
Chapter 3

Congruences for k-Elongated Plane

Partition Diamonds

3.1 Introduction

As defined in Section 1.8, if dk(n) counts the partitions obtained by adding the

links of the k–elongated plane partition diamonds of length n, then the generating

function for dk(n) is given by
∞∑
n=0

dk(n)q
n =

fk
2

f 3k+1
1

.

Andrews and Paule [9] found some elegant generating functions for d1(n), d2(n),

and d3(n), where dk(n) is defined in (1.24). They also proved many Ramanujan-type

congruences modulo 2, 3, 4, 5, 8, 9, 27, and 243, mainly by using the Mathematica

package RaduRK developed by Smoot [114], which uses Radu’s Ramanujan-Kolberg

algorithm [90].

Andrews and Paule [9] conjectured some congruences in their paper. For exam-

ple, they conjectured that

d2 (n) ≡ 0 (mod 3k), (3.1)

The contents of this chapter have been published in International Journal of Number Theory

[25]. The author thanks Dr. Hirakjyoti Das for the collaboration.
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for all positive integers n and k such that 8n ≡ 1 (mod 3k).

By manipulation of a certain ring of modular functions, Smoot [115] recently

proved a refinement of (3.1) as

d2 (n) ≡ 0 (mod 3⌊k/2⌋+1)

for all n ≥ 1 and k ≥ 1 such that 8n ≡ 1 (mod 3k).

Andrews and Paule [9] also posed some conjectural congruences d2(n) modulo

81, 243, and 729. Using elementary q-series techniques, Yao [129] proved these

conjectures for d2(n).

Da Silva, Hirschhorn, and Sellers [50] gave elementary proofs for some of the

results of Andrews and Paule [9] and discovered new individual congruences as

well as some infinite families of congruences for dk(n) modulo certain primes. For

example, for prime p ≥ 5, let r, 1 ≤ r ≤ p− 1, be a quadratic nonresidue modulo p.

Then for all n ≥ 0 and N ≥ 1,

dpN−1 (pn+ r) ≡ 0 (mod pN).

Additionally, da Silva, Hirschhorn, and Sellers [50] proved the following overar-

ching theorem, which generalizes the Ramanujan-type congruences modulo prime p

with arithmetic progression p.

Theorem 3.1 (Da Silva, Hirschhorn, and Sellers [50] ). Let p be a prime, k ≥ 1,

j ≥ 0, N ≥ 1 and r be an integer such that 1 ≤ r ≤ p− 1. If for all n ≥ 0,

dk (pn+ r) ≡ 0 (mod pN),

then

dpN j+k (pn+ r) ≡ 0 (mod pN).

Andrews and Paule [9] considered the partition diamonds as the Schmidt-type

partitions [108] and in [82], Li and Yee found generating functions for Schmidt k-

partitions and unrestricted Schmidt k-partitions in unified combinatorial ways.

Very recently, Sellers and Smoot [109] obtained an infinite family of congru-

ences for d7(n) modulo arbitrary powers of 8 whereas Banerjee and Smoot [15, 16]

found some divisibility properties of d5(n) and d2(n) by arbitrary powers of 5 and
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7, respectively.

In this chapter, we extend some of the individual congruences of Andrews and

Paule [9] and da Silva, Hirschhorn, and Sellers [50] to certain families of congruences.

We state them in the following theorem.

Theorem 3.2. For all n ≥ 0 and j ≥ 0,

d4j+3 (4n+ 2) ≡ 0 (mod 2), (3.2)

d4j+3 (4n+ 3) ≡ 0 (mod 4), (3.3)

d8j+7 (4n+ 2) ≡ 0 (mod 4), (3.4)

d8j+7 (8n+ 5) ≡ 0 (mod 4), (3.5)

d16j+3 (16n+ 9) ≡ 0 (mod 4), (3.6)

d8j+7 (4n+ 3) ≡ 0 (mod 8), (3.7)

d32j+7 (8n+ 4) ≡ 0 (mod 8), (3.8)

d9j+8 (9n+ 3) ≡ 0 (mod 9), (3.9)

d27j+2 (9n+ 8) ≡ 0 (mod 27), (3.10)

d81j+2 (81n+ 44) ≡ 0 (mod 81), (3.11)

d243j+2 (27n+ 8) ≡ 0 (mod 243), (3.12)

d729j+2 (243n+ 71) ≡ 0 (mod 729). (3.13)

Note that the individual cases when j = 0 in (3.2), (3.3), (3.10), (3.12) were

proved by Andrews and Paule [9]; (3.11), (3.13) were proved by Yao [129] and the

remainders of the above theorem were proved by da Silva, Hirschhorn, and Sellers

[50], respectively.

We also find some new families of congruences for dk(n) modulo 8, 16, 32, 64,

and 128 in the following theorem.

Theorem 3.3. For all n ≥ 0 and j ≥ 0,

d8j+7 (8n+ 6) ≡ 0 (mod 8), (3.14)

d8j+7 (8n+ 7) ≡ 0 (mod 16), (3.15)

d16j+7 (8n+ 6) ≡ 0 (mod 16), (3.16)
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d16j+7 (16n+ 11) ≡ 0 (mod 16), (3.17)

d16j+15 (4n+ 3) ≡ 0 (mod 16), (3.18)

d16j+15 (8n+ 6) ≡ 0 (mod 16), (3.19)

d16j+15 (16n+ 10) ≡ 0 (mod 16), (3.20)

d32j+31 (4n+ 3) ≡ 0 (mod 32), (3.21)

d16j+15 (8n+ 7) ≡ 0 (mod 64), (3.22)

d32j+31 (8n+ 7) ≡ 0 (mod 128). (3.23)

Next, we provide the following theorem that refines Theorem 3.1, which was

found by da Silva, Hirschhorn, and Sellers [50].

Theorem 3.4. Let p be a prime, k ≥ 1, j ≥ 0, N ≥ 1, M ≥ 1, and r be integers

such that 1 ≤ r ≤ pM − 1. If for all n ≥ 0,

dk
(
pMn+ r

)
≡ 0 (mod pN),

then

dpM+N−1j+k

(
pMn+ r

)
≡ 0 (mod pN).

Remark 3.5. Theorem 3.4 is a refinement of Theorem 3.1 in the sense that it

extends individual congruences with arithmetic progressions pMn + r, M ≥ 1 to

their respective families, whereas Theorem 3.1 extends individual congruences with

arithmetic progressions pn+ r only to their respective families. For example, for all

n, we have

d7(2n+ 1) ̸≡ 0 (mod 16),

whereas

d7(8n+ 7) ≡ 0 (mod 16). (3.24)

So, Theorem 3.1 does not provide any information regarding its extension to an

infinite family, whereas Theorem 3.4 and (3.24) imply that

d64j+7(8n+ 7) ≡ 0 (mod 16).

Finally, we present some new families of congruences modulo 5, 7, 11, 13, 17, 19,

23, 25, and 49 in the following theorem.
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Theorem 3.6. For all n ≥ 0 and j ≥ 0, we have

d25j+1 (25n+ 23) ≡ 0 (mod 5), (3.25)

d625j+1 (125n+ k) ≡ 0 (mod 25), where k ∈ {23, 123}, (3.26)

d125j+2 (125n+ k) ≡ 0 (mod 5), where k ∈ {97, 122}, (3.27)

d49j+1 (49n+ k) ≡ 0 (mod 7), where k ∈ {17, 31, 38, 45}, (3.28)

d49j+2 (49n+ 43) ≡ 0 (mod 7), (3.29)

d49j+3 (49n+ 41) ≡ 0 (mod 7), (3.30)

d2401j+3 (343n+ k) ≡ 0 (mod 49), where k ∈ {90, 188, 237}, (3.31)

d343j+4 (343n+ k) ≡ 0 (mod 7), where k ∈ {39, 235, 284}, (3.32)

d121j+4 (121n+ 96) ≡ 0 (mod 11), (3.33)

d121j+5 (121n+ 91) ≡ 0 (mod 11), (3.34)

d121j+7 (121n+ 81) ≡ 0 (mod 11), (3.35)

d13j+3 (13n+ 11) ≡ 0 (mod 13), (3.36)

d17j+5 (17n+ 13) ≡ 0 (mod 17), (3.37)

d289j+6 (289n+ k) ≡ 0 (mod 17), (3.38)

where k ∈ {52, 69, 137, 171, 188, 205, 222, 239, 273},

d19j+3 (19n+ 16) ≡ 0 (mod 19), (3.39)

d19j+6 (19n+ 9) ≡ 0 (mod 19), (3.40)

d19j+7 (19n+ 13) ≡ 0 (mod 19), (3.41)

d23j+8 (23n+ 9) ≡ 0 (mod 23). (3.42)

The following sections of this chapter contain the proofs of our results. We

establish Theorems 3.2, 3.3, 3.4, and 3.6 in Sections 3.2–3.5, respectively.

3.2 Proof of Theorem 3.2

Proof. To prove (3.2), we first find the following exact generating function
∞∑
n=0

d4j+3(4n+ 2)qn
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= 2

{
f 27
2 f

39
4

f 55
1 f

18
8

⌊(3j+2)/2⌋∑
k=0

⌊(13j+10)/2⌋∑
m=0

22(2k+m)

(
6j + 5

4k

)(
13j + 11

2m+ 1

)
qk+mF2F4

F1F8

+
f 13
2 f

53
4

f 51
1 f

22
8

⌊(3j+1)/2⌋∑
k=0

⌊(13j+11)/2⌋∑
m=0

22(2k+m)+1

(
6j + 5

4k + 2

)(
13j + 11

2m

)
qk+mF2F4

F1F8

}
,

(3.43)

where F1 := f 65j−8k
1 , F2 := f 30j−24k+4m

2 , F4 := f 53j+16k−12m
4 , and F8 := f 26j−8m

8 .

From (3.43), congruence (3.2) is evident.

We need the following 2-dissection from [68, (1.9.4)] to establish (3.43):

1

f 2
1

=
f 5
8

f 5
2 f

2
16

+ 2q
f 2
4 f

2
16

f 5
2 f8

. (3.44)

Using (3.44), we have
∞∑
n=0

d4j+3(n)q
n =

f 4j+3
2

f 12j+10
1

= f 4j+3
2

(
1

f 2
1

)6j+5

= f 4j+3
2

(
f 5
8

f 5
2 f

2
16

+ 2q
f 2
4 f

2
16

f 5
2 f8

)6j+5

=

6j+5∑
k=0

2k
(
6j + 5

k

)
qk

f 2k
4 f 30j−6k+25

8

f 26j+22
2 f 12j−4k+10

16

=
1

f 26j+22
2

{
3j+2∑
k=0

22k
(
6j + 5

2k

)
q2k

f 4k
4 f 30j−12k+25

8

f 12j−8k+10
16

+

3j+2∑
k=0

22k+1

(
6j + 5

2k + 1

)
q2k+1f

4k+2
4 f 30j−12k+19

8

f 12j−8k+6
16

}
.

Extracting the terms that involve q2n from the above identity, we obtain

∞∑
n=0

d4j+3(2n)q
n =

(
1

f 2
1

)13j+11 3j+2∑
k=0

22k
(
6j + 5

2k

)
qk
f 4k
2 f 30j−12k+25

4

f 12j−8k+10
8

,

which again by using (3.44) can be written as

∞∑
n=0

d4j+3(2n)q
n =

(
f 5
8

f 5
2 f

2
16

+ 2q
f 2
4 f

2
16

f 5
2 f8

)13j+11 3j+2∑
k=0

22k
(
6j + 5

2k

)
qk
f 4k
2 f 30j−12k+25

4

f 12j−8k+10
8

=

3j+2∑
k=0

22k
(
6j + 5

2k

)
qk
f 4k
2 f 30j−12k+25

4

f 12j−8k+10
8

13j+11∑
m=0

2m
(
13j + 11

m

)
qm

f 2m
4 f 65j−6m+55

8

f 65j+55
2 f 26j−4m+22

16

.

Now, breaking the right side of the above identity on the parity of k and m, we have
∞∑
n=0

d4j+3(2n)q
n

=

{ ⌊(3j+2)/2⌋∑
k=0

24k
(
6j + 5

4k

)
q2k

f 8k
2 f 30j−24k+25

4

f 12j−16k+10
8

+

⌊(3j+1)/2⌋∑
k=0

24k+2

(
6j + 5

4k + 2

)
q2k+1
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× f 8k+4
2 f 30j−24k+13

4

f 12j−16k+2
8

}{ ⌊(13j+11)/2⌋∑
m=0

22m
(
13j + 11

2m

)
q2m

f 4m
4 f 65j−12m+55

8

f 65j+55
2 f 26j−8m+22

16

+

⌊(13j+10)/2⌋∑
m=0

22m+1

(
13j + 11

2m+ 1

)
q2m+1 f

4m+2
4 f 65j−12m+49

8

f 65j+55
2 f 26j−8m+18

16

}
. (3.45)

From (3.45), extracting the terms involving q2n+1, we deduce (3.43).

In a similar way, one can find the following generating functions, from which

(3.3), (3.10), and (3.7) are evident, respectively:
∞∑
n=0

d4j+3(4n+ 3)qn

= 4

{
f 7
2 f

57
4

f 49
1 f

22
8

⌊(3j+1)/2⌋∑
k=0

⌊(13j+11)/2⌋∑
m=0

22(2k+m)+1

(
6j + 5

4k + 3

)(
13j + 11

2m

)
qk+mF2F4

F1F8

+
f 21
2 f

43
4

f 53
1 f

18
8

⌊(3j+2)/2⌋∑
k=0

⌊(13j+10)/2⌋∑
m=0

22(2k+m)

(
6j + 5

4k + 1

)(
13j + 11

2m+ 1

)
qk+mF2F4

F1F8

}
, (3.46)

∞∑
n=0

d8j+7(4n+ 2)qn

= 4
f 211
2

f 164
1 f 62

4

{
3j+2∑
k=0

⌊(13j+12)/2⌋∑
m=0

24(k+m)

(
12j + 11

4k

)(
13j + 12

2m+ 1

)
qk+m G2

G1G4

+

3j+2∑
k=0

⌊(13j+11)/2⌋∑
m=0

24(k+m)

(
12j + 11

4k + 2

)(
13j + 12

2m

)
qk+m G2

G1G4

}
, (3.47)

where G1 := f 182j−8k−8m
1 , G2 := f 242j−24k−24m

2 , and G4 := f 76j−16k−16m
4 ,

∞∑
n=0

d8j+7(4n+ 3)qn

= 8
f 205
2

f 162
1 f 58

4

{
3j+2∑
k=0

⌊(13j+12)/2⌋∑
m=0

24(k+m)

((
12j + 11

4k + 1

)(
13j + 12

2m+ 1

)
+

(
12j + 11

4k + 3

)

×
(
13j + 12

2m

))
qk+m G2

G1G4

}
. (3.48)

Note that like the above generating functions, the exponents of f1 in the gen-

erating functions of d8j+7(4n + 1), d16j+3(4n + 1), and d32j+7(4n) will also involve

k. Therefore, the exact generating functions for (3.5), (3.6), and (3.8) can not be

found as elegantly as the above exact generating functions. So in the following, we

give simple proofs for them as well as for the remaining congruences.

The proofs of (3.5), (3.6), and (3.8) are similar. So, we prove (3.8) only. We
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have
∞∑
n=0

d32j+7(n)q
n =

f 32j+7
2

f 96j+22
1

≡ f 2
1

f 16j+5
2

(mod 8). (3.49)

Here, we require the following 2-dissections of f 2
1 and 1/f 4

1 from [68, (1.9.4) and

(1.10.1)]:

f 2
1 =

f2f
5
8

f 2
4 f

2
16

− 2q
f2f

2
16

f8
, (3.50)

1

f 4
1

=
f 14
4

f 14
2 f

4
8

+ 4q
f 2
4 f

4
8

f 10
2

. (3.51)

Employing (3.50) in (3.49) and then extracting the terms that involve q2n, and using

(3.51), we obtain
∞∑
n=0

d32j+7(2n)q
n ≡ f 5

4

f 8j+2
2 f 2

8

(
f 14
4

f 14
2 f

4
8

+ 4q
f 2
4 f

4
8

f 10
2

)
(mod 8),

which gives
∞∑
n=0

d32j+7(4n)q
n ≡ f 19

2

f 8j+16
1 f 6

4

≡ 1

f 4j−11
2 f 6

4

(mod 8).

The above identity clearly yields (3.8).

Here, we require the following 3-dissections of f 2
1 /f2, f

2
2 /f1, f

3
1 , and 1/f 3

1 from

[68, (14.3.2), (14.3.3), (21.3.7), and (39.2.8)]:

f 2
1

f2
=
f 2
9

f18
− 2q

f3f
2
18

f6f9
, (3.52)

f 2
2

f1
=
f6f

2
9

f3f18
+ q

f 2
18

f9
, (3.53)

f 3
1 = a

(
q3
)
f3 − 3qf 3

9 , (3.54)

1

f 3
1

= a2
(
q3
) f 3

9

f 10
3

+ 3qa2
(
q3
) f 6

9

f 11
3

+ 9q2
f 9
9

f 12
3

, (3.55)

where a(q) is Borweins’ cubic theta function defined by a(q) :=
∞∑

j,k=−∞

qm
2+mn+n2

.

We now prove (3.9), (3.10), and (3.12). Using (3.52), we have
∞∑
n=0

d9j+8(n)q
n =

f 9j+8
2

f 27j+25
1

≡ f 3j+3
6

f 9j+9
3

· f
2
1

f2
≡ f 3j+3

6

f 9j+9
3

(
f 2
9

f18
− 2q

f3f
2
18

f6f9

)
(mod 9),

which gives
∞∑
n=0

d9j+8(3n)q
n ≡ f 3j+3

2 f 2
3

f 9j+9
1 f6

≡ (f 3
2 )

j+1

f 3j+1
3 f6

(mod 9).
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Applying (3.54) in the above identity and then expanding binomially, we find that

∞∑
n=0

d9j+8(3n)q
n ≡ 1

f 3j+1
3 f6

j+1∑
k=0

(−3)k
(
j + 1

k

)
q2k
(
a
(
q6
)
f6
)j−k+1

f 3k
18 (mod 9).

Since in the right side of the above identity, there is no term that involve q3n+1 for

k = 0 and 1, extracting the terms that involve q3n+1 from the above identity, we

deduce (3.9).

We have
∞∑
n=0

d27j+2(n)q
n =

f 27j+2
2

f 81j+7
1

≡ f 9j
6

f 27j
3

· f
2
2

f1
· 1

f 6
1

(mod 27).

Using (3.53) and (3.55) in the above identity, and then extracting the terms that

involve q3n+2, we obtain
∞∑
n=0

d27j+2(3n+ 2)qn ≡ f 9j
2

f 27j
1

(
27
f2f

12
3

f 17
1 f6

+ 6a3(q)
f 8
3 f

2
6

f 21
1

+ 81q
f 17
3 f

2
6

f 24
1

)
≡ 6

f 3j+2
6

f 9j−2
3

· 1

f 3
1

(mod 27).

Now, invoking (3.55) in the above identity and then extracting the terms involving

q3n+2, we prove (3.10).

Finally, we prove (3.12) using induction on j. Andrews and Paule [9, (7.12)]

proved (3.12) for j = 0. We assume that (3.12) is true for some integer j ≥ 0. Now,
∞∑
n=0

d243(j+1)+2(n)q
n =

f
243(j+1)+2
2

f
3(243(j+1)+2)+1
1

=
f 243j+2
2

f
3(243j+2)+1
1

· f
243
2

f 729
1

=
∞∑
n=0

d243j+2(n)q
n · f

243
2

f 729
1

≡
∞∑
n=0

d243j+2(n)q
n · f

81
6

f 243
3

(mod 243).

Extracting the terms that involve q3n+2 from both sides of the above identity, we

have
∞∑
n=0

d243(j+1)+2(3n+ 2)qn ≡
∞∑
n=0

d243j+2(3n+ 2)qn · f
81
2

f 243
1

(mod 243).

Da Silva, Hirschhorn, and Sellers [50, Eq. (21)] showed that d3j+2(3n + 2) ≡ 0

(mod 3). Therefore, the above identity can be written as
∞∑
n=0

d243(j+1)+2(3n+ 2)qn ≡
∞∑
n=0

d243j+2(3n+ 2)qn · f
9
6

f 81
3

(mod 243).
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Again, extracting the terms that involve q3n+2 from both sides of the above identity,

we have
∞∑
n=0

d243(j+1)+2(9n+ 8)qn ≡
∞∑
n=0

d243j+2(9n+ 8)qn · f
9
2

f 81
1

(mod 243).

Due to (3.10), the above identity is equivalent to
∞∑
n=0

d243(j+1)+2(9n+ 8)qn ≡
∞∑
n=0

d243j+2(9n+ 8)qn · f
3
6

f 27
3

(mod 243),

which gives
∞∑
n=0

d243(j+1)+2(27n+ 8)qn ≡
∞∑
n=0

d243j+2(27n+ 8)qn · f
3
2

f 27
1

(mod 243).

Therefore, by the assumption for induction, we see that (3.12) is true for j + 1 as

well. Thus, (3.12) is true for all j ≥ 0.

Similar to the proof of (3.12), we can obtain (3.11) and (3.13) by using induction

on j together with the help of some intermediate congruences which are already

available due to Andrews and Paule [9] .

3.3 Proof of Theorem 3.3

Proof. First, we prove (3.18). Similar to (3.46)–(3.48), using (3.44) and (3.51), one

can find that
∞∑
n=0

d16j+15(4n+ 3)qn

= 8
f 447
2

f 344
1 f 134

4

{
6j+5∑
k=0

13j+12∑
m=0

24(k+m)

((
24j + 23

4k + 3

)(
26j + 25

2m

)

+

(
24j + 23

4k + 1

)(
26j + 25

2m+ 1

))
qk+m f 484j−24k−24m

2

f 364j−8k−8m
1 f 152j−16k−16m

4

}
.

Now, we separate the right side of the above identity with the cases (k,m) = (0, 0)

and (k,m) ̸= (0, 0) as follows.
∞∑
n=0

d16j+15(4n+ 3)qn

= 8
f 447
2

f 344
1 f 134

4

{((
24j + 23

3

)
+

(
24j + 23

1

)(
26j + 25

1

))
f 484j
2

f 364j
1 f 152j

4
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+

13j+11∑
m=0

24(m+1)

((
24j + 23

3

)(
26j + 25

2m+ 2

)
+

(
24j + 23

1

)(
26j + 25

2m+ 3

))
qm+1

× f 484j−24m−24
2

f 364j−8m−8
1 f 152j−16m−16

4

+

6j+4∑
k=0

24(k+1)

((
24j + 23

4k + 7

)

+

(
24j + 23

4k + 5

)(
26j + 25

1

))
qk+1 f 484j−24k−24

2

f 364j−8k−8
1 f 152j−16k−16

4

+

6j+4∑
k=0

13j+11∑
m=0

× 24(k+m+2)

((
24j + 23

4k + 7

)(
26j + 25

2m+ 2

)
+

(
24j + 23

4k + 5

)(
26j + 25

2m+ 3

))
qk+m+2

× f 484j−24k−24m−48
2

f 364j−8k−8m−16
1 f 152j−16k−16m−32

4

}
.

On simplifying the above identity, we find that
∞∑
n=0

d16j+15(4n+ 3)qn

= 16

{
3(24j + 23)(16j + 17)(j + 1)

f 484j+447
2

f 364j+344
1 f 152j+134

4

+ 8

13j+11∑
m=0

24m

×

((
24j + 23

3

)(
26j + 25

2m+ 2

)
+ (24j + 23)

(
26j + 25

2m+ 3

))
qm+1

× f 484j−24m+423
2

f 364j−8m+336
1 f 152j−16m+118

4

+ 8

6j+4∑
k=0

24k

((
24j + 23

4k + 7

)

+

(
24j + 23

4k + 5

)
(26j + 25)

)
qk+1 f 484j−24k+423

2

f 364j−8k+336
1 f 152j−16k+118

4

+ 128

6j+4∑
k=0

13j+11∑
m=0

× 24(k+m)

((
24j + 23

4k + 7

)(
26j + 25

2m+ 2

)
+

(
24j + 23

4k + 5

)(
26j + 25

2m+ 3

))
qk+m+2

× f 484j−24k−24m+399
2

f 364j−8k−8m+328
1 f 152j−16k−16m+102

4

}
. (3.56)

Note that (3.18) is evident from (3.56).

Now, we prove (3.23). Replacing j by 2j + 1 and taking modulo 128 in (3.56),

we obtain
∞∑
n=0

d32j+31(4n+ 3)qn ≡ 96(48j + 47)(32j + 33)(j + 1)
f 968j+931
2

f 728j+708
1 f 304j+286

4

≡ 96(48j + 47)(32j + 33)(j + 1)
f 604j+577
2

f 304j+286
4

(mod 128).

From the above identity, we clearly have (3.23).
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Similar to the proof of (3.23), we can obtain (3.14), (3.16), (3.19), and (3.20)

from (3.47), (3.15), and (3.17) from (3.48), and (3.21) and (3.22) from (3.56).

3.4 Proof of Theorem 3.4

Proof. Without loss of generality, we may assume that r =
M−1∑
j=0

pjrj for 0 ≤ rj ≤

p − 1, because
M−1∑
j=0

pjrj can take any value between 1 and pM − 1. For sufficiently

large integers M ≥ 1 and N ≥ 1, we have

∞∑
n=0

dpM+N−1j+k(n)q
n =

fpM+N−1j+k
2

f 3pM+N−1j+3k+1
1

≡
fpM+N−2j
2p

f 3pM+N−2j
p

∞∑
n=0

dk(n)q
n (mod pN).

Extracting the terms that involve qpn+r0 from the above identity, we obtain
∞∑
n=0

dpM+N−1j+k(pn+ r0)q
n ≡ fpM+N−2j

2

f 3pM+N−2j
1

∞∑
n=0

dk(pn+ r0)q
n

≡
fpM+N−3j
2p

f 3pM+N−3j
p

∞∑
n=0

dk(pn+ r0)q
n (mod pN).

Now, extracting the terms that involve qpn+r1 from the above identity, we find that
∞∑
n=0

dpM+N−1j+k(p
2n+ r0 + pr1)q

n

≡ fpM+N−3j
2

f 3pM+N−3j
1

∞∑
n=0

dk(p
2n+ r0 + pr1)q

n

≡
fpM+N−4j
2p

f 3pM+N−4j
p

∞∑
n=0

dk(p
2n+ r0 + pr1)q

n (mod pN).

From the above identity, we extract the terms that contain qpn+r2 , and from the

resulting identity, we again extract the terms that contain qpn+r3 . It can be seen

that after the M -th extraction using this iterative scheme, we arrive at
∞∑
n=0

dpM+N−1j+k(p
Mn+ r0 + pr1 + · · ·+ pM−1rM−1)q

n

≡ fpN−1j
2

f 3pN−1j
1

∞∑
n=0

dk(p
Mn+ r0 + pr1 + · · ·+ pM−1rM−1)q

n (mod pN).

Therefore, if we assume that dk(p
Mn+r0+pr1+ · · ·+pM−1rM−1) = dk(p

Mn+r) ≡ 0

(mod pN), from the above identity, we evidently have
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dpM+N−1j+k(p
Mn+ r) ≡ 0 (mod pN).

Thus, we complete the proof of Theorem 3.4.

3.5 Proof of the remaining congruences

In this section, we use modular identities of T (q), which is defined as

T (q) :=
1

1 +

q

1 +

q2

1 +

q3

1 + · · · ,

a 7-dissection of f1, series representations of certain q-products, and an algorithm

developed by Radu [91] to prove the congruences in Theorem 3.6. Note that we only

prove the prove the k = 0 cases of the congruences in Theorem 3.6 which together

with Theorem 3.4 complete the proofs of the congruences.

3.5.1 Required lemmas

Here, we present some background material on the method of Radu [91]. For integers

x, let [x]m denote the residue class of x in Z/mZ, Z∗
m be the set of all invertible

elements in Zm, Sm denote the set of all squares in Z∗
m, and for integers N ≥ 1, we

assume that

Γ :=


a b

c d

 : a, b, c, d ∈ Z, and ad− bc = 1

 ,

Γ∞ :=


1 n

0 1

 : n ∈ Z

 ,

Γ0(N) :=


a b

c d

 ∈ Γ : c ≡ 0 (mod N)

 ,

[Γ : Γ0(N)] := N
∏
ℓ|N

(
1 +

1

ℓ

)
,

where ℓ is a prime.

For integers M ≥ 1, suppose that R(M) is the set of all the integer sequences
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(rδ) := (rδ1 , rδ2 , rδ3 , . . . , rδk) indexed by all the positive divisors δ of M , where

1 = δ1 < δ2 < · · · < δk =M . For integers m ≥ 1, (rδ) ∈ R(M), and

t ∈ {0, 1, 2, . . . ,m− 1}, we define the set P (t) as

P (t) :=

{
t′ ∈ {0, 1, 2, . . . ,m− 1} : t′ ≡ ts+

s− 1

24

∑
δ|M

δrδ (mod m)

for some [s]24m ∈ S24m

}
. (3.57)

For integers N ≥ 1, γ :=

a b

c d

 ∈ Γ, (rδ) ∈ R(M), and (r′δ) ∈ R(N), we also

define

p(γ) := min
λ∈{0,1,...,m−1}

1

24

∑
δ|M

rδ
(δ(a+ kλc),mc)2

δm
,

p′(γ) :=
1

24

∑
δ|N

r′δ
(δ, c)2

δ
.

For integers m ≥ 1; 2 ∤ m, M ≥ 1, N ≥ 1, t ∈ {0, 1, 2, . . . ,m− 1},

k := (m2 − 1, 24), and (rδ) ∈ R(M), define ∆∗ to be the set of all tuples (m,M,N, t, (rδ))

such that all of the following conditions are satisfied

1. Prime divisors of m are also prime divisors of N ;

2. If δ |M , then δ | mN for all δ ≥ 1 with rδ ̸= 0;

3. 24 | kN
∑
δ|M

rδmN

δ
;

4. 8 | kN
∑
δ|M

rδ;

5.
24m−24kt− k
∑
δ|M

δrδ, 24m

 | N .

The following lemma supports Lemma 3.8 in the proof of Theorem 3.6.

Lemma 3.7. [123, Lemma 4.3] Let N or 1
2
N be a square-free integer, then we have

⋃
δ|N

Γ0(N)

1 0

δ 1

Γ∞ = Γ.
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We end this section by stating a result of Radu [91], which is especially useful in

completing the proof of Theorem 3.6 in the final section.

Lemma 3.8. [91, Lemma 4.5] Suppose that (m,M,N, t, (rδ)) ∈ ∆∗,

(r′δ) := (r′δ)δ|N ∈ R(N), {γ1, γ2, . . . , γn} ⊆ Γ is a complete set of representatives of

the double cosets of Γ0(N)\Γ/Γ∞, tmin := min
t′∈P (t)

t′,

ν :=
1

24

∑
δ|M

rδ +
∑
δ|N

r′δ

 [Γ : Γ0(N)]−
∑
δ|N

δr′δ −
1

m

∑
δ|M

δrδ

− tmin

m
, (3.58)

p(γj) + p′(γj) ≥ 0 for all 1 ≤ j ≤ n, and
∞∑
n=0

A(n)qn :=
∏
δ|M

f rδ
δ . If for some integers

u ≥ 1, all t′ ∈ P (t), and 0 ≤ n ≤ ⌊ν⌋, A(mn + t′) ≡ 0 (mod u) is true, then for

integers n ≥ 0 and all t′ ∈ P (t), we have A(mn+ t′) ≡ 0 (mod u).

3.5.2 Proof of Theorem 3.6

Proof of (3.25). First, for integers α ≥ 0 and β, we let

Pα,β :=
1

T (q)α+2βT (q2)2α−β
+ (−1)α+βq2αT (q)α+2βT

(
q2
)2α−β

. (3.59)

We will use the 5-dissections of f1 and
1

f1
from Section 1.3 (see (1.16) and (1.17))

in the proof.

Now,
∞∑
n=0

d1(n)q
n =

f2
f 4
1

.

Employing the 5-dissections of f2 and 1/f1 from (1.16) and (1.17) in the above

identity, then extracting the terms that involve q5n+3, and finally with the help of

(3.59), we obtain
∞∑
n=0

d1(5n+ 3)qn =
f 20
5 f10
f 24
1

(
− 4P3,6 + 40P3,5 − 105qP2,5 − 418qP2,4

+ 1100qP2,3 − 1400q2P1,3 − 1840q2P1,2

+ 1200q2P1,1 − 1500q3P0,1 − 1015q3
)
. (3.60)
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From [19, Lemma 1.3] and [29, (7.4.9)], we have

P0,1 = 4q
f1f

5
10

f2f 5
5

, (3.61)

P1,1 =
f2f

5
5

f1f 5
10

+ 2q + 4q2
f1f

5
10

f2f 5
5

, (3.62)

P1,2 =
f 6
1

f 6
5

+ 11q, (3.63)

and the following relations:

P1,3 = P0,1P1,2 + P1,1, P2,3 = P1,1P1,2 − q2P0,1,

P2,4 = P 2
1,2 + 2q2, P2,5 = P0,1P2,4 − P2,3,

P3,5 = P1,1P2,4 − q2P1,3, P3,6 = P1,2P2,4 + q2P1,2.

Employing (3.61)–(3.63) and the above relations in (3.60), we find that
∞∑
n=0

d1(5n+ 3)qn =40
f2f

13
5

f 13
1 f

4
10

− 4
f10f

2
5

f 6
1

− 470q
f10f

8
5

f 12
1

+ 1875q
f2f

19
5

f 19
1 f

4
10

+ 15625q2
f2f

25
5

f 25
1 f

4
10

− 8750q2
f10f

14
5

f 18
1

− 260q2
f 6
10f

3
5

f 11
1 f2

− 7500q3
f 6
10f

9
5

f 17
1 f2

− 46875q3
f10f

20
5

f 24
1

− 62500q4
f 6
10f

15
5

f 23
1 f2

,

which gives
∞∑
n=0

d1(5n+ 3)qn ≡− 4
f10f

2
5

f 6
1

≡f10f5
f1

(mod 5).

Invoking the 5-dissection of 1/f1 given by (1.17) in the above identity and then

extracting the terms involving q5n+4, we obtain (3.25).

Proof of (3.29). We have
∞∑
n=0

d2(n)q
n =

f 2
2

f 7
1

≡ f 2
2

f7
(mod 7). (3.64)

From [68, (10.5.1)], we recall the following 7-dissection of f1:

f1 =f49

(
(q14; q49)∞ (q35; q49)∞
(q7; q49)∞ (q42; q49)∞

− q
(q21; q49)∞ (q28; q49)∞
(q14; q49)∞ (q35; q49)∞

− q2 + q5
(q7; q49)∞ (q42; q49)∞
(q21; q49)∞ (q28; q49)∞

)
.

With the help of the above identity, we use the 7-dissection of f 2
2 in (3.64) and then
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extract the terms involving q7n+1. This gives
∞∑
n=0

d2(7n+ 1)qn ≡ f 2
14

f1
(mod 7). (3.65)

Now, if p(n) counts the unrestricted partitions of an integer n ≥ 0, we have
∞∑
n=0

p(n)qn =
1

f1

and one of Ramanujan’s famous three partition congruences

p(7n+ 5) ≡ 0 (mod 7)

for all n ≥ 0.

Therefore, it becomes evident from (3.65) that (3.29) is true.

Before proceeding to the next proofs, we state some useful product-to-sum iden-

tities in the following lemma.

Lemma 3.9. We have

f 3
1 =

∞∑
j=0

(−1)j(2j + 1)qj(j+1)/2, (3.66)

f 2
2

f1
=

∞∑
j=0

qj(j+1)/2, (3.67)

f 5
2

f 2
1

=
∞∑

j=−∞

(−1)j(3j + 1)q3j
2+2j. (3.68)

Proof of Lemma 3.9. The identities (3.66), (3.67), and (3.68) appear as (1.7.1),

(1.5.3), and (10.7.7) in Hirschhorn [68].

Proofs of (3.36), (3.37), and (3.40)–(3.42). We have
∞∑
n=0

d3(n)q
n =

f 3
2

f 10
1

≡ f 3
1 f

3
2

f13
(mod 13).

Using (3.66) in the above identity, we have
∞∑
n=0

d3(n)q
n ≡ 1

f13

∞∑
j=0

(−1)j(2j + 1)qj(j+1)/2

∞∑
k=0

(−1)k(2k + 1)qk(k+1)

≡ 1

f13

∞∑
j,k=0

(−1)j+k(2j + 1)(2k + 1)qj(j+1)/2+k(k+1) (mod 13). (3.69)
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Now,

8

(
j(j + 1)

2
+ k(k + 1)

)
+ 3 = (2j + 1)2 + 2(2k + 1)2.

If j(j + 1)/2 + k(k+ 1) = 13n+ 11 for some integer n ≥ 0, the above equality gives

(2j + 1)2 + 2(2k + 1)2 ≡ 0 (mod 13).

Therefore, 2j + 1 ≡ 0 (mod 13) and 2k + 1 ≡ 0 (mod 13). Otherwise, we have

(2j+1)2 ≡ 1, 3, 4, 9, 10, 12 (mod 13), which gives (2j+1)2+2(2k+1)2 ̸≡ 0 (mod 13).

This is a contradiction.

Finally, extracting the terms that involve q13n+11 from (3.69), we find that for

all n ≥ 0,

d3(13n+ 11) ≡ 0 (mod 13), (3.70)

which completes the proof of (3.36).

Congruences (3.37) and (3.40)–(3.42) can be proved similarly as above. So, we

provide only the following table containing the product-to-sum identities required

for the proofs.

Congruence Used product-to-sum identities

(3.37) (3.66), (3.68)

(3.40) (3.66)

(3.41) (3.67), (3.68)

(3.42) (3.66), (3.68)

Proofs of the remaining congruences of Theorem 3.6. Proofs of (3.26)–(3.28), (3.30)–

(3.35), (3.38), and (3.39) are similar. We elaborate the proof of (3.26) only. We

have
∞∑
n=0

d1(n)q
n =

f2
f 4
1

≡ f 21
1 f2
f 25
1

≡ f 21
1 f2
f 5
5

(mod 25). (3.71)

By Conditions 1–5, we have (m,M,N, t, (rδ)) = (125, 10, 10, 23, (21, 1,−5, 0)) ∈ ∆∗.

So, from (3.57), we obtain P (t) = {23, 123}. Lemma 3.7 gives that


1 0

δ 1

 : δ | N
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is a complete set of representatives of the double cosets in Γ0(N)\Γ/Γ∞. Using

(r′δ) = (18, 0, 0, 0), (3.58), and Mathematica, we find that

p

1 0

δ 1

+ p′

1 0

δ 1

 ≥ 0 for all δ | N ,

⌊ν⌋ = 25,

d1(125n+ j) ≡ 0 (mod 25) for j ∈ {23, 123},

are true for all 0 ≤ n ≤ ⌊ν⌋. Therefore, by Lemma 3.8 and (3.71), (3.26) is true.

The proofs of (3.27), (3.28), (3.30)–(3.35), (3.38), and (3.39) follow analogously from

Lemma 3.8 and the chart below.

Congruence (m,M,N, t, (rδ)) and (r′δ) P (t) ⌊ν⌋

(3.27) (125, 10, 10, 97, (3, 2,−2, 0)) {97,122} 22

and (30,0,0,0)

(3.28) (49, 14, 14, 45, (3, 1,−1, 0)) {45} 5

and (4,0,0,0)

(49, 14, 14, 17, (3, 1,−1, 0)) {17,31,38} 6

and (4,0,0,0)

(3.30) (49, 14, 14, 41, (4, 3,−2, 0)) {41} 12

and (9,0,0,0)

(3.31) (343, 14, 14, 90, (39, 3,−7, 0)) {90,188,237} 92

and (60,0,0,0)

(3.32) (343, 14, 14, 39, (1, 4,−2, 0)) {39,235,284} 76

and (77,0,0,0)

(3.33) (121, 22, 22, 96, (9, 4,−2, 0)) {96} 31

and (11,0,0,0)

(3.34) (121, 22, 22, 91, (6, 5,−2, 0)) {91} 33

and (14,0,0,0)

(3.35) (121, 22, 22, 81, (0, 7,−2, 0)) {81} 34

and (19,0,0,0)

(3.38) (289, 34, 34, 205, (15, 6,−2, 0)) {205} 77

and (16,0,0,0)
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(289, 34, 34, 52, (15, 6,−2, 0)) {52,69,137,171} 77

and (16,0,0,0)

(289, 34, 34, 52, (15, 6,−2, 0)) {188,222,239,273} 77

and (16,0,0,0)

(3.39) (19, 38, 38, 16, (9, 3,−1, 0)) {16} 29

and (1,0,0,0)
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