Chapter 4

Arithmetic Properties of Two Analogues

of t-Core Partitions

4.1 Introduction

We recall the following generating functions for the two analogues @;(n) and b;(n)
from (1.25) and (1.26) of Section 1.8:

—_ v P fuf?
a(m)" = o(—q)  fif5

n=0

and

S = V0 _ Bl

= v(=q)  fifafs
Recently, Gireesh, Ray, and Shivashankar [57] proved several multiplicative for-
mulae and arithmetic identities for @,(n) for ¢t = 2, 3, 4, and 8 using Ramanujan’s
theta functions and g¢-series techniques. Using the theory of modular forms, they
studied the divisibility of @;(n) modulo arbitrary powers of primes greater than 5.

More precisely, they proved the following theorem.

Theorem 4.1 (Gireesh, Ray, and Shivashankar [57]). Let t = pi* - - - p% where p;’s

Theorems and of this chapter have been published in Bulletin of the Australian
Mathematical Society [117]. The rest of the results of this chapter have been published in The

Ramanujan Journal [118].
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are primes greater than or equal to 5. Then for every positive integer j, we have

. #{0<n<X:am)=0 (modp{)}
lim

X—o0 X

=1.

Gireesh, Ray, and Shivashankar [57] also deduced a Ramanujan-type congruence

for @5(n) modulo 5 by using an algorithm developed by Radu and Sellers [92].

Bandyopadhyay and Baruah [14] proved some new identities connecting as(n)

and c5(n). Also, for integers k > 2, they found the following recurrence relation for

@ (5'n) = (5k4_ 1) s (5m) — (5k4_ 5) a5(n).

Again, Bandyopadhyay and Baruah [14] studied the function bs(n) and deduced

as(n):

some new identities connecting cs(n), @s(n), and bs(n). They also proved some
recurrence relations and vanishing coefficients results for bs(n). For instance, for

any nonnegative integer n and k > 2, they proved the following results:

1 1

B (5% (n +3) — 3) = (5k4_ 1) Ba(5m + 12) — <5k4_ 5) Bs(n).

Recently, Cotron et al. [48] proved the following theorem on the lacunarity of

certain eta-quotients modulo arbitrary powers of primes.

u

T
o

Theorem 4.2. [}8, Theorem 1.1] Let G(z) = i:tl—, and p is a prime such that

I
i=1

p® divides ged(ay, g, - -+, ay,) and

t
Z 51'6’1'
i=1

U 9
T

then G(2) is lacunary modulo p’ for any positive integer j.

P>

We observe that the eta-quotients associated with @;(n) and by(n) do not satisfy
the conditions of Theorem [4.2] which makes the problem of studying lacunarity of

@, (n) and b;(n) more interesting. In this chapter, we obtain the arithmetic densities
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of @(n) and b,(n) modulo arbitrary powers of 2 and 3 where t = 3%m. To be specific,

we prove the following theorems.

Theorem 4.3. Let k> 1, a > 0, and m > 1 be integers with ged(m,6) = 1. Then
the set

{n €N:@gap(n)=0 (mod 2*)}
has arithmetic density 1.
Theorem 4.4. Let k> 1, a > 0, and m > 1 be integers with ged(m,6) = 1. Then
the set

{n € N:@gap(n)=0 (mod 3*)}
has arithmetic density 1.
Theorem 4.5. Let k> 1, a > 0, and m > 1 be integers with ged(m,6) = 1. Then
the set

{n € N:bgap(n)=0 (mod2*)}
has arithmetic density 1.
Theorem 4.6. Let k> 1, a > 0, and m > 1 be integers with ged(m,6) = 1. Then
the set

{n € N:bgap(n)=0 (mod 3*)}

has arithmetic density 1.

We also study the density of b;(n) modulo arbitrary powers of primes greater
than or equal to 5 for certain general values of t. In fact, we prove the following

result.

Theorem 4.7. Let k > 1 be a fixed positive integer and a,, as, - -+ , a,, be nonnegative
integers for some positive integer m, then for t = pi*---p%m where p;’s are primes

greater than or equal to 5. The the set
{neN:b(n)=0 (modpf)}

has arithmetic density 1.
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As a consequence of the above theorem, we obtain the following divisibility result

for b,(n).

Corollary 4.8. Let k > 1 be a fixed positive integer and p > 5 be a prime. Then
the set

{neN:b,(n)=0 (modp")}

has arithmetic density 1.

The fact that the action of Hecke algebras on spaces of modular forms of level
1 modulo 2 is locally nilpotent was first observed by Serre and proved by Tate (see
[110], [111], [120]). Later, this result was generalized to higher levels by Ono and
Taguchi [88]. In this chapter, we observe that the eta-quotients associated to as(n)
and bz(n) are modular forms whose levels are in the list of Ono and Taguchi. Thus,

we use a result of Ono and Taguchi to find the following congruences for as(n) and

l_)g (n)

Theorem 4.9. Let n be a nonnegative integer. Then there exists an integer ¢ > 0

such that for every d > 1 and distinct primes py,...,perqa coprime to 6, we have
_ pl"'pc-i-d'n)_ d
a3 |————— ] =0 (mod 2
(P (mod 2%)
whenever n is coprime to py, ..., Perd-

Theorem 4.10. Let n be a nonnegative integer. Then there exists an integer u > 0

such that for every v > 1 and distinct primes qi, . . ., qu+, coprime to 6, we have
= (@ Quiy - — 24
b =0 (mod 2
(e 22 20 (o 29
whenever n is coprime to qq, . .., Quiv-

Next, we study some modulo 2 behaviours of by(n). Certain relations between
a;(n) and ¢;(n) has been deduced in [14] and [57]. In the following result, we show
that by(n) can also be expressed in terms of c¢;(n) modulo 2. Recently, Keith and
Zanello [78] studied the parity of pure eta-powers f} for different values of t. We
prove that if the only prime factor of ¢ is 2, then the parity of by(n) is same as such

an eta-power.
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Theorem 4.11. Let n be a nonnegative integer.

(i) For allt > 2, we have b,(n) = th(k)ct(n —2k) (mod 2).

00
k=0

(i3) If t = 2% with k > 1, then b,(n) = ff’@%_l) (mod 2).

In Theorems we have discussed the divisibility of b,(n) for odd values
of t. Corresponding density properties for even ¢ cannot be studied using similar

techniques. However, we adopt a different approach to prove the following theorem.

Theorem 4.12. The series Zgg(n)q” 15 lacunary modulo 2.
n=0

Consider f} = Zat(n)q”. Keith and Zanello [78] also deduced several infinite
n=0

families of congruer?ces for ay(n) modulo 2. They defined f{ to be p*-even at a
prime p with base r € {0,...,p* — 1} if au(p*n + kp +r) = 0 (mod 2) for all
ke {1,...,p—1}. Then they showed that f! is p®>-even for some specific choices of
p and t. We use one such result from [78] to prove the following infinite family of

congruences for by(n).

Theorem 4.13. Let p be a prime such that p=7 (mod 8) and r € {0,...,p* — 1}
with r = —3(1 +273) (mod p?). Then for all k € {1,2,...,p — 1}, we have

by (P’n+kp+7)=0 (mod 2).

a

We recall that for a prime p > 3, the Legendre symbol (
p

) is defined by
L

(
1, if a is a quadratic residue modulo p and p 1 a,

a
» L3: 0, ifp]a,

—1, if a is a quadratic nonresidue modulo p .

\

Next, we prove an infinite family of congruences for by(n) for more general choices

of primes as stated in the following theorem. To state the theorem, first we define
3(p?—1 (-9 [ 2E=D
w0 = (M) 4 (o) ( ) (4.1
p L
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where pg(n) is defined by
Zpg(n)q” = f. (4.2)
n=0

Theorem 4.14. Let p > 3 be a prime. We define
1, ifm(p) =0 (mod 2),

2, ifn(p)#£0 (mod 2).
Then, forn >0, k>0, and p tn, we have

3 3 (p2(u(17)+1)(k+1) — 1)
by [ @A) =1y 4 3 =0 (mod 2). (4.4)

We organize the rest of this chapter as follows. In the next section, we state some
preliminary results of the theory modular forms. We then prove Theorems [4.3
in Sections [£.3H4.7] respectively. We deduce Theorems [£.9] and in Section [4.8|
Theorems [£.11}4.13] are then established in Section [£.9] In Section [£.10, we prove
Theorem [4.14] and we conclude the chapter by mentioning some directions for further
work in Section K111

4.2 Preliminary results

First, we recall two important theorems regarding eta-quotients and the theory

modular forms from [87, p. 18].

Theorem 4.15. [87, Theorem 1.64] If f(z) = 1_[77(52)’”S is an eta-quotient such
5|N

1
that { = 527"5 €7,
5N

N
d ors=0 (mod24) and > <75 =0 (mod 24),
SN 8N

then f(z) satisfies

F(EE) = v+ s
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a b -1 J4
for every € I'o(N). Here, the character x is defined by x(d) := (( d) 8) :
c d
where s 1= H(S”.

5N

Consider f to be an eta-quotient which satisfies the conditions of Theorem
and that the associated weight ¢ is a positive integer. If f(z) is holomorphic at all the
cusps of I'g(N), then f(z) € M, (I'o(IN), x). The necessary criterion for determining

orders of an eta-quotient at cusps is given by the following theorem.

Theorem 4.16. [87, Theorem 1.64] Let ¢, d and N be positive integers with d|N
and ged(e,d)=1. If f is an eta-quotient satisfying the conditions of Theorem
for N, then the order of vam’shmg of f(2) at the cusp (¢/d) is

Z ng d (5 T§
ged(d, N/d)dd
Now, we recall a deep theorem of Serre [87, p. 43| which will be used in proving
Theorems A3HAT
Theorem 4.17. [87, p. 43] Let g(z) € My(I'o(N), x) has Fourier expansion

= b(n)q" € Z{[q]).

Then for a positive integer r, there is a constant o > 0 such that

#{0<n <X :bn)£0 (modr)}z@( X )

(logX)®
Equivalently,
< :
lim #{0<n<X:bn)#0 (modr)} _o
X —00 X
4.3 Proof of Theorem 4.3
Putting ¢t = 3*m in (1.25), we have
oo 2 3a
> () = Tm (4.5)
p— T I35,

We define
772 (233a+1mz)

Aam(z) = n(2432timz)
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For any prime p and positive integer j, we have
. - .
(0% = (¢"¢")%  (mod p’).
Using the above relation, for any integer £ > 1, we get

772’“‘1 (233a+1mz)

an (243a+1mz)

A% (2) = 1 (mod 2¥1). (4.6)

Next, we define

487 2:3%m 233a+1mz
Baymyk(z) = ng )77 3 ( 4 1 )Aikm(z)
n?(24z)m3*m (2439 mz) >
77(483)772'3‘1"““2’6+1 (233°F1mz)

n2(242)n3am+2k (243a+1m2) ’
In view of (4.5) and (4.6]), we have
48 2:3%m 233a+1
Bamk('z) n( 2)77 o ( mZ)
” n?(24z)n3*m (2432+1mz)
_ Jusf génglm — S 24n

f24 24.3a+1y,

(mod 2. (4.7)

n=0
Next, we will show that B, ,, x(z) is a modular form. Applying Theorem {4.15| we
find that the level of By, x(2) is N = 2439+ m M, where M is the smallest positive

integer such that
a k «a k
243a+1mM (__2 i 23 m+2 +1 —3 m—2 >

0 d 24
00 T8 T T 3ery, T Toigariy, (mod 24),

which implies
3-2°M =0 (mod 24).
Therefore, M = 4 and the level of By, x(2) is N = 263*Tm,

The representatives for the cusps of T’y (2°3%"'m) are given by fractions c¢/d
where d|2°3°"'m and ged(c, 23*71m) = 1 (see [48, Proposition 2.1]). By Theorem
4.16| By mk(2) is holomorphic at a cusp ¢/d if and only if

_Qgcd(d, 24)? N ged(d, 48)2 ged (d, 233 Hm)? ~ged (d, 2430‘+1m)2> -0

3« 28 [ 2
24 48 + (3% + )< 9330ty 2130+,

Equivalently, B mk(2) is holomorphic at a cusp ¢/d if and only if

L= 3"m(—4G, + Gy + 4G5 — 1) + 2°(4G3 — 1) > 0,

ged(d, 24)? G = ged(d, 48)? ged(d, 233*T1m)?

5y T2 — 3 and G3 = 5 -
ged (d, 2439+1m) ged (d, 2432+ m) ged (d, 2432+ m)

where G| =
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Let d be a divisor of 263"'m. We can write d = 23"t where 0 < r; < 6,

0 <ry <a+1, and t|m. We now consider the following two cases depending on ;.

1
Case 1: Let 0 <r1 <3,0<ry <a-+1. Then G; = G, WSGlgl, and
G3 = 1. Therefore £ = 3°T'm(1 — G;) +3-2F > 3.2~

! <G <

Case 2: Let 4 <r; <6,0<ry <a+ 1. Then Gy = 4Gy, 4. 32042 =

1
1 4
and G3 = 1 which implies £ = 0.

Hence, By, m k(%) is holomorphic at every cusp c¢/d. The weight of B, k(%) is

1
(= 5 (3"‘m + 2k — 1) which is a positive integer and the associated character is
given by

_1\alat1)(3%m+2k)—1 3ok

Thus, Bamk(z) € My(To(N), x1) where ¢, N, and x; are as above. Therefore,
by Theorem m, the Fourier coefficients of B, ,, (%) are almost divisible by r = 2k,
Due to ([4.7)), this holds for @se,,(n) also. This completes the proof of Theorem [4.3|

4.4 Proof of Theorem 4.4

We proceed along the same lines as in the proof of Theorem Here, we define
P (2439 mz)

n (2432+t2mz)

Using the binomial theorem, for any integer k£ > 1, we have

773’“+1 (243a+1mz>

Cam(z) =

3k _ _ k+1
Com(z) = (23 1 (mod 3"). (4.8)
Next, we define
48 2:3%m 233a+1
Dana(z) 1= WISIL P ZB ) ot ()

T on2(242)m3m (2432t my)
77(482)772-3‘1771 (233a+1m2) n3k+173“m (243a+1mz)
n2(242)n3" (2432+2mz) '

From (4.5) and (4.8)), we have

482 2:3%m 233a+1mz
Da,m,k(’Z) n(g )77 3 ( 4 1 )
n?(24z)n3m (2432 1mz)
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f48 232 1 n
7 e UL T

We now prove that D, ., (%) is a modular form. Applying Theorem 4.15, we
find that the level of Dy, x(2) is N = 2*3°™?mM, where M is the smallest positive

integer such that

-2 1 2.32 Jh+l — 3 —3k
243a+2mM( b oy L ) =0 (mod 24),

24 48 @ 2332tlm 2432+1m 2432+2m

which gives
8-3"M =0 (mod 24).
Therefore, M = 1 and the level of D, x(2) is N = 2432
The representatives for the cusps of Ty (213*2m) are given by fractions c/d
where d|2*3°*2m and ged(c,2*3°*?m) = 1. By using Theorem [£.16] Do p(2) is

holomorphic at a cusp ¢/d if and only if

_ peed(d, 24)° | ged(d, 48)2 ged (d, 2332 Tm)?

2. 3%
24 8 T gy,
« 2 doa+2 2
b1 aa 8cd (d, 2732 m) . ged (d,213%2m)
+ (3 -3 m) 243a+1yy, -3 243a+2)yy, > 0.
Equivalently, D, k(%) is holomorphic at a cusp ¢/d if and only if
E = 3°‘+1m (—4G1 + Gz + 4G3 — G4) + gk(9G4 — 1) Z O,
d(d,24)? d(d,48)? d(d, 233% 1t m)?
where G1 = ged(d, 24) 5. Go = ged(d, 48) 5, 3:gc(, m)27
ged (d, 2439+2m) ged (d, 2439+2m) ged (d, 2439F2m)

ged(d, 243°Tm)?
ged (d, 2430+2m)*
Let d be a divisor of 2*3°t2m. We write d = 273"t where 0 < r; < 4,

and G4 =

0 <ry <a+2, and tm. We now consider the following four cases depending on

the values of r; and 75.

Case 1: Let 0 <r; <3,0<ry, <a+1. Then G; = Gy, —— T2
G3 = G4 = 1. Hence, we have £ = 3°"2m(1 — G;) + 8- 3% > 8- 3~

1 1
32(a+1)42 — — 32(at1)’

<G; <1, and

Case 2: Let 0 <r; <3, 1y =a—+ 2. Then G; = Go,

1 1
and G5 = G, = 5 Therefore, £ = 3%2m (5 — Gl) >0

Case 3: Let ry = 4,0 <ry < a+ 1. Then Gy = 4Gy, 1
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1
G4 = 4G3. and G3 = 1 Hence, we have £ = 8 - 3~

1 1

Case 4: Let 1y =4, ro = a+ 2. Then G5 = 4Gy, 1.3 = <G < 4 . 32(at1)’

1
G4 = 4G5, and G3 = 36 Therefore, £ = 0.

Therefore, Dq m k() is holomorphic at every cusp ¢/d. The weight of Dy, ., x(2)
3%m — 1
is { = ———— 4 3% which is a positive integer and the associated character is given

2
by

-1 532a3k+3°‘o¢m+3°‘m+3k71m3am+2-3k
X2(e) = <( ) :
[ ]
Thus, Domi(2) € My (Io(N), x2) where ¢, N, and x» are as above. Therefore,
by Theorem the Fourier coefficients of D, x(2) are almost divisible by r = 3F.
Due to (4.9), this holds for @3, (n) also. This completes the proof of Theorem [4.4]

4.5 Proof of Theorem 4.5

Putting t = 3*m in (1.26), we have

- 4 fofinm fiatn,
;bgam(m = T (4.10)

We define
n* (243% mz)

Eym(z) = ——7—.
m(2) 1 (253°+mz)

Applying the binomial theorem, for any integer £ > 1, we have
n2k+1 (243a+1m2)

E* (2) =
a,m(z) n2k (253a+1mz)

1 (mod 2. (4.11)

Next, we define
n(482)n3 ™ (233° T mz) "™ (2°3%Tmz)
Fa m k(Z) =
” n(24z)n(962)n3*™ (2432+1lmz)
B 77(482)773am (233a+1mz) n2k+1—3am (243a+1mz>
n(242)n(962)n2" —3%m (2530+1m z) '

Using (4.10) and - we obtain
Fonle) = n(482)n3 ™ (233°Hmz) "™ (2532 Imz)
o N n(242)n(962)n3*™ (2432+1mz)

E% (2)
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3(32vm2-1) fasf3sgttcs n f s

foafos f3iaten

Zggam<n)q24n+3(32am2fl) (mod 2k+1)' (412)
n=0

q

Now, we will show that F,, ,, x(2) is a modular form. Applying Theorem [4.15, we
find that the level of F, ,,1(z) is N = 2°3"'mM, where M is the smallest positive

integer such that

-1 1 -1 39m ok+l _ 30y 9k 4 3o
23t M| — + — + — =0 d 24
MMAST T8 T 06 T B30ty T 2iger, T 253000, (mod 24),

which implies

3-2°M =0 (mod 24).
Therefore, M = 4 and the level of F, ,, x(2) is N = 273> m.

The cusps of Ty (273*T'm) are given by fractions c¢/d where d|273*"'m and
ged(e,d) = 1. By Theorem [£.16] F, ,x(z) is holomorphic at a cusp ¢/d if and
only if

_ ged(d, 24)? N ged(d, 48)*  ged(d, 96) N 3amgcd (d, 233°F1m)*
24 48 96 2330+1Im
PSERRYET L YT

Equivalently, F, ,,x(2) is holomorphic at a cusp ¢/d if and only if

— (28 = 3*m)

L :=3"m(—4G; + 2G5 — G3 + 4G4 — 2G5 + 1) + 25(4G5 — 1) > 0,
ged(d, 24)? Q. — ged(d, 48)3 O — ged(d, 96)?
ged (d, 2530+ m)?’ ’ ged (d, 2530+ m)?’ ’ ged (d, 2°30+1m)?’
ged(d, 233%Tm)? ged(d, 2439 1m)?
- ged (d, 2539+1m)?’ o B ged (d, 2530+1m)?
Let d be a divisor of 273 'm. We can write d = 23"t where 0 < r; < 7,

where G; =

d Gs

0 <71y <a+1, and t/m. We now consider the following three cases depending on

1.

1
Case 1: Let 0<r1 <3,0<rys <a+1 Then Gy =Gy, =G5, —— < G; <1,

32at2
and G4 = G5 = 1. Hence, £ =3"'m (1 - Gy) +3-2F > 3.2k
1 1
Case 2: LetT1:4,0§T2§Oé+1. ThenG3:G2:4G1, m SGl S Z_l’

1
Gs = 4G4, and G4 = i Hence, £ = 3 - 2F,
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1

Case 3: Let 5 <71 <7, 0<7p S at 1. Then Gy = 462 = 166G, 757 <
1 1 1
< _ = = —. e . 3« _ >
G < TR G5 = 4G4, and Gy 16 Hence, £L=12-3*m <16 Gl) >0

This proves that F,,, () is holomorphic at every cusp ¢/d. The weight of
1
Fomp(z) is £ = 3 (3"‘m + 2k — 1), which is a positive integer and the associated
character is given by

( ) <(_1)424~3“m+3-2’“—43(a+1)(3am+2’€)—1m3am+2k)
X3(®) = i

Thus, Fymk(z) € My (To(N), x3) where ¢, N, and x3 are as above. Therefore,
by Theorem , the Fourier coefficients of F, ,,, () are almost divisible by r = 2k,
Due to (4.12), this holds for bsa,,(n) also. This completes the proof of Theorem .

4.6 Proof of Theorem (4.6

We proceed along the same lines as in the proof of Theorem Here, we define
773 (253a+1mz)

Com(2) 1= opgartngz)

Using the binomial theorem, for any integer k£ > 1, we have
n3k+1 (253a+1mz)
773k (2532+2mz)

G (2) = 1 (mod 3¥1). (4.13)

Next, we define

n(482)n3 ™ (233° T mz) 3™ (253*Tmz)
n(24z)n(962)n3*™ (2432+Imz)

n(482)n> ™ (233°‘+1mz) 3Rt (95304 )

n(242)n(962)n3m (2430t 1mz) 3" (2532+2mz)

From and - we have
Homp(2) = nsz)n” (233a+1niz) 7 (25 me)
™ 7(242)(962)77 ™ (273 1mz)
3(32m?-1) f48f23;3a+1 f53a+1m

f24f96f243a+1m

B3Qm(n)qz4n+3(32ﬂm271) (mod 3¢+1). (4.14)

Homp(2) = ngm(z)

q

I
WE

Il
o

n

Next, we will prove that H, ,,x(2) is a modular form. Applying Theorem m,
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we find that the level of H, ,x(2) is N = 253°™2mM, where M is the smallest

positive integer such that

1 1 -1 3%m _3om,
232y M — + — + —
MM ST T a8 T 96 T Baeriy, T 2i30riy
3+l 4 gy, gk

253a+1m + 253a+2m) =0 (mOd 24)’
which gives

8-3*M =0 (mod 24).
Thus, M =1 and the level of H,,,x(2) is N = 2°3*2m,

The cusps of Ty (2°3°*2m) are given by fractions c¢/d where d|2°3*"?m and

ged(e,d) = 1. By Theorem [£.16] Hai(2) is holomorphic at a cusp ¢/d if and

only if
ged(d, 24)? | ged(d, 48)2  ged(d, 96)2 \ gay2ed (4 23301 p)?
- - m
24 48 96 2330+1m
490+1,,,)2 52a+1,,,)2 52a+2,,,)2
B 3°‘mng (d,2*3*"m) T (37m + 3) ged (d,2°3*m)" 3kngd (d,2°3%m) >0

243a+1m 253a+1m 253a+2m -

Equivalently, H, k(%) is holomorphic at a cusp ¢/d if and only if

L= 3"T"'m(—4G, + 2G5 — G3 + 4G, — 2G5 + Gg) + 3°(9Gs — 1) > 0,
ged(d, 24)* ged(d, 48)? ged(d, 96)?

ged (d, 2530+2m)?’ 2T ged (d, 2530+2m)?’ °T ged (d, 2°30+2m)?’
_ged(d, 283 m)? o — ged(d, 2439 m)? _ged(d, 2°3T m)?
 ged (d, 2532+2m)? ° ged (d, 2530+2m)’ o  ged (d, 25322m)*

Let d be a divisor of 2°3t2m. We can write d = 273"t where 0 < r; < 5,

where G| =

d Gg

0 <ry <a+2and tjm. We now consider the following six cases depending on

and 7y.

1
Case 1: LetOS’TjS?),OSTQSOJ—Fl. ThenGlngng,WSGlgl,

and G4 = G5 = Gg = 1. Therefore, £ = 3°7?m(1 — G;) +8-3* > 8.3~

Case 2: Let 0 <r; <3, ry=a-+ 2. Then G; = Gy = G3,
1

1 1
- - — — N _ Qa+2 I
et <G < S2(atD) and Gy = G5 = Gg = 5 Therefore, £L = 3*"*m (9 Gl) >
0.
1 1
Case 3: Let r1 =4, 0 <ry <a+ 1. Then G3 = Gy = 4G, 1 50 <G; < 7

1
Gs = Gg = 4G4, and G4 = T Hence, £ =8 - 3F,

75



Case 4: Let 11 =4, ro = a+ 2. Then G3 = G4 = 4G,

1 1 1
<G G5 = Gg = 4Gy, and G4 = 36 Hence, £ = 0.

4. 320+ = 1 = 4 . 32(a+1)”
Case b: Let 11 =5, 0 <ry <a-+1. Then G3 = 4G, = 16GH,

1 1 1
16 . 32at2 1§ Gl S 1_6; GG = 4G5 = 16G47 and G4 = E Therefore’ E — 12 X
3% m <1—6—G1) +8-3F>8. 3k

Case 6: Let r1 =5, 19 = a4+ 2. Then G3 = 4G5 = 16G],

16 - 32(at1)z2 <G < 16. 321’ G = 4G5 = 16G4, and G4 = i Therefore,

1
:12.a+1 - > 0.
L 3 m(144 Gl)_()

This proves that H, ,,x(2) is holomorphic at every cusp ¢/d. The weight of

. 3*m —1 D e .
Homp(z)isl = T+3k’ which is a positive integer and the associated character
is given by
( ) (_1)524~3am+10.3k—432a3k+3aam+3am+3k—1m3am+2~3'€
o) —
X4 .

Thus, Homi(2) € My (o(N), x4) where ¢, N, and x4 are as above. Therefore,
by Theorem the Fourier coefficients of H, ,, x(2) are almost divisible by r = 3*.
Due to (#.14)), the same holds for bga,,(n) also. This completes the proof of Theorem
4.0l

4.7 Proof of Theorem 4.7

Consider t = p{'py* - - - p&m where p;’s are primes. Then we have

— foft fi
bi(n)q" = : 4.15
> B = S (4.15)
For a positive integer i, we define
P’ (24
Ki(z) == L@’Z)
1 (24p;*z)
In view of the binomial theorem, for any integer £ > 1, we have
a;+k
Pi (24
Ky = R4 o gy, (4.16)

07 (2495 2)
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Define

n (48z) n' (24tz)n' (96tz)

n(242) 0 (962) nt (48tz) ()
gt (242)n (482) n' (24t2) ' (96t2)

T n(962) g (d8tz) ot (24p)

From and -, we arrive at

n (48z) n* (24tz) n* (96t2)

Li,k,t(z> L=

Liwd2) = - 50y 962 ot (4312)
=q 3(t2-1) f48f24tf96t
B f24f96f48t
= bi(n)g" Y (mod pit). (4.17)
n=0

Next, we show that L, (z) is a modular form. Applying Theorem [4.15] we first
estimate the level of eta quotient B; x¢(z) . The level of L; ;. +(2) is N = 96tM, where

M is the smallest positive integer which satisfies

a;+k k
o1 1 -1ttt —p
o6tM (L~ T o Ty i) =0 (mod 24

( 24 48 " 06 24 4%t o6t 24p?1> (mod 24)

which gives

1
4tM pk <p;.“ — ai) =0 (mod 24).
p;

Hence, M = 6 and N = 263,

The cusps of I'g (263%t) are given by fractions ¢/d where d|2°3%*¢ and ged(c, d) = 1.
By Theorem [4.16, L; () is holomorphic at a cusp ¢/d if and only if
(ot _ ) BOA.20)° | ged(d.48)"  ged(d,96)°  yged (d,24p0)"

Pi 24 48 o6 T o
2 2 2
; ged(d, 24t) Ly ged(d, 48t) N ged(d, 96t) >0.
241 A8t 961

Equivalently, L; s :(2) is holomorphic at a cusp ¢/d if and only if

L= —4G +2Gy — G3 + 4G4 — 2G5 + 1 + 4 (pf TGy — pi ™" Gg) > 0,

ged(d, 24)? ged(d, 48)? ged(d, 96)? ged(d, 24t)*
here Gy = B8N0 o BCALAS) o BCAGR) o _ 80 2
Where ged(d, 96t)2" 2 ged(d,96t)2" T ged(d, 96t)2 T ged(d, 96t)2’
_ ged(d, 48t)* nd G ged (d, 24p™)?
7 ged(d, 96t)2 67 “ged(d, 96t)2

Let d be a divisor of 263%t. We can write d = 2"3™piu where 0 < r; < 6,

0<1ry<2 0<s <a; and ult but p; { u. We now consider the following three
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cases depending on 7.

1

Case 1: Let0§7’1§3,0§r2§2. TheHG1:G2:G32ﬁ7G4:G5:1,
usp;

1
and Gg = —. Therefore,
u

1 prte pi 1 Pt (P —p¥
L= (1 - u2p28) +4 <u2p25 - u2 =3(1- u2p25 + 4? 25+ai '

Since s < a;, we have £ > 0.

1
Case 2: Let 1y =4, 0 <1y <2. Then G5 = Gy = 4G, G = T2 G5 = 4Gy,
usp;
1 1
Gy = 7 and Gg = el Therefore,
4 pf‘f'ai B pf—ai _ p_f p?ai _ pgs -0
4u2p?s A2 u2 p?erai -
1

Case 3: Let 5 < r; <6,0 <7y <2 Then Gz = 4G, = 16G1, Gy = ———,
16u?p;*

1
G5 = 4G4, G4 = E, and GG = 16“2

3 1 e ) 3 1 Fo(p = pE
LI—(l— 2 28>+4 p22 28_p1 2 :_(1_ 2 25)+ pz2 (pz 25+apz ) ZO
4 usp; 16u=p; 16u 4 usp; 4u p;o

Therefore, L;(z) is holomorphic at every cusp ¢/d. The weight of L;x:(2) is

. Hence,

1 , . .
= 3 (piC (pf" — 1)+t — 1), which is a positive integer and the associated character

is given by

a;+k

((—1)@31% R (pzi>p§>

Xs(®) =

Hence, L;.(2) € My (I'o(N), x5) where ¢, N, and x5 are as above. Therefore,
by Theorem m, the Fourier coefficients of B, j (%) are almost divisible by r = pf.
Due to (4.17), this holds for b,(n) also. Thus, we complete the proof of Theorem
47

4.8 Proofs of Theorems 4.9 and 4.10

First we recall the following result of Ono and Taguchi [88] on the nilpotency of

Hecke operators.
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Theorem 4.18. [88, Theorem 1.3 (3)] Let n be a nonnegative integer and k be a
positive integer. Let x be a quadratic Dirichlet character of conductor 9 -2%. Then
there is an integer ¢ > 0 such that for every f(z) € Mp(I'o(9 - 2%),x) N Z[[q]] and

everyt > 1,

FNTp | T, -+ - [Ty, =0 (mod 2t>

c+t

whenever the primes py, ..., Pers are coprime to 6.

Now, we apply the above theorem to the modular forms B x(z) and Fix(2)

to prove Theorem [£.9) and [4.10] respectively.

Proof of Theorem[.9. Putting a =1 and m =1 in (4.7)), we find that

Biix(z) = as(n)g®""  (mod 21,
n=0
which yields
o fe'e) n
B = nE - (_) n d2k+1 ' 41
k) = B =Y () a2 s

Now, Bi1x(2) € May-141 (To(9-25), x6) for & > 1 where x¢ is the associated
character (which is x; evaluated at &« = 1 and m = 1). In view of Theorem {4.18] we

find that there is an integer ¢ > 0 such that for any d > 1,

Biag(2) | Ty [ Ty |-+ | Tpopy =0 (mod 29)
whenever pi,...,perq are coprime to 6. It follows from the definition of Hecke
operators that if pq,...,peciq are distinct primes and if n is coprime to p; - - peid,
then
Bi(pr-pera-n) =0 (mod 29). (4.19)

Combining (4.18)) and (4.19)), we complete the proof of the theorem.

Proof of Theorem[{.10. Taking o« =1 and m = 1 in (4.12)), we have

Fiik(2) = Zgg(n)q24”+24 (mod 2~1),
n=0
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which yields

oo o0 _ o 24
Fran(z) =Y Fe(n)q"=> b (” 5 ) ¢" (mod 2F*1). (4.20)
n=0 n=0

Now, Fi14(2) € My-1,.4 (To(9-27),x7) for k > 1 where x7 is the associated
character (which is y3 evaluated at a = 1 and m = 1). In view of Theorem {4.18, we

find that there is an integer v > 0 such that for any v > 1,

Fiaw(2) [Ty [Ty |-+ | Tyy, =0 (mod 27)
whenever ¢y, ..., q.1q are coprime to 6. From the definition of Hecke operators, we
have that if ¢y, ..., g, are distinct primes and if n is coprime to ¢y - - - gu1., then
Fe (@i Quiv-n) =0 (mod 27). (4.21)
Combining (4.20) and (4.21]), we complete the proof of the theorem. O

4.9 Proofs of Theorems 4.11-4.13

First, we prove Theorem [4.11]

Proof of Theorem[{.11. From (1.26), we have

7 afi
2 hlma" =L

which under modulo 2 reduces to

"ty f

th = L =22t (mod 2). (4.22)

Using (1.19), the above equation can be rewritten as

Zl_)t(n)q” = (Z ct(n)q2") (Z ct(n)q”> (mod 2).

n=0 n=0

Equating the coefficients of ¢" from both sides of the above equation, we find that

th ci(n —2k) (mod 2).
Again, putting ¢t = 2% in ([4.22), we have

Zb2k =" = 1f—3 = 13(2%_1) (mod 2).
i



Thus, we complete the proof of Theorem [4.11] O

We prove Theorem with the aid of the following classical result due to
Landau [81].

Lemma 4.19. Let r(n) and s(n) be quadratic polynomials. Then

() ()

Proof of Theorem[{.14 From Theorem [4.11] we have

15 lacunary modulo 2.

bor(n) = 3(2%71) (mod 2).

Putting t = 1 in the above, we get
by(n) = f) = fifs (mod 2). (4.23)

Again, from Euler’s pentagonal number theorem [29, Corollary 1.3.5], we have

fi= Z (=1)ngnBrtl/2 = Z "B tI/2 0 (mod 2),  where | ¢ |< 1. (4.24)

n=—oo n=—0oo

Magnifying ([4.24) by ¢ — ¢, we find that

(e 9]

fo= > " (mod 2). (4.25)
Combining (4.23)), (4.24]) and (4.25]) and then applying Lemma [4.19| we complete
the proof. O

Lastly, we prove Theorem using a result from [78].

Proof of Theorem|[/.15. From (4.23)), we find that

ba(n) = f2 = f7%° (mod 2).

Again, from [78, Theorem 10|, we have that if £ = 2¢ + 1 and p is a prime such
that p = 7 (mod 8), then f! is p*-even with base r = —3(2¢73 + 273) (mod p?).
Employing this result with d = 3, we arrive at Theorem [£.13] O
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4.10 Proof of Theorem 4.14

First of all, we prove the following two lemmas.

Lemma 4.20. Let p > 3 be a prime and po(n) be defined by (4.2)). We have

(04 220 = i (04 25 ) 4 0 () (moa 2
(4.26)
where P(p, k) and Q(p, k) are defined by
P(p,k+2)=7n(p)P(p,k+ 1) — P(p, k) (4.27)
and
Qp k +2) =m(p)Qp, k +1) — Qlp, k) (4.28)

with P(p,0) =0, P(p,1) =1, Q(p,0) =1 and Q(p,1) = 0.

Proof. We will prove the lemma by induction on & using the method of Xia [126]
based on an identity of Newman [85] and Lucas sequences. We observe that is
true for k = 0 and k£ = 1 since P(p,0) =0, P(p,1) =1, Q(p,0) = 1, and Q(p,1) = 0.
We now assume that is true for K = m and k = m + 1 for some m > 0, which

gives
Py (pzmn + W) = P(p,m)py (p2n + W) +Q(p, m)pe(n),
(4.29)
and
Do (me”n + W) = P(p,m+ 1)po <p2n + W) + Q(p, m + 1)py(n).
(4.30)
Newman [85] proved that if p > 3 is a prime, then
3(p° — 1)
Py <p2n + @) = x(n)ps(n) = ppy TL_TS : (4.31)

where x(n) is given by

3(p* — 1 @-1)(p-19) 31 3= _
x(n) =po (%) +(=1) s P2 - —2— .
p I D :
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For any prime p > 3, we have

pPP=p =1 (mod ?2). (4.32)

We can easily observe that

3(p*—1 3(p*—1
X (pn + %) =X (an + (pT)) =m(p) (mod 2), (4.33)
where 7(p) is given by (4.1)).
3(p?*—1
Replacing n by p?n + % in (4.31)), we have

Po (p4n + @) =X (an + @) Po <p2n + M) — p'po(n).

Taking modulo 2 on both sides of above and then employing (4.32]) and ( -,

we arrive at

3(p* -1 3(p* -1
Do (p4n + %) = 7w(p)py <p2n + %) —po(n) (mod 2).  (4.34)

Again, replacing n by p*™n +
(4.30), we find that

3 2m+4 1
Do <p2m+4n+ (p 8 ))

3 2m+2 __ 1 3 2m 1
7(p)po (p2m+2n+ (p 5 )) — g (men+ (p < ))

3(p* — 1
% in (4.34)) and then utilizing (4.29) and

7(p) (P(nm + 1)py (p n+ M) +Qp,m+ 1)p9(n))

- (P(Z% m)py (p n+ ) +Q ))

= (m(p)P(p,m +1) — (p n+ 30— 1))
+ (m(p)Q(p,m + 1) — Q(p,m)) pg
= P(p,m +2)py (an + @) + Q(p,m + 2)py(n) (mod 2),

which implies that (4.26) holds for £ = m + 2 also. Hence, by the principle of

mathematical induction, we complete the proof of the lemma. O

Lemma 4.21. For p > 3 prime, we have
7(p)P(p,u(p)) + Q(p,u(p)) =0 (mod 2), (4.35)
where 7(p), P(p, k) and Q(p, k) are given by (4.2)), (4.27) and (4.28)) respectively.
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Proof. From (4.27)) and (4.28]), we obtain the first three terms of P(p, k) and Q(p, k)

as follows:

P(p,0) =0, P(p,1) =1, P(p,2) = n(p) (4.36)
and

Qp,0) =1,Q(p,1) = 0,Q(p,2) = —p. (4.37)
Now, the proof is evident from , and . n

Proof of Theorem[{.1] First we substitute (4.31)) in (4.26) to arrive at
3(p*F -1
Do (p2kn + (p ))

8
L3 =1)
= Plp k) | x(mpo(n) = o | ——55— | | + Qv K)m(n)
.3 =)
= (P(p k)x(n) + Qv k) po(n) = Plp. k)po | ——5— ] (mod 2). (4.38)

3(p? -1
Replacing n by pn + % in (4.38)), we find that

3 2k+2 1
Do (p2k+1n+ (p < ))

= (P07 + Q) (1 XY — b (2 (mod 2

(4.39)

Substituting & by u(p) in (4.39) and then employing (4.35)) yields

Po (pzu(p)“n 3w QU(M: - 1)) = P(p,u(p))po <g) (mod 2). (4.40)

Replacing n by pn in (4.40]), we have

po (2042 1 30 MDY 2 P(p,u(p))po (n)  (mod 2). (4.41)
( 8

Iterating (4.41)) for k£ > 1 times, we arrive at

2(u(p)+1k _
p (00 4 S0 < (P () (mod D). (442
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Also, if p{ n, then (4.40)) implies that

3(p2e+2 _q
Po (pQ“(p)“n + . 3 )) =0 (mod 2). (4.43)

3(p?uP)+2 — 1)
5 in (4.42)) and then employing (4.43]),

Replacing n by p?*®+1n 4+

we obtain

3(p2ul@)+)(k+1) _ 1
o (pQ(u(p)+1)(k+1)—1n + (p 3 )> =0 (mod 2), (4.44)

where p t n.

Again, from (4.2)) and (4.23)), we have
by(n) = po(n) (mod 2). (4.45)

Combining (4.44) and (4.45]), we complete the proof of the theorem. O

4.11 Concluding remarks

(1) Theorems of this chapter and and Theorem 1.8 of [57] discuss the
arithmetic densities of @;(n) and b,(n) for odd t. But it is not possible to
study the arithmetic densities of @ (n) and b,(n) for even t using the similar
techniques. We have studied the density of Bg(n) using another approach which
cannot be used for other even values of t. It would be interesting to study the

arithmetic densities of @,(n) and b,(n) for the even values of t.

(2) Computational evidence suggests that there are Ramanujan-type congruences
for @ (n) and b;(n) modulo powers of 2, 3, and other primes > 5 for various
t which are not covered by the results of [14] and [57]. It will be desirable to

find new congruences for @,(n) and b,(n).

(3) Asymptotic formulae for partition functions and other related functions have
been widely studied in the literature. For instance, the asymptotic formulae
for p(n) and ¢;(n) were obtained by Hardy and Ramanujan [66] and Anderson

[3], respectively. It would be of interest to find an asymptotic formula for

ar(n).
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(4) Bandyopadhyay and Baruah [14] deduced several arithmetic identities involv-
ing @s(n), bs(n), and c5(n). A combinatorial treatment to @(n) and b,(n) might

reveal more interesting partition theoretic connections of these two functions.
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