (&, ¢ F (g, —¢") =0,
which, by replacing ¢° by —¢, reduces to
F(=*,=a") (@, 4") = F(=a.—") f(d°,¢°) = ap(=a°)¥(a").
Employing (1.3), (1.5) and f in the above, we readily arrive at .
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Proof of (2.14). Setting a = ¢ and b = ¢* in (1.1), we have

n27n
fla. @) = D> ¢

n=—oo

Observe that (3n? —n)/2 = 0,1 or 2 modulo 5. Thus, in the series expansion of

f(q,4¢*) the terms of the forms ¢°**3 and ¢°"™ vanish.

We now find a 5-dissection of f(q,q?). By Jacobi triple product identity (1.2)
and Euler’s identity (—¢; ¢)oo = 1/(¢; ¢*)oo, We have

oy oy o a aoa (T8 006w
F@:07) = (=4:0")oo(=07 0o (07 ¢7) o 0 )

(@ ¢®)2 (0% %) 0(—¢%)

T @ds X0 (2.69)
Next, from (2.44) and (2.37)), we have
1 1 20 N _ 0205
X(_q) = f(—q5)c,0(—q5) (dj (Q) W (q ))
= A (U af @) + 0t
- q¢2(q5))-

Once again applying ([2.44)) in the above, we have

o = T (P + af @ ) + )
+26°(0%) F(a°,6") + 20" 0(¢™) (47, 47)). (2.70)

Employing the above identity and ([2.36)), with ¢ replaced by —¢?, in (2.69)), we

arrive at the following 5-dissection of f(q, ¢?):

2\ 1 2.1 1 1 1 2 2 r2 2
fla,q%) = EsrErs) (f (¢'%,4") +af(d"°, ¢) f (&, ) + ¢ F* (¢, ™)
+26°(%) [0, 4) + 24" (a®) [ (4, 4*))

x (0(=a™) = 24 F(=4", =4"™) + 242 f (4%, =¢'"®) ).

Now, we recall that the series expansion of f(g, ¢?) does not contain terms of the

5n+3

forms ¢ and ¢°***. Therefore, extracting the terms of the form ¢°**3 (or ¢°"*4)

from both sides of the above, we find that

F(=d®, ") (@, ¢") — " F(=4"*, =) (¢, °°) — o(—q")¥(¢*®) = 0.
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Replacing ¢° by ¢ in the above identity, we have
(@) f(=¢", =a"") = ?F(a,4") f(=¢*, =¢*) = ¥(@*)p(=¢").

Employing (1.3), (1.5), and (2.29)—(2.32)) in the above, we arrive at (2.14) to finish

the proof.

2.4 Proof of Theorem (2.5

Proof of . From and , we have
5 s [P =) L s (=% =)
f=) (=4, —q") f-a )f(—q3,—q12)
= (f(~4",—¢®) + af (=¢* —"))" = (F(~4", ~¢*) + @2 (% —4"))
=3¢f(—=q", ") (=", —4"°) (f (=", =¢°) + af (—=¢*, —¢"))

=3af(~¢", ") f(~¢*, —4") (f(—qs)w).

f(—=q,—q*) 2.71)

Applying in (2.71) yields
G? G(¢ G
£ q5)( (q) (q )) (q)

= 39mf(_q77 —®) f(=4*, —4").

H3(q)  H(¢?)

Therefore,

G H(¢*) — G(¢*)H?(q) =

In a similar fashion, from (2.52)), (2.54)), and (2.27)), we find that

()G (—d" —a") f(—g ).

G*(q)H (¢°) — G(¢*)H?(q) = P—g)
(2.73)

Comparing (2.72) and (2.73)), and then applying (2.24)), we arrive at
H(q)H(¢*) (f(¢”,*) f (@ a®) = (" a*) f(a*, 7))
= G(q)G(¢®) (&, a*) f(d. ") — af (&, ¢*) [(¢"°, ¢™)) .

Employing (2.25), (2.26)), (2.29)), (2.30), (2.33) in the above and then simplifying,

we have
f(=a")p(=¢")
x(—¢'°)

(H(H*(¢*)G(¢") + ¢G(9)G*(¢*)H (¢"?))
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o f(—q12)f(_q30) 15 5
D) Y(—q7)x(q”)
x (G(9)G(¢*)H(¢°)G(¢") + ¢*H(q)H(¢*)G(¢") H (¢"?)) ,

which, with the aid of (1.3)-(1.7), can be rearranged to (2.15)).

Proof of ([2.16]). From and ( - we have
( —¢%) (—¢?, q3))
f(g? f3(q q*)
( (4.4 —q f3( 2.¢") = (£(d",¢") — af (¢*.q"))’
=3¢f(¢". ) f(* d") (f(d",¢®) — af(¢*,d"))

=3¢f (=) f(d", &) f (¢, qlg)%- (2.74)
Applying and in the above yields
G*(q)H*(q)G(¢°) — G°(¢*)G(¢*) H (%)
= S PO GGG O ). 275)
In a similar way, from and (2.58), we obtain
P (LE) - EEtD) gy statay sty L5
(2.76)
Employing ([£.27) and (2.29) in (2.76), we find that
G*(q)H(q)H (¢°) — H(¢*)G(¢*) H (¢°)
- S PO AACC @ ) ). T

Dividing by (2.77), we have
GQH (9)G(¢%) = ()G H () G()f(d", ) f(g* ¢")

GHq) HY(q)H(¢°) — H3(¢*)G(¢*) H(a*)  H(¢*)f(a* a")f(g,4™)
With the aid of (2.24]), the above identity may be rewritten as

H(cf)(f(cf’ )00 + o (¢, ) (e q”>)

9 (G3<q>H3<q>G<q6> - G3<q2>G<q3>H<q3>)
= () (1P + I P ) )
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< (COm@HE) - BECEHE) ).
Employing (2.25)), (2.26)), (2.29), (2.30), (2.33)) in the above and then simplifying
further, we arrive at (2.16)).

Proof of (2.17). As the proof is similar to that of (2.16]), we only mention two

intermediate identities below.

From ([2.59)—(2.62)), we have

G (q)G(¢")H(¢°) — G°(¢*) H?(¢*)G (%)

= %G(q)G2(q2)H2(qQ)G(qG)H(QG)f(—q”’, —¢'N f(=q", %)
and

H*(q)G(¢")H(¢°) — G*(¢*)H*(¢°)H (¢°)

— %’Zlo)ﬂ(q)G2<q2)H2<q2)G(q6>H(q6)f(_q117 _q19)f(_q, _q29)'

Proof of ([2.18]). The proof is also similar to that of (2.16). So we state only two

intermediate identities below.

From ([2.63)—(2.66)), it can be shown that

G (q)H*(¢")H(¢°) — H(¢*)G(¢*)H (¢")
- e G H ()G ) H ) (0,0 ()
and
H*(q)G*(q")G(¢°) — G*(¢*)H (¢*)G(q")
3¢°

B WHQ(q)G(qQ)H(q?’)G2<q4)G(q12)f(q11, a")f(q,q%).

Proof of . From , we have
f(=d°,=a")f(a,4") = f(@’,a") [P (=%, —¢*)
- fQ(?f]q5>f(—q2,—q?’)fQ(q,q“)f(q?’,q”)f(q7,q8)f(q2,q13)-
Employing the Jacobi triple product identity, (1.2), in the above, we find that

f(_q6> _qg)fg(Q7 q4) - f(qgv q12)f3(_q2’ _q3)
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= o 008 )l )0 () (05 05

% (_q3;q15)oo(_q12;q15)oo(q15;q15)oo<_q7;q15>oo(_q8; qIS)OO(q15;q15)OO

X (=% ¢") oo (=05 0") 00 ("5 ¢"*)

. 3¢f(=¢*) 1 (—4") 4y pr 2 3
T N, ) (=¢" —¢"). (2.78)

Applying (2.27) and (2.30) in , we have

GlOH(G(®)  GHP)H(@Y) _  3af (=) f*(=a")H(q) (2.79)
G (q?) G(q°) =) f(=a*) f(—a"*)G(q?) '
Next, from (|2.76)), we have
F(=, =a*) (%, %) = F(d" d") P (—a, —a")
3 4 11 14\ e A\ g2 2 3 6 9
Applying (1.2) in the above, we obtain
f=a*,=a*) (¢, ¢*) = f(¢*, ") f*(—aq, ")
_ 3af(=¢*)f*(=¢") 4 2 3
D) f(=a, =) (@, a),
which by and , reduces to
Gl HN@)H(¢")  G(@)H(¢") _  3af(=¢")f*(=4")Gla) (2.80)

H3(¢?) H(¢®) P f(~)f(=a")H(¢?)
Dividing (2.79) by (2.80) and then employing (1.14), we deduce (2.19)).

Proof of (2.20)). The proof is similar to that of (2.19)) given above. Therefore, we

mention only two theta function identities below.

From ([2.59)—(2.62)), we find that
P =) (= =) = (=4, =) f(—¢®, —¢**)

fEQf(=a) (=) f(=a.—¢")
f(=a) f(=¢*.—q°)

and
P, = (= =) = (=, —d) f(—=¢" —"®)

_ 3 COI P (q") F(=a’—d)
f(=¢) f(=¢* —¢®)

Proof of (2.21). The proof of this identity is also similar to that of (2.19) given
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earlier. So we mention only two important theta function identities.

We obtain the following identities from ([2.63)—(2.66) by proceeding as in the
proof of ([2.19)).
@, ) (=", =a*) = (=% ~¢") F(d*. ¢*")

fEA (=) P (=a)  f(=¢* —¢®) f(q.q)

=3 f(—q) @A D@ )

and
fS(qga q7)f(_q127 _q18) - f3 _q47 _qﬁ)f(q9> q21>
)

(
_ 3q3f(—q2)f(—q5)f3(—q3° f(=d' =" (& d")
f(=q) @ 6% flgh ¢%)

2.5 Proofs of Theorem 2.1 and Corollary (2.2

Proof of (2.2). By (2.41)), we have
v(a) = (d®) +24'° (¢, a") R(")
= ¢(¢%) +24f (¢*°, 4®)R(¢™) + 24" f(*, 4" R(q"). (2.81)
But, from (2.36)), we recall that
wla) = (a®) +2af (@', a®) + 24" f(@°, ¢"). (2.82)
Comparing and (2.82), we find that
@' f(@’.d")R(¢") = af(a”,a®) + " F(¢*.4") — af (¢*°, 4 ) (™).
Employing (1.15) and in the above, we obtain

F=AH(H (") = f(—=¢") (H(®)G(@®) + ¢*G(¢°)H(¢*°) — ¢"H(¢°)H (¢7)) .

(2.83)
Again, by (2.40)), we have
p(a) = —¢(@®) +2¢"° f(a,4") R (¢")
= o(¢®) = 24" f(¢°, ¢®) R (¢™) + 24" (4, ") R (¢"). (2.84)

Comparing (2.82)) and (2.84]), we find that

¢ fla, )R (q") = " F(@°.¢") R (@™) + af (¢, ¢®) + ¢ F(, ¢).
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Using (1.15) and (2.33)) in the above, we have

F(=*)G(9)G(q")
= f(=¢") (G(¢")G(¢™) + ¢H (¢")G(¢®) + ¢'G(¢" ) H(¢™)) .

It follows from the above identity and ([2.83)) that
H(q)H(¢") _ H(¢")G(¢*) + ¢’G(¢*)H(¢*™) — ¢ H(q°) H (¢*°)
G(q)G(¢")  G(¢°)G(¢*) + qH(¢°)G(¢*) + ¢*G(¢°) H (¢*°) ’
from which, by (1.14), we arrive at
R(¢°) + R(¢*) — R(¢°)R(¢*)
1+ R(¢°) + R(¢*) '

R(q)R(q") =

Thus, we complete the proof of ([2.2)).

Proof of . By , we have
(q*) = qv(d") + a7 f(q*, ¢°)R(q)
= V(@) + f(¢®, ¢°)R(¢) + ¢ £ (", ¢°) R(q). (2.85)
Comparing with , we find that
q*1/5f(q4,q6)R( ) f<q20 qSO) f(q20 q3O)R( >+q f( 10 40)

With the aid of (1.15), (2.29), and (2.30), the above identity may be recast as
H(q)G(?) H(¢?
F—q?) (9)G(q°) : (¢%)
G(q)H(q*)
H 10 H 5 H 10 G 10
:f(_q50)( (¢') (¢)H(¢") = ,Glg )>‘

q q
H(g®) “G(@*)H (™)  ~ G(¢®)
Replacing ¢ by —¢ in the above and then employing ([2.34)), we find that
G q G2 q2 H q2
F—q?) (9)G*( )4( )
H(q)G(q*)

(g™ (5820; G(a°)G(¢") | ,Glq ))_ (2.87)

Dividing (2.86)) by (2.87), we find that

(2.86)
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By (1.14), the above transforms into

R*(q)R(¢°) _ R(¢*
R(q*)

which is clearly equivalent to (2.3)).

Proof of (2.4)). Replacing ¢ by ¢° in (2.39) and then squaring, we have
W a) (1 — R@)R(¢®) 1+ R(@)RG") 1)2
0“9 (q*) R(¢°)R(q') R(q") '
Again, replacing g by ¢° in (2.38) and then multiplying the resulting identity
with (2.38) again, we find that

Ve (1 + R(¢°) R?(¢"°) — R2(q5)R4(q10)) (

¢**(q®) R(q°)R?(¢")
where © = R(q) and v = R(¢*). From (2.88)) and ([2.89)), it follows that

1 R(¢”)’*(¢"°)
)

(2.88)

1
1+ — — uv2> (2.89)

uv?

2 _
w? T <1+R<q5>R2<qw> — R(¢)R(q"
1 — R(a®)R2(q10 1+ R(¢°)R2(¢'° 2
><< (5(1) I(Oq)Jr (Q)w (Q)+1> 1
R(¢®)R(¢") R(q')
which upon simplification gives (2.4)). This completes the proof of Theorem

Now we prove the identities in Corollary [2.2]

Proofs of (2.5 and (2.6). Replacing ¢ by —¢ in (2.2]) and then applying ({2.35)) and
(1.15), we easily deduce (2.5)). Similarly, one can deduce (2.6)) by using (2.35)) and
(1.15) in ([@-3).

Proof of (2.7). On p. 326 in his second notebook [98], [28, p. 12|, Ramanujan

[
recorded the following modular equation relating R(g) and R(q?):
R?

RR(P = T,

This identity was proved first by Rogers [105].

The above identity may be recast in the form

— R(q)R(¢*)* =

R(q)R(q?)*
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From the above identity and (2.4), we readily deduce (2.7 to finish the proof of
Corollary

2.6 Proof of Theorem (2.3

Proof of (2.8). Multiplying and (2.14), we have
G(¢*)G(¢*) +qu(q2)H(q3) _G("H() ng(Q)H(qG) _,
H(q*)H(q*) G(®)G(¢*) G(gH(¢®) =~ G(®)H(q) 7

which, by (1.14), readily transforms into (2.8)).

Proof of (2.9). Dividing (2.48)) by (2.47)), we have
G(¢")H(q) + PG (@) H (") _ o(=¢*) +2¢*f(=¢*)G(¢"*) H(¢"°)
G(q')H(q) — ¢*G(q)H (q'°) v(—q*)
Replacing ¢ by —¢* in (2.45)) and , and then using the resulting identities in
the above identity, we find that
G(¢'*)H(q) + ¢°G(a)H(¢")
G(q")H(q) — ¢*G(q)H(¢"%)
~ G(=¢"G(¢"%) + ¢"H(—¢")H(q"®) + 2¢°G(¢"°) H (¢"°)
G(—¢")G(¢*) — ¢*H(—q*)H(q") ’
which may be rewritten with the aid of (1.15) as
T(q) +¢’T(¢"°)  G(—=¢")G(¢") + ¢"H(—q")H(q"°) +2¢°G(q"°) H(q'°)

T(q) — ¢*T(q"0) G(—q")G(q"®) — ¢*H(—q*)H (q"°) (2.90
Replacing ¢ by —q in (2.90)), we have
T(—q) — ¢*T(¢"°)  G(—¢")G(¢") +¢'H(—q")H(q"°) — 2¢°G(¢")H (¢"") (2.01)

T(—q) +¢*T(q"%) G(—q)G(¢'%) — ¢*H(—¢*)H(q'°)
Adding (2.90)) and (2.91)), and then using (1.15), we find that
T(9) +¢T(q°)  T(=q) = ¢T(¢°) _ ,G(=q)G(¢") + ¢ H(=¢")H(q")

T(q) — ¢T(q"®)  T(—q)+¢T(¢"®)  G(—¢")G(q"®) — ¢"H(—q*)H(q"°)
1+¢'T(=¢")T(¢")
1 — T (—¢")T(q'%)
Employing in the above and then simplifying, we obtain
T(¢?) = T*(q)T(q") = 24T(9)T(¢)T(¢"°) + ¢'T(¢)T*(¢")
T*(q)T(¢")T(¢*) — 2¢*°T(q)T(¢*)T(¢*)T(q"®) + ¢*T*(q)T?(q*°)
Applying (1.15) in the above, we readily arrive at (2.9).
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Proof of (2.10). From (2.79)) and (| - we have

G3() (Q)G(q3) ~ G(P)H ()

G*e?) G(q%)
_ 3, JEOS(=dP)  Hg)
A=) f(=¢*)f(=4") G(¢?)
_ 3, ) G(q)H*(q)
F=f (=) f(=a°) G*(¢*) H (¢?)
G(@H*(q) (- A 3
- I () - PG )

which on simplification gives

Similarly, from ) and - we find that
G ) H ()G () H(q’) + G (@) H (9)H(¢*)G(¢°) — G*(a)H(q) H(¢*) H ()
_ G H(¢*)G(¢*) H*(¢%)
H(q%) '
Dividing (2.92)) by (2.93 -, we have

G (q)H (Q)H((f)G( ) — G H*(9)G(*)H () + G(q) H? (¢)G(¢*)G(¢?)

(2.93)

G ) H*(q)G(¢*)H(¢*) + G2(q) H*(q) H(¢*)G(¢%) — G*(q)H () H (¢*) H (¢*)
_ GU@*)G(@)H (") (2.94)
H%(¢*)H(¢*)G(q) '

Dividing the numerator and denominator of the left-hand side of the above identity

by G*(q)H?(q)G(¢*)H(¢*) and then employing (1.14), we obtain

R(q)R(¢%) 14 R*(q)
R(q*) R(¢}) _  R(¢°)
R*q)R(¢*) R(¢®) RAP)R(¢)
A TP R TP

which can be easily reduced to ([2.10)).

Proof of ([2.11] - Comparing ([2.15) and - we have
H(q)H?(q )G(q12)+qG( )G*(¢*)H (¢")
G(q)G(¢*)H(¢°)G(q"?) + ¢*H(q)H ( ?)G(¢°)H(q")
_ UG(*)H(¢*)G(¢"?) — aV H(¢*)G(¢*) H(q"?)
T VH(@)H(¢)G(q™) — UGG () H(g™)

(2.95)

Now, we rewrite the terms on the numerators and denominators of the above as
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follows:

VH(¢*)H(¢®)G(¢") — PUG(¢*)G(¢°)H (¢"?)
_ (G<q2>G<qG>H<q”>) (G3<q>H3<q>H<q6> - H3<q2>G<q3>H<q3>)

(T(qz)T(qﬁ)  GHQH(9)G(¢°) — GX(P)G () H (q*) q2>
T(q?) G a)H*(q)H(¢°) — H?(¢*)G(¢®)H (¢?) ’
where T'(¢) is as defined in (1.15).

Using the above expressions in (2.95) and then employing (2.19)), we find that

T(9)T*(¢*)
G9)G*(¢") T(q'?)
H(q)H(q*)G(q%) T(q°) i
T(q)T(¢*)T(q"?)
T(q*) T(9)T(q°)
_H@)G() | T@)T(g?) "T*(¢*)T(¢")

which, by (1.15), yields
Rlg)R*(¢") + R(¢™) _ R(¢’)  R(¢*)R(¢°) — R(a)R(¢")
R(¢°) + R(q)R(¢*)R(¢"?)  R(¢%)  R(q)R(¢®) — R(¢*)R(¢"?)
Simplifying the previous identity for R(¢?), we arrive at (2.11]).

Proof of . Comparing and , we have
WG(q)H(¢")G(¢*") — ¢*X H(q)G(q"?)H (¢**)
¢*WG(q)G(q®)H(¢**) — X H(q)H(q°)G(q**)
B SYH<q12)G(q24) _ qQTZG<q12)H<q24>
-~ TZH(¢®)G(¢*) — ¢*SYG(¢®)H(¢*)

(2.96)
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We rewrite the terms on the numerators and denominators of the above as follows:
WG(q)H(¢")G(¢*) — ¢ X H(q)G(¢")H(¢**)

—( Gq24)( GO HE) - G H (g >G<q3>)
( )G H () — G (@) H() q2T<q>T<q24>)
Q)G <6> FODAT) | Tig?)

¢ WG(q)G(¢°)H(¢*") — XH(q)H(¢°)G(¢*)
=( (@GO H (7 >) (G3<q>G<q6>H<q6>—GS@?)HS@?)G@?’))
y (q4 H*(q)G(¢°)H(¢°) — G*(¢*)H*(¢*)H(¢*) T(q T(q6)>
Q)G H () - G )

_ T(q)
G H3(¢?)G(¢®)  T(g*)
SY H(q")G(¢**) — *TZG(¢"*) H (¢*)

- (Com@c R0

< (GG - GG

(
" (1 4 T(¢*)T*(¢)T(¢*)T(¢*) G°(¢*)H(¢*)G (") —H3(q)G3(q4)G(q6)>
T%(q)T(q*)T(¢%) H3(¢*)G(¢*)H(q"?) — G3(q)H3(q*)H(¢®) )

Using the above expressions in (2.96)) and then employing (2.20) and (2.21)), we

obtain
22 2 3 6 QT(Q)T(QM)
H(g®)G(¢) ¢*T(q)T(¢*)T(¢°)T(q°) — q T(g2)
G(®)H(¢*) o ) _ T(g)T(¢°)
¢°*T*(¢)T(¢*)T(¢*)T(¢5) T
G*(q)H (¢*)G(¢*)H? (¢*)H?(¢"?)
T H2q)G(¢?)H (PGP () H ( 6)G(q"?)
i T(q) T*(q)T(¢*)T(¢**)
" T(T(¢") T( 2)12(q*)1T2(¢"?)
- T(¢*)T*(¢)T(¢*)T(¢*)  T(9)

T()T(¢*)T(¢%)  T(¢*)T(q")
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which, by (1.15), yields
R(g)R(¢*)R(¢*)R(¢°)R(¢**) — R(¢*™) _  R(¢")R*(¢") — R(¢g)R(¢*) R(¢**)
R(g)R(¢*)R(¢*) R(¢°) R(¢**) — R(¢®)  R(q)R(¢*)R(¢°) — R(q*)R(¢"*) R(¢**)
Simplifying the above for R(¢?), we readily arrive at (2.12)).

2.7 Partition-theoretic identities

In this section, we present some simple partition-theoretic results arising from the

identities in Theorems [2.4] and 2.5l

We first note that
1
(¢ %)%
is the generating function for the number of partitions of a positive integer into parts

that are congruent to r (mod s) and having k colors.

The following theorem arises from ([2.13)).

Theorem 2.20. Let pi(n) denote the number of partitions of n into parts congruent
to £1,4£5,4£11, 412 (mod 30), where the parts congruent to +5,£12 (mod 30)
have two colors. Let pa(n) denote the number of partitions of n into parts congruent
to £5,46, 47, £13 (mod 30), where the parts congruent to £5,+6 (mod 30) have
two colors. Let ps(n) denote the number of partitions of n into parts congruent to

+1,46,£7,+11,£12, £13 (mod 30). Then, for each positive integer n,

pi(n) = pa(n) = ps(n —1). (2.97)

Proof. Applying (1.12) and (1.13) in (2.13)), we find that
N i N D S Ui e (5 )2
(5 00 (5 ) (5 00) o (655 ) EACIERR RS

Dividing both sides of the above by (¢'%, ¢*F; ¢°)oo (¢°F; ¢*°)% (¢5%, ¢12F; ¢*0) oo,

o0

reducing all the products into base ¢*°, and then cancelling the common terms, we

obtain

1 1
(¢, ¢5F, o, q11E, q12% q125,¢30) . (5%, P, ¢5F, g5, ¢7F, ¢13%; ¢¥0)

. q
- (qu:’ q6j:’ q7j:7 q11i7 q12j:’ q13:i:; q30>oo’
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which is equivalent to

Zpl n)q" —sz n)q" —Zp )gt.

Equating the coefficients of ¢" for n > 1, we readily arrive at (2.97) to finish the

proof. O]

In a similar way, one can easily derive the following two theorems from ([2.14])
and ([2.15]), respectively.

Theorem 2.21. Let py(n) denote the number of partitions of n into parts congruent
to+2,4+3,+7, 48 +12,+13 (mod 30), where the parts congruent to £2, +3, +8, +12
(mod 30) have two colors. Let ps(n) denote the number of partitions of n into
parts congruent to £1,+4, 46,49, 411, £14 (mod 30), where the parts congruent
to 4, 46,49, £14 (mod 30) have two colors. Let pg(n) denote the number of par-
titions of n into parts congruent to £2, £3, £4, 5,46, 8, £9, £12, £14 (mod 30)
where the parts congruent to £5 (mod 30) have two colors. Then, for each positive

integer n > 1,

pa(n) = ps(n —2) = ps(n).
Theorem 2.22. Let p;(n) denote the number of partitions of n into parts congru-
ent to £2, 26, £7, £8, £9, £10, £12, £13, £17, £21, £22, 423 24, £28 (mod 60),
where the parts congruent to +£10 (mod 60) have two colors. Let pg(n) denote the
number of partitions of n into parts congruent to +1,+3, +£4, £10, +11, £12, +14,
+ 16, £18, £19, 424, £26, +27, 429 (mod 60), where the parts congruent to +10
(mod 60) have two colors. Let po(n) denote the number of partitions of n into
parts congruent to +1,+4,+5 +6,+11, +£12, +14, +16, +18,+19, £25, +26, +29
(mod 60), where the parts congruent to +£12,+18 (mod 60) have two colors. Let
pro(n) denote the number of partitions of n into parts congruent to £2,+5, +6, +7,
+8,£13, £17, £18, £22, £23, £24, £25,£28 (mod 60), where the parts congruent

to £6,4+24 (mod 60) have two colors. Then, for each positive integer n > 1,
pr(n) +ps(n — 1) = py(n) + pio(n — 2).

Similar partition-theoretic identities may also be derived from the other identities

in Theorem [2.5, However, we omit those considerably lengthy statements.
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2.8 Concluding remarks

In this chapter, we find some new modular identities for the Rogers-Ramanujan
continued fraction, namely, Thereom and Theorem by using two approaches.
The identities in Thereom and — in Thereom are derived by using
dissections of theta functions. Identities (2.10)—(2.12) in Thereom are derived
from some identities for the Rogers-Ramanujan functions arising from the quintu-
ple product identity . In Lemmas , some theta function identities
derived from are given. We then use those identities to deduce the identities
in Theorem involving the Rogers-Ramanujan functions, which then imply the
identities f for the Rogers-Ramanujan continued fraction in Theorem
2.5l The next set of theta function identities analogous to those in Lemmas [2.16

2.19| may be explored. However, it would be challenging to derive identities for the
Rogers-Ramanujan continued fraction analogous to — from them. In the

following, we briefly outline a few steps in that direction.

First, setting ¢ = ¢'° and B = ¢, ¢°, ¢*, and ¢°, respectively, we find that

f(a®d") = a’f (d",¢”) = f(—qm)%7 (2.98)
f(a¥q") —d°f (¢.4) = f(—qm)%7 (2.99)
F(@®.¢") = ¢f (¢",¢") = f(—qm)%7 (2.100)
F(@®,¢) —af (¢"".¢*) = f(—qQO)% (2.101)
Proceeding as in the proof of Lemma P17, it can be shown that
FP(a%q") = d°F (d".d”) = f3<—q2°>—f}zqqf7’7;§;) (2.102)
(@ d") —a®f (a.4”) = fg(—qm)% (2.103)
P a®,¢) = &f (¢",¢") = f3(—q20)%7 (2.104)
£ (@ 67) = 1 (¢7,6%) = (g L) 5“_(32 ;53;4>- (2.105)
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However, from ([2.22)) and ([2.23)), we have

f(a’d") = % (f (¢*,¢%) + f (—=¢* =)

0% =5 (7 (@d) + (-0 —a)

F(0:0") = 55 (F (0%) = ] (~¢*. "))

fla’d'") = QLq (f (@:4") = f(~a,~a"))

Therefore, (2.98)~(Z.105) may be recast as
f(a®.d") —*f (d",¢7) = f(—qzo)f(qf;;;q;’ (__q;j?_qg); (2106)
F(d%.q") —d°f (0.4°) = f(—q2°)f(q’2§4§1q; (—_q;jl)_q4), (2.107)

F (@) —f (dd%) = f(—=¢*) 7 (q%i]{)(:q;’(:i?qg? (2.108)
(@67 —af (6" ¢") = f(=¢*) 7 (qiq;f) <__jf E__;];)_qg)7 (2.109)

2f (—q'8, —q*?
f(q:a’qu() ff(_qtﬁ)_qm)’ (2.111)
2q3f (—(]18, _q42)
f(@4%) = f(=¢*,=¢"*)’

2¢°f (—4°, —4™)
f3 q23 37 q f3 17 43 f3 ) 2113
( )~ @) = i )f(qﬁ,qg) — f(=d%—q°) (215)
Then proceeding as in the proofs of (2.16)) and ([2.19)), we have the following identities

from and (2.110)), which are somewhat analogous to and (2.79):
P F(—™)G* (@) H(¢*) H(q") (G(q) H?(q) + G(g)H ()"
—Af (=) (=) H* (") H*(¢")G(¢°) (G(¢*)H* (¢°) + G(a*) H(4°))

= L) 6ot () G (G0 ) + Gl H )

x (G(@*)H*(¢*) + G(¢*)H(¢%)) (¢, q") f(d", a™) (2.114)

73 (q19 q41) _ g8 (q,q59) _ f3(—q20)

(2.112)

f (q29 q31) —gq f(qn q49) f3(—q20)

and

P~ f(—=q®)G* () H(¢®) H(¢"?) (G(q)H(q) + G(g) H(¢?))’
—4f (=) (=) H*(¢*)H? (¢")G(¢°) (G(¢*)H? (¢*) + G(¢°) H (¢°))
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_3q2f3(_Q)f( qw) f(= ‘JBO) ( 0) 4 2 21 2
= R ) P g™ H(q") (G(a)H*(q) + G(a)H(q%))

< (GXa)H(g) + G H(0). (2115)
In a similar fashion, using and (2.111)), it can be shown that
=) F(—™) H*(¢)G(¢°)G(q") (GX(@) H(q) + H(9)G(g?))"
—4f (=) (=) G*(@*) G (") H(d") (G*(a))H (¢°) + H(¢)G(d"))
- C9) 6ty 1) Gl ) (G0 H (@) + H)GIe)

x (G*(¢)H(¢*) + H(¢)G(¢%)) £(a",¢"") (g, 4%) (2.116)

and

(
—4f (=) (= 20)03( )G (q4)H(q6) ( (qg)H(q )+ H(q3)G(q6))
f (=) (g™
—¢°)[*(=¢*)
x (G(9)H*(q) — G(9)H (%)) - (2.117)
Similar identities may be derived from (2.108)),(2.109), (2.112), and (2.113)). How-

ever, the appearance of terms, like f(¢'3, ¢*") f(¢", ¢°®) in (2.114) and f(¢'?, ¢™)f(q, ¢*°)
in (2.116]), might be a hindrance in deriving identities analogous to ( -7.
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