
Chapter 4

Arithmetic Properties of Two Analogues

of t-Core Partitions

4.1 Introduction

We recall the following generating functions for the two analogues at(n) and bt(n)

from (1.25) and (1.26) of Section 1.8:
∞∑
n=0

at(n)q
n =

φt(−qt)
φ(−q)

=
f2f

2t
t

f 2
1 f

t
2t

and
∞∑
n=0

bt(n)q
n =

ψt(−qt)
ψ(−q)

=
f2f

t
t f

t
4t

f1f4f t
2t

.

Recently, Gireesh, Ray, and Shivashankar [57] proved several multiplicative for-

mulae and arithmetic identities for at(n) for t = 2, 3, 4, and 8 using Ramanujan’s

theta functions and q-series techniques. Using the theory of modular forms, they

studied the divisibility of at(n) modulo arbitrary powers of primes greater than 5.

More precisely, they proved the following theorem.

Theorem 4.1 (Gireesh, Ray, and Shivashankar [57]). Let t = pa11 · · · pamm where pi’s

Theorems 4.3, 4.4, and 4.9 of this chapter have been published in Bulletin of the Australian

Mathematical Society [117]. The rest of the results of this chapter have been published in The

Ramanujan Journal [118].
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are primes greater than or equal to 5. Then for every positive integer j, we have

lim
X→∞

#
{
0 ≤ n ≤ X : at(n) ≡ 0 (mod pji )

}
X

= 1.

Gireesh, Ray, and Shivashankar [57] also deduced a Ramanujan-type congruence

for a5(n) modulo 5 by using an algorithm developed by Radu and Sellers [92].

Bandyopadhyay and Baruah [14] proved some new identities connecting a5(n)

and c5(n). Also, for integers k ≥ 2, they found the following recurrence relation for

a5(n):

a5
(
5kn
)
=

(
5k − 1

4

)
a5(5n)−

(
5k − 5

4

)
a5(n).

Again, Bandyopadhyay and Baruah [14] studied the function b5(n) and deduced

some new identities connecting c5(n), a5(n), and b5(n). They also proved some

recurrence relations and vanishing coefficients results for b5(n). For instance, for

any nonnegative integer n and k ≥ 2, they proved the following results:

b5(10n+ 6) =
1

4
a5(2n+ 1) +

1

2
c5(n),

b5(5
k(n+ 3)− 3) =

(
5k − 1

4

)
b5(5n+ 12)−

(
5k − 5

4

)
b5(n).

Recently, Cotron et al. [48] proved the following theorem on the lacunarity of

certain eta-quotients modulo arbitrary powers of primes.

Theorem 4.2. [48, Theorem 1.1] Let G(z) =

u∏
i=1

f ri
αi

t∏
i=1

f si
βi

, and p is a prime such that

pa divides gcd(α1, α2, · · · , αu) and

pa ≥

√√√√√√√√√
t∑

i=1

βisi

u∑
i=1

ri
αi

,

then G(z) is lacunary modulo pj for any positive integer j.

We observe that the eta-quotients associated with at(n) and bt(n) do not satisfy

the conditions of Theorem 4.2, which makes the problem of studying lacunarity of

at(n) and bt(n) more interesting. In this chapter, we obtain the arithmetic densities
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of at(n) and bt(n) modulo arbitrary powers of 2 and 3 where t = 3αm. To be specific,

we prove the following theorems.

Theorem 4.3. Let k ≥ 1, α ≥ 0, and m ≥ 1 be integers with gcd(m, 6) = 1. Then

the set {
n ∈ N : a3αm(n) ≡ 0 (mod 2k)

}
has arithmetic density 1.

Theorem 4.4. Let k ≥ 1, α ≥ 0, and m ≥ 1 be integers with gcd(m, 6) = 1. Then

the set {
n ∈ N : a3αm(n) ≡ 0 (mod 3k)

}
has arithmetic density 1.

Theorem 4.5. Let k ≥ 1, α ≥ 0, and m ≥ 1 be integers with gcd(m, 6) = 1. Then

the set {
n ∈ N : b3αm(n) ≡ 0 (mod 2k)

}
has arithmetic density 1.

Theorem 4.6. Let k ≥ 1, α ≥ 0, and m ≥ 1 be integers with gcd(m, 6) = 1. Then

the set {
n ∈ N : b3αm(n) ≡ 0 (mod 3k)

}
has arithmetic density 1.

We also study the density of bt(n) modulo arbitrary powers of primes greater

than or equal to 5 for certain general values of t. In fact, we prove the following

result.

Theorem 4.7. Let k ≥ 1 be a fixed positive integer and a1, a2, · · · , am be nonnegative

integers for some positive integer m, then for t = pa11 · · · pamm where pi’s are primes

greater than or equal to 5. The the set{
n ∈ N : bt(n) ≡ 0 (mod pki )

}
has arithmetic density 1.
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As a consequence of the above theorem, we obtain the following divisibility result

for bp(n).

Corollary 4.8. Let k ≥ 1 be a fixed positive integer and p ≥ 5 be a prime. Then

the set {
n ∈ N : bp(n) ≡ 0 (mod pk)

}
has arithmetic density 1.

The fact that the action of Hecke algebras on spaces of modular forms of level

1 modulo 2 is locally nilpotent was first observed by Serre and proved by Tate (see

[110], [111], [120]). Later, this result was generalized to higher levels by Ono and

Taguchi [88]. In this chapter, we observe that the eta-quotients associated to a3(n)

and b3(n) are modular forms whose levels are in the list of Ono and Taguchi. Thus,

we use a result of Ono and Taguchi to find the following congruences for a3(n) and

b3(n).

Theorem 4.9. Let n be a nonnegative integer. Then there exists an integer c ≥ 0

such that for every d ≥ 1 and distinct primes p1, . . . , pc+d coprime to 6, we have

a3

(p1 · · · pc+d · n
24

)
≡ 0 (mod 2d)

whenever n is coprime to p1, . . . , pc+d.

Theorem 4.10. Let n be a nonnegative integer. Then there exists an integer u ≥ 0

such that for every v ≥ 1 and distinct primes q1, . . . , qu+v coprime to 6, we have

b3

(
q1 · · · qu+v · n− 24

24

)
≡ 0 (mod 2v)

whenever n is coprime to q1, . . . , qu+v.

Next, we study some modulo 2 behaviours of bt(n). Certain relations between

at(n) and ct(n) has been deduced in [14] and [57]. In the following result, we show

that bt(n) can also be expressed in terms of ct(n) modulo 2. Recently, Keith and

Zanello [78] studied the parity of pure eta-powers f t
1 for different values of t. We

prove that if the only prime factor of t is 2, then the parity of bt(n) is same as such

an eta-power.
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Theorem 4.11. Let n be a nonnegative integer.

(i) For all t ≥ 2, we have bt(n) ≡
∞∑
k=0

ct(k)ct(n− 2k) (mod 2).

(ii) If t = 2k with k ≥ 1, then bt(n) ≡ f
3(22k−1)
1 (mod 2).

In Theorems 4.5–4.7, we have discussed the divisibility of bt(n) for odd values

of t. Corresponding density properties for even t cannot be studied using similar

techniques. However, we adopt a different approach to prove the following theorem.

Theorem 4.12. The series
∞∑
n=0

b2(n)q
n is lacunary modulo 2.

Consider f t
1 =

∞∑
n=0

αt(n)q
n. Keith and Zanello [78] also deduced several infinite

families of congruences for αt(n) modulo 2. They defined f t
1 to be p2-even at a

prime p with base r ∈ {0, . . . , p2 − 1} if αt(p
2n + kp + r) ≡ 0 (mod 2) for all

k ∈ {1, . . . , p− 1}. Then they showed that f t
1 is p2-even for some specific choices of

p and t. We use one such result from [78] to prove the following infinite family of

congruences for b2(n).

Theorem 4.13. Let p be a prime such that p ≡ 7 (mod 8) and r ∈ {0, . . . , p2 − 1}

with r ≡ −3(1 + 2−3) (mod p2). Then for all k ∈ {1, 2, . . . , p− 1}, we have

b2
(
p2n+ kp+ r

)
≡ 0 (mod 2).

We recall that for a prime p ≥ 3, the Legendre symbol

(
a

p

)
L

is defined by

(
a

p

)
L

:=


1, if a is a quadratic residue modulo p and p ∤ a,

0, if p | a,

−1, if a is a quadratic nonresidue modulo p .

Next, we prove an infinite family of congruences for b2(n) for more general choices

of primes as stated in the following theorem. To state the theorem, first we define

π(p) := p9

(
3(p2 − 1)

8

)
+ (−1)

(p−1)(p−19)
8

(
3(p2−1)

8

p

)
L

, (4.1)
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where p9(n) is defined by
∞∑
n=0

p9(n)q
n = f 9

1 . (4.2)

Theorem 4.14. Let p ≥ 3 be a prime. We define

u(p) :=

1, if π(p) ≡ 0 (mod 2),

2, if π(p) ̸≡ 0 (mod 2).

(4.3)

Then, for n ≥ 0, k ≥ 0, and p ∤ n, we have

b2

(
p2(u(p)+1)(k+1)−1n+

3
(
p2(u(p)+1)(k+1) − 1

)
8

)
≡ 0 (mod 2). (4.4)

We organize the rest of this chapter as follows. In the next section, we state some

preliminary results of the theory modular forms. We then prove Theorems 4.3–4.7

in Sections 4.3–4.7, respectively. We deduce Theorems 4.9 and 4.10 in Section 4.8.

Theorems 4.11–4.13 are then established in Section 4.9. In Section 4.10, we prove

Theorem 4.14 and we conclude the chapter by mentioning some directions for further

work in Section 4.11.

4.2 Preliminary results

First, we recall two important theorems regarding eta-quotients and the theory

modular forms from [87, p. 18].

Theorem 4.15. [87, Theorem 1.64] If f(z) =
∏
δ|N

η(δz)rδ is an eta-quotient such

that ℓ =
1

2

∑
δ|N

rδ ∈ Z,

∑
δ|N

δrδ ≡ 0 (mod 24) and
∑
δ|N

N

δ
rδ ≡ 0 (mod 24),

then f(z) satisfies

f

(
az + b

cz + d

)
= χ(d)(cz + d)ℓf(z)
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for every

a b

c d

 ∈ Γ0(N). Here, the character χ is defined by χ(d) :=

(
(−1)ℓs

d

)
,

where s :=
∏
δ|N

δrδ .

Consider f to be an eta-quotient which satisfies the conditions of Theorem 4.15

and that the associated weight ℓ is a positive integer. If f(z) is holomorphic at all the

cusps of Γ0(N), then f(z) ∈Mℓ (Γ0(N), χ). The necessary criterion for determining

orders of an eta-quotient at cusps is given by the following theorem.

Theorem 4.16. [87, Theorem 1.64] Let c, d and N be positive integers with d|N

and gcd(c, d)=1. If f is an eta-quotient satisfying the conditions of Theorem 4.15

for N , then the order of vanishing of f(z) at the cusp (c/d) is

N

24

∑
δ|N

gcd(d, δ)2rδ
gcd(d,N/d)dδ

.

Now, we recall a deep theorem of Serre [87, p. 43] which will be used in proving

Theorems 4.3–4.7.

Theorem 4.17. [87, p. 43] Let g(z) ∈Mk(Γ0(N), χ) has Fourier expansion

g(z) =
∞∑
n=0

b(n)qn ∈ Z[[q]].

Then for a positive integer r, there is a constant α > 0 such that

#{0 < n ≤ X : b(n) ̸≡ 0 (mod r)} = O
(

X

(logX)α

)
.

Equivalently,

lim
X→∞

#{0 < n ≤ X : b(n) ̸≡ 0 (mod r)}
X

= 0.

4.3 Proof of Theorem 4.3

Putting t = 3αm in (1.25), we have
∞∑
n=0

a3αm(n)q
n =

f2f
2·3αm
3αm

f 2
1 f

3αm
2·3αm

. (4.5)

We define

Aα,m(z) :=
η2 (233α+1mz)

η (243α+1mz)
.
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For any prime p and positive integer j, we have

(q; q)p
j

∞ ≡ (qp; qp)p
j−1

∞ (mod pj).

Using the above relation, for any integer k ≥ 1, we get

A2k

α,m(z) =
η2

k+1
(233α+1mz)

η2k (243α+1mz)
≡ 1 (mod 2k+1). (4.6)

Next, we define

Bα,m,k(z) :=
η(48z)η2·3

αm (233α+1mz)

η2(24z)η3αm (243α+1mz)
A2k

α,m(z)

=
η(48z)η2·3

αm+2k+1
(233α+1mz)

η2(24z)η3αm+2k (243α+1mz)
.

In view of (4.5) and (4.6), we have

Bα,m,k(z) ≡
η(48z)η2·3

αm (233α+1mz)

η2(24z)η3αm (243α+1mz)

≡
f48f

2·3αm
233α+1m

f 2
24f

3αm
24·3α+1m

≡
∞∑
n=0

a3αm(n)q
24n (mod 2k+1). (4.7)

Next, we will show that Bα,m,k(z) is a modular form. Applying Theorem 4.15, we

find that the level of Bα,m,k(z) is N = 243α+1mM , where M is the smallest positive

integer such that

243α+1mM

(
−2

24
+

1

48
+

2 · 3αm+ 2k+1

233α+1m
+

−3αm− 2k

243α+1m

)
≡ 0 (mod 24),

which implies

3 · 2kM ≡ 0 (mod 24).

Therefore, M = 4 and the level of Bα,m,k(z) is N = 263α+1m.

The representatives for the cusps of Γ0 (2
63α+1m) are given by fractions c/d

where d|263α+1m and gcd(c, 263α+1m) = 1 (see [48, Proposition 2.1]). By Theorem

4.16, Bα,m,k(z) is holomorphic at a cusp c/d if and only if

−2
gcd(d, 24)2

24
+

gcd(d, 48)2

48
+
(
3αm+ 2k

)(
2
gcd (d, 233α+1m)

2

233α+1m
− gcd (d, 243α+1m)

2

243α+1m

)
≥ 0.

Equivalently, Bα,m,k(z) is holomorphic at a cusp c/d if and only if

L := 3αm(−4G1 +G2 + 4G3 − 1) + 2k(4G3 − 1) ≥ 0,

whereG1 =
gcd(d, 24)2

gcd (d, 243α+1m)2
, G2 =

gcd(d, 48)2

gcd (d, 243α+1m)2
, andG3 =

gcd(d, 233α+1m)2

gcd (d, 243α+1m)2
.

69



Let d be a divisor of 263α+1m. We can write d = 2r13r2t where 0 ≤ r1 ≤ 6,

0 ≤ r2 ≤ α+1, and t|m. We now consider the following two cases depending on r1.

Case 1: Let 0 ≤ r1 ≤ 3, 0 ≤ r2 ≤ α + 1. Then G1 = G2,
1

32αt2
≤ G1 ≤ 1, and

G3 = 1. Therefore L = 3α+1m(1−G1) + 3 · 2k ≥ 3 · 2k.

Case 2: Let 4 ≤ r1 ≤ 6, 0 ≤ r2 ≤ α + 1. Then G2 = 4G1,
1

4 · 32αt2
≤ G1 ≤ 1

4
,

and G3 =
1

4
which implies L = 0.

Hence, Bα,m,k(z) is holomorphic at every cusp c/d. The weight of Bα,m,k(z) is

ℓ =
1

2

(
3αm+ 2k − 1

)
which is a positive integer and the associated character is

given by

χ1(•) =

(
(−1)ℓ3(α+1)(3αm+2k)−1m3αm+2k

•

)
.

Thus, Bα,m,k(z) ∈ Mℓ (Γ0(N), χ1) where ℓ, N , and χ1 are as above. Therefore,

by Theorem 4.17, the Fourier coefficients of Bα,m,k(z) are almost divisible by r = 2k.

Due to (4.7), this holds for a3αm(n) also. This completes the proof of Theorem 4.3.

4.4 Proof of Theorem 4.4

We proceed along the same lines as in the proof of Theorem 4.3. Here, we define

Cα,m(z) :=
η3 (243α+1mz)

η (243α+2mz)
.

Using the binomial theorem, for any integer k ≥ 1, we have

C3k

α,m(z) =
η3

k+1
(243α+1mz)

η3k (243α+2mz)
≡ 1 (mod 3k+1). (4.8)

Next, we define

Dα,m,k(z) :=
η(48z)η2·3

αm (233α+1mz)

η2(24z)η3αm (243α+1mz)
C3k

α,m(z)

=
η(48z)η2·3

αm (233α+1mz) η3
k+1−3αm (243α+1mz)

η2(24z)η3k (243α+2mz)
.

From (4.5) and (4.8), we have

Dα,m,k(z) ≡
η(48z)η2·3

αm (233α+1mz)

η2(24z)η3αm (243α+1mz)
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≡
f48f

2·3αm
233α+1m

f 2
24f

3αm
24·3α+1m

≡
∞∑
n=0

a3αm(n)q
24n (mod 3k+1). (4.9)

We now prove that Dα,m,k(z) is a modular form. Applying Theorem 4.15, we

find that the level of Dα,m,k(z) is N = 243α+2mM , where M is the smallest positive

integer such that

243α+2mM

(
−2

24
+

1

48
+

2 · 3αm
233α+1m

+
3k+1 − 3αm

243α+1m
+

−3k

243α+2m

)
≡ 0 (mod 24),

which gives

8 · 3kM ≡ 0 (mod 24).

Therefore, M = 1 and the level of Dα,m,k(z) is N = 243α+2m.

The representatives for the cusps of Γ0 (2
43α+2m) are given by fractions c/d

where d|243α+2m and gcd(c, 243α+2m) = 1. By using Theorem 4.16, Dα,m,k(z) is

holomorphic at a cusp c/d if and only if

− 2
gcd(d, 24)2

24
+

gcd(d, 48)2

48
+ 2 · 3αmgcd (d, 233α+1m)

2

233α+1m

+
(
3k+1 − 3αm

) gcd (d, 243α+1m)
2

243α+1m
− 3k

gcd (d, 243α+2m)
2

243α+2m
≥ 0.

Equivalently, Dα,m,k(z) is holomorphic at a cusp c/d if and only if

L := 3α+1m (−4G1 +G2 + 4G3 −G4) + 3k(9G4 − 1) ≥ 0,

where G1 =
gcd(d, 24)2

gcd (d, 243α+2m)2
, G2 =

gcd(d, 48)2

gcd (d, 243α+2m)2
, G3 =

gcd(d, 233α+1m)2

gcd (d, 243α+2m)2
,

and G4 =
gcd(d, 243α+1m)2

gcd (d, 243α+2m)2
.

Let d be a divisor of 243α+2m. We write d = 2r13r2t where 0 ≤ r1 ≤ 4,

0 ≤ r2 ≤ α + 2, and t|m. We now consider the following four cases depending on

the values of r1 and r2.

Case 1: Let 0 ≤ r1 ≤ 3, 0 ≤ r2 ≤ α + 1. Then G1 = G2,
1

32αt2
≤ G1 ≤ 1, and

G3 = G4 = 1. Hence, we have L = 3α+2m(1−G1) + 8 · 3k ≥ 8 · 3k.

Case 2: Let 0 ≤ r1 ≤ 3, r2 = α + 2. Then G1 = G2,
1

32(α+1)t2
≤ G1 ≤ 1

32(α+1)
,

and G3 = G4 =
1

9
. Therefore, L = 3α+2m

(
1

9
−G1

)
≥ 0.

Case 3: Let r1 = 4, 0 ≤ r2 ≤ α + 1. Then G2 = 4G1,
1

4 · 3(α+1)t2
≤ G1 ≤ 1

4
,
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G4 = 4G3. and G3 =
1

4
. Hence, we have L = 8 · 3k.

Case 4: Let r1 = 4, r2 = α + 2. Then G2 = 4G1,
1

4 · 3(α+1)t2
≤ G1 ≤

1

4 · 32(α+1)
,

G4 = 4G3, and G3 =
1

36
. Therefore, L = 0.

Therefore, Dα,m,k(z) is holomorphic at every cusp c/d. The weight of Dα,m,k(z)

is ℓ =
3αm− 1

2
+3k which is a positive integer and the associated character is given

by

χ2(•) =

(
(−1)ℓ32α3

k+3ααm+3αm+3k−1m3αm+2·3k

•

)
.

Thus, Dα,m,k(z) ∈ Mℓ (Γ0(N), χ2) where ℓ, N , and χ2 are as above. Therefore,

by Theorem 4.17, the Fourier coefficients of Dα,m,k(z) are almost divisible by r = 3k.

Due to (4.9), this holds for a3αm(n) also. This completes the proof of Theorem 4.4.

4.5 Proof of Theorem 4.5

Putting t = 3αm in (1.26), we have
∞∑
n=0

b3αm(n)q
n =

f2f
3αm
3αm f

3αm
4·3αm

f1f4f 3αm
2·3αm

. (4.10)

We define

Eα,m(z) :=
η2 (243α+1mz)

η (253α+1mz)
.

Applying the binomial theorem, for any integer k ≥ 1, we have

E2k

α,m(z) =
η2

k+1
(243α+1mz)

η2k (253α+1mz)
≡ 1 (mod 2k+1). (4.11)

Next, we define

Fα,m,k(z) :=
η(48z)η3

αm (233α+1mz) η3
αm (253α+1mz)

η(24z)η(96z)η3αm (243α+1mz)
E2k

α,m(z)

=
η(48z)η3

αm (233α+1mz) η2
k+1−3αm (243α+1mz)

η(24z)η(96z)η2k−3αm (253α+1mz)
.

Using (4.10) and (4.11), we obtain

Fα,m,k(z) ≡
η(48z)η3

αm (233α+1mz) η3
αm (253α+1mz)

η(24z)η(96z)η3αm (243α+1mz)
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≡ q3(3
2αm2−1)f48f

3αm
233α+1mf

3αm
253α+1m

f24f96f 3αm
243α+1m

≡
∞∑
n=0

b3αm(n)q
24n+3(32αm2−1) (mod 2k+1). (4.12)

Now, we will show that Fα,m,k(z) is a modular form. Applying Theorem 4.15, we

find that the level of Fα,m,k(z) is N = 253α+1mM , where M is the smallest positive

integer such that

253α+1mM

(
−1

24
+

1

48
+

−1

96
+

3αm

233α+1m
+

2k+1 − 3αm

243α+1m
+

−2k + 3αm

253α+1m

)
≡ 0 (mod 24),

which implies

3 · 2kM ≡ 0 (mod 24).

Therefore, M = 4 and the level of Fα,m,k(z) is N = 273α+1m.

The cusps of Γ0 (2
73α+1m) are given by fractions c/d where d|273α+1m and

gcd(c, d) = 1. By Theorem 4.16, Fα,m,k(z) is holomorphic at a cusp c/d if and

only if

− gcd(d, 24)2

24
+

gcd(d, 48)2

48
− gcd(d, 96)2

96
+ 3αm

gcd (d, 233α+1m)
2

233α+1m

+
(
2k+1 − 3αm

) gcd (d, 243α+1m)
2

243α+1m
−
(
2k − 3αm

) gcd (d, 253α+1m)
2

253α+1m
≥ 0.

Equivalently, Fα,m,k(z) is holomorphic at a cusp c/d if and only if

L := 3αm(−4G1 + 2G2 −G3 + 4G4 − 2G5 + 1) + 2k(4G5 − 1) ≥ 0,

where G1 =
gcd(d, 24)2

gcd (d, 253α+1m)2
, G2 =

gcd(d, 48)2

gcd (d, 253α+1m)2
, G3 =

gcd(d, 96)2

gcd (d, 253α+1m)2
,

G4 =
gcd(d, 233α+1m)2

gcd (d, 253α+1m)2
, and G5 =

gcd(d, 243α+1m)2

gcd (d, 253α+1m)2
.

Let d be a divisor of 273α+1m. We can write d = 2r13r2t where 0 ≤ r1 ≤ 7,

0 ≤ r2 ≤ α + 1, and t|m. We now consider the following three cases depending on

r1.

Case 1: Let 0 ≤ r1 ≤ 3, 0 ≤ r2 ≤ α + 1. Then G1 = G2 = G3,
1

32αt2
≤ G1 ≤ 1,

and G4 = G5 = 1. Hence, L = 3α+1m (1−G1) + 3 · 2k ≥ 3 · 2k.

Case 2: Let r1 = 4, 0 ≤ r2 ≤ α + 1. Then G3 = G2 = 4G1,
1

4 · 32αt2
≤ G1 ≤

1

4
,

G5 = 4G4, and G4 =
1

4
. Hence, L = 3 · 2k.
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Case 3: Let 5 ≤ r1 ≤ 7, 0 ≤ r2 ≤ α + 1. Then G3 = 4G2 = 16G1,
1

16 · 32αt2
≤

G1 ≤
1

16
, G5 = 4G4, and G4 =

1

16
. Hence, L = 12 · 3αm

(
1

16
−G1

)
≥ 0.

This proves that Fα,m,k(z) is holomorphic at every cusp c/d. The weight of

Fα,m,k(z) is ℓ =
1

2

(
3αm+ 2k − 1

)
, which is a positive integer and the associated

character is given by

χ3(•) =

(
(−1)ℓ24·3

αm+3·2k−43(α+1)(3αm+2k)−1m3αm+2k

•

)
.

Thus, Fα,m,k(z) ∈ Mℓ (Γ0(N), χ3) where ℓ, N , and χ3 are as above. Therefore,

by Theorem 4.17, the Fourier coefficients of Fα,m,k(z) are almost divisible by r = 2k.

Due to (4.12), this holds for b3αm(n) also. This completes the proof of Theorem 4.5.

4.6 Proof of Theorem 4.6

We proceed along the same lines as in the proof of Theorem 4.5. Here, we define

Gα,m(z) :=
η3 (253α+1mz)

η (253α+2mz)
.

Using the binomial theorem, for any integer k ≥ 1, we have

G3k

α,m(z) =
η3

k+1
(253α+1mz)

η3k (253α+2mz)
≡ 1 (mod 3k+1). (4.13)

Next, we define

Hα,m,k(z) :=
η(48z)η3

αm (233α+1mz) η3
αm (253α+1mz)

η(24z)η(96z)η3αm (243α+1mz)
G3k

α,m(z)

=
η(48z)η3

αm (233α+1mz) η3
k+1+3αm (253α+1mz)

η(24z)η(96z)η3αm (243α+1mz) η3k (253α+2mz)
.

From (4.10) and (4.13), we have

Hα,m,k(z) ≡
η(48z)η3

αm (233α+1mz) η3
αm (253α+1mz)

η(24z)η(96z)η3αm (243α+1mz)

≡ q3(3
2αm2−1)f48f

3αm
233α+1mf

3αm
253α+1m

f24f96f 3αm
243α+1m

≡
∞∑
n=0

b3αm(n)q
24n+3(32αm2−1) (mod 3k+1). (4.14)

Next, we will prove that Hα,m,k(z) is a modular form. Applying Theorem 4.15,
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we find that the level of Hα,m,k(z) is N = 253α+2mM , where M is the smallest

positive integer such that

253α+2mM

(
−1

24
+

1

48
+

−1

96
+

3αm

233α+1m
+

−3αm

243α+1m

+
3k+1 + 3αm

253α+1m
+

−3k

253α+2m

)
≡ 0 (mod 24),

which gives

8 · 3kM ≡ 0 (mod 24).

Thus, M = 1 and the level of Hα,m,k(z) is N = 253α+2m.

The cusps of Γ0 (2
53α+2m) are given by fractions c/d where d|253α+2m and

gcd(c, d) = 1. By Theorem 4.16, Hα,m,k(z) is holomorphic at a cusp c/d if and

only if

− gcd(d, 24)2

24
+

gcd(d, 48)2

48
− gcd(d, 96)2

96
+ 3am

gcd (d, 233α+1m)
2

233α+1m

− 3αm
gcd (d, 243α+1m)

2

243α+1m
+
(
3αm+ 3k+1

) gcd (d, 253α+1m)
2

253α+1m
− 3k

gcd (d, 253α+2m)
2

253α+2m
≥ 0.

Equivalently, Hα,m,k(z) is holomorphic at a cusp c/d if and only if

L := 3α+1m(−4G1 + 2G2 −G3 + 4G4 − 2G5 +G6) + 3k(9G6 − 1) ≥ 0,

where G1 =
gcd(d, 24)2

gcd (d, 253α+2m)2
, G2 =

gcd(d, 48)2

gcd (d, 253α+2m)2
, G3 =

gcd(d, 96)2

gcd (d, 253α+2m)2
,

G4 =
gcd(d, 233α+1m)2

gcd (d, 253α+2m)2
, G5 =

gcd(d, 243α+1m)2

gcd (d, 253α+2m)2
, and G6 =

gcd(d, 253α+1m)2

gcd (d, 253α+2m)2
.

Let d be a divisor of 253α+2m. We can write d = 2r13r2t where 0 ≤ r1 ≤ 5,

0 ≤ r2 ≤ α + 2 and t|m. We now consider the following six cases depending on r1

and r2.

Case 1: Let 0 ≤ r1 ≤ 3, 0 ≤ r2 ≤ α + 1. Then G1 = G2 = G3,
1

32αt2
≤ G1 ≤ 1,

and G4 = G5 = G6 = 1. Therefore, L = 3α+2m(1−G1) + 8 · 3k ≥ 8 · 3k.

Case 2: Let 0 ≤ r1 ≤ 3, r2 = α + 2. Then G1 = G2 = G3,
1

32(α+1)t2
≤ G1 ≤

1

32(α+1)
, andG4 = G5 = G6 =

1

9
. Therefore, L = 3α+2m

(
1

9
−G1

)
≥

0.

Case 3: Let r1 = 4, 0 ≤ r2 ≤ α + 1. Then G3 = G2 = 4G1,
1

4 · 32αt2
≤ G1 ≤

1

4
,

G5 = G6 = 4G4, and G4 =
1

4
. Hence, L = 8 · 3k.
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Case 4: Let r1 = 4, r2 = α + 2. Then G3 = G2 = 4G1,
1

4 · 32(α+1)t2
≤ G1 ≤

1

4 · 32(α+1)
, G5 = G6 = 4G4, and G4 =

1

36
. Hence, L = 0.

Case 5: Let r1 = 5, 0 ≤ r2 ≤ α + 1. Then G3 = 4G2 = 16G1,
1

16 · 32αt2
≤ G1 ≤ 1

16
, G6 = 4G5 = 16G4, and G4 =

1

16
. Therefore, L = 12 ·

3α+1m

(
1

16
−G1

)
+ 8 · 3k ≥ 8 · 3k.

Case 6: Let r1 = 5, r2 = α + 2. Then G3 = 4G2 = 16G1,
1

16 · 32(α+1)t2
≤ G1 ≤ 1

16 · 32(α+1)
, G6 = 4G5 = 16G4, and G4 =

1

144
. Therefore,

L = 12 · 3α+1m

(
1

144
−G1

)
≥ 0.

This proves that Hα,m,k(z) is holomorphic at every cusp c/d. The weight of

Hα,m,k(z) is ℓ =
3αm− 1

2
+3k, which is a positive integer and the associated character

is given by

χ4(•) =

(
(−1)ℓ24·3

αm+10·3k−432α3
k+3ααm+3αm+3k−1m3αm+2·3k

•

)
.

Thus, Hα,m,k(z) ∈ Mℓ (Γ0(N), χ4) where ℓ, N , and χ4 are as above. Therefore,

by Theorem 4.17, the Fourier coefficients of Hα,m,k(z) are almost divisible by r = 3k.

Due to (4.14), the same holds for b3αm(n) also. This completes the proof of Theorem

4.6.

4.7 Proof of Theorem 4.7

Consider t = pa11 p
a2
2 · · · pamm , where pi’s are primes. Then we have

∞∑
n=0

bt(n)q
n =

f2f
t
t f

t
4t

f1f4f t
2t

. (4.15)

For a positive integer i, we define

Ki(z) :=
ηp

ai
i (24z)

η (24paii z)

In view of the binomial theorem, for any integer k ≥ 1, we have

K
pki
i (z) =

ηp
ai+k
i (24z)

ηp
k
i (24paii z)

≡ 1 (mod pk+1
i ). (4.16)
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Define

Li,k,t(z) : =
η (48z) ηt (24tz) ηt (96tz)

η (24z) η (96z) ηt (48tz)
A

pki
i (z)

=
ηp

ai+k
i −1 (24z) η (48z) ηt (24tz) ηt (96tz)

η (96z) ηt (48tz) ηp
k
i (24paii )

.

From (4.15) and (4.16), we arrive at

Li,k,t(z) ≡
η (48z) ηt (24tz) ηt (96tz)

η (24z) η (96z) ηt (48tz)

≡ q3(t
2−1)f48f

t
24tf

t
96t

f24f96f t
48t

≡
∞∑
n=0

bt(n)q
24n+3(t2−1) (mod pk+1

i ). (4.17)

Next, we show that Li,k,t(z) is a modular form. Applying Theorem 4.15, we first

estimate the level of eta quotient Bi,k,t(z) . The level of Li,k,t(z) is N = 96tM , where

M is the smallest positive integer which satisfies

96tM

(
pai+k
i − 1

24
+

1

48
+

−1

96
+

t

24t
+

−t
48t

+
t

96t
+

−pki
24paii

)
≡ 0 (mod 24),

which gives

4tM pki

(
paii − 1

paii

)
≡ 0 (mod 24).

Hence, M = 6 and N = 2632t.

The cusps of Γ0 (2
632t) are given by fractions c/d where d|2632t and gcd(c, d) = 1.

By Theorem 4.16, Li,k,t(z) is holomorphic at a cusp c/d if and only if(
pai+k
i − 1

) gcd(d, 24)2
24

+
gcd(d, 48)2

48
− gcd(d, 96)2

96
− pki

gcd (d, 24paii )
2

24paii

+t
gcd(d, 24t)2

24t
− t

gcd(d, 48t)2

48t
+

gcd(d, 96t)2

96t
≥ 0.

Equivalently, Li,k,t(z) is holomorphic at a cusp c/d if and only if

L := −4G1 + 2G2 −G3 + 4G4 − 2G5 + 1 + 4
(
pk+ai
i G1 − pk−ai

i G6

)
≥ 0,

where G1 =
gcd(d, 24)2

gcd(d, 96t)2
, G2 =

gcd(d, 48)2

gcd(d, 96t)2
, G3 =

gcd(d, 96)2

gcd(d, 96t)2
, G4 =

gcd(d, 24t)2

gcd(d, 96t)2
,

G5 =
gcd(d, 48t)2

gcd(d, 96t)2
, and G6 =

gcd (d, 24paii )
2

gcd(d, 96t)2
.

Let d be a divisor of 2632t. We can write d = 2r13r2psiu where 0 ≤ r1 ≤ 6,

0 ≤ r2 ≤ 2, 0 ≤ s ≤ ai, and u|t but pi ∤ u. We now consider the following three
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cases depending on r1.

Case 1: Let 0 ≤ r1 ≤ 3, 0 ≤ r2 ≤ 2. Then G1 = G2 = G3 =
1

u2p2si
, G4 = G5 = 1,

and G6 =
1

u2
. Therefore,

L = 3

(
1− 1

u2p2si

)
+ 4

(
pk+ai
i

u2p2si
− pk−ai

i

u2

)
= 3

(
1− 1

u2p2si

)
+ 4

pki
u2

(
p2aii − p2si
p2s+ai
i

)
.

Since s ≤ ai, we have L ≥ 0.

Case 2: Let r1 = 4, 0 ≤ r2 ≤ 2. Then G3 = G2 = 4G1, G1 =
1

4u2p2si
, G5 = 4G4,

G4 =
1

4
, and G6 =

1

4u2
. Therefore,

L = 4

(
pk+ai
i

4u2p2si
− pk−ai

i

4u2

)
=
pki
u2

(
p2aii − p2si
p2s+ai
i

)
≥ 0.

Case 3: Let 5 ≤ r1 ≤ 6, 0 ≤ r2 ≤ 2. Then G3 = 4G2 = 16G1, G1 =
1

16u2p2si
,

G5 = 4G4, G4 =
1

16
, and G6 =

1

16u2
. Hence,

L =
3

4

(
1− 1

u2p2si

)
+ 4

(
pk+ai
i

16u2p2si
− pk−ai

i

16u2

)
=

3

4

(
1− 1

u2p2si

)
+

pki
4u2

(
p2aii − p2si
p2s+ai
i

)
≥ 0.

Therefore, Li,k,t(z) is holomorphic at every cusp c/d. The weight of Li,k,t(z) is

ℓ =
1

2

(
pki (p

ai
i − 1) + t− 1

)
, which is a positive integer and the associated character

is given by

χ5(•) =

(
(−1)ℓ23p

ai+k
i −3pki +4t−43p

ai+k
i −pk+t−1tt (paii )

−pki

•

)
.

Hence, Li,k,t(z) ∈ Mℓ (Γ0(N), χ5) where ℓ, N , and χ5 are as above. Therefore,

by Theorem 4.17, the Fourier coefficients of Bi,k,t(z) are almost divisible by r = pki .

Due to (4.17), this holds for bt(n) also. Thus, we complete the proof of Theorem

4.7.

4.8 Proofs of Theorems 4.9 and 4.10

First we recall the following result of Ono and Taguchi [88] on the nilpotency of

Hecke operators.
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Theorem 4.18. [88, Theorem 1.3 (3)] Let n be a nonnegative integer and k be a

positive integer. Let χ be a quadratic Dirichlet character of conductor 9 · 2a. Then

there is an integer c ≥ 0 such that for every f(z) ∈ MP (Γ0(9 · 2a), χ) ∩ Z[[q]] and

every t ≥ 1,

f(z)|Tp1 |Tp2| · · · |Tpc+t ≡ 0 (mod 2t)

whenever the primes p1, . . . , pc+t are coprime to 6.

Now, we apply the above theorem to the modular forms B1,1,k(z) and F1,1,k(z)

to prove Theorem 4.9 and 4.10, respectively.

Proof of Theorem 4.9. Putting α = 1 and m = 1 in (4.7), we find that

B1,1,k(z) ≡
∞∑
n=0

a3(n)q
24n (mod 2k+1),

which yields

B1,1,k(z) :=
∞∑
n=0

Bk (n) q
n ≡

∞∑
n=0

a3

( n
24

)
qn (mod 2k+1). (4.18)

Now, B1,1,k(z) ∈ M2k−1+1 (Γ0(9 · 26), χ6) for k ≥ 1 where χ6 is the associated

character (which is χ1 evaluated at α = 1 and m = 1). In view of Theorem 4.18, we

find that there is an integer c ≥ 0 such that for any d ≥ 1,

B1,1,k(z) | Tp1 | Tp2 | · · · | Tpc+d
≡ 0 (mod 2d)

whenever p1, . . . , pc+d are coprime to 6. It follows from the definition of Hecke

operators that if p1, . . . , pc+d are distinct primes and if n is coprime to p1 · · · pc+d,

then

Bk (p1 · · · pc+d · n) ≡ 0 (mod 2d). (4.19)

Combining (4.18) and (4.19), we complete the proof of the theorem.

Proof of Theorem 4.10. Taking α = 1 and m = 1 in (4.12), we have

F1,1,k(z) ≡
∞∑
n=0

b3(n)q
24n+24 (mod 2k+1),
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which yields

F1,1,k(z) :=
∞∑
n=0

Fk (n) q
n ≡

∞∑
n=0

b3

(
n− 24

24

)
qn (mod 2k+1). (4.20)

Now, F1,1,k(z) ∈ M2k−1+1 (Γ0(9 · 27), χ7) for k ≥ 1 where χ7 is the associated

character (which is χ3 evaluated at α = 1 and m = 1). In view of Theorem 4.18, we

find that there is an integer u ≥ 0 such that for any v ≥ 1,

F1,1,k(z) | Tq1 | Tq2 | · · · | Tqu+v ≡ 0 (mod 2v)

whenever q1, . . . , qc+d are coprime to 6. From the definition of Hecke operators, we

have that if q1, . . . , qu+v are distinct primes and if n is coprime to q1 · · · qu+v, then

Fk (q1 · · · qu+v · n) ≡ 0 (mod 2v). (4.21)

Combining (4.20) and (4.21), we complete the proof of the theorem.

4.9 Proofs of Theorems 4.11–4.13

First, we prove Theorem 4.11.

Proof of Theorem 4.11. From (1.26), we have
∞∑
n=0

bt(n)q
n =

f2f
t
t f

t
4t

f1f4f t
2t

,

which under modulo 2 reduces to
∞∑
n=0

bt(n)q
n ≡ f 3t

t

f 3
1

≡ f t
2t

f2
· f

t
t

f1
(mod 2). (4.22)

Using (1.19), the above equation can be rewritten as

∞∑
n=0

bt(n)q
n ≡

(
∞∑
n=0

ct(n)q
2n

)(
∞∑
n=0

ct(n)q
n

)
(mod 2).

Equating the coefficients of qn from both sides of the above equation, we find that

bt(n) ≡
∞∑
k=0

ct(k)ct(n− 2k) (mod 2).

Again, putting t = 2k in (4.22), we have
∞∑
n=0

b2k(n)q
n ≡

f 3·2k
2k

f 3
1

≡ f 3·22k
1

f 3
1

≡ f
3(22k−1)
1 (mod 2).
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Thus, we complete the proof of Theorem 4.11.

We prove Theorem 4.12 with the aid of the following classical result due to

Landau [81].

Lemma 4.19. Let r(n) and s(n) be quadratic polynomials. Then(∑
n∈Z

qr(n)

)(∑
n∈Z

qs(n)

)
is lacunary modulo 2.

Proof of Theorem 4.12. From Theorem 4.11, we have

b2k(n) ≡ f
3(22k−1)
1 (mod 2).

Putting t = 1 in the above, we get

b2(n) ≡ f 9
1 ≡ f1f8 (mod 2). (4.23)

Again, from Euler’s pentagonal number theorem [29, Corollary 1.3.5], we have

f1 =
∞∑

n=−∞

(−1)nqn(3n+1)/2 ≡
∞∑

n=−∞

qn(3n+1)/2 (mod 2), where | q |< 1. (4.24)

Magnifying (4.24) by q → q8, we find that

f8 ≡
∞∑

n=−∞

q4n(3n+1) (mod 2). (4.25)

Combining (4.23), (4.24) and (4.25) and then applying Lemma 4.19, we complete

the proof.

Lastly, we prove Theorem 4.13 using a result from [78].

Proof of Theorem 4.13. From (4.23), we find that

b2(n) ≡ f 9
1 ≡ f 1+23

1 (mod 2).

Again, from [78, Theorem 10], we have that if t = 2d + 1 and p is a prime such

that p ≡ 7 (mod 8), then f t
1 is p2-even with base r ≡ −3(2d−3 + 2−3) (mod p2).

Employing this result with d = 3, we arrive at Theorem 4.13.
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4.10 Proof of Theorem 4.14

First of all, we prove the following two lemmas.

Lemma 4.20. Let p ≥ 3 be a prime and p9(n) be defined by (4.2). We have

p9

(
p2kn+

3(p2k − 1)

8

)
≡ P (p, k)p9

(
p2n+

3(p2 − 1)

8

)
+Q(p, k)p9(n) (mod 2),

(4.26)

where P (p, k) and Q(p, k) are defined by

P (p, k + 2) = π(p)P (p, k + 1)− P (p, k) (4.27)

and

Q(p, k + 2) = π(p)Q(p, k + 1)−Q(p, k) (4.28)

with P (p, 0) = 0, P (p, 1) = 1, Q(p, 0) = 1 and Q(p, 1) = 0.

Proof. We will prove the lemma by induction on k using the method of Xia [126]

based on an identity of Newman [85] and Lucas sequences. We observe that (4.26) is

true for k = 0 and k = 1 since P (p, 0) = 0, P (p, 1) = 1, Q(p, 0) = 1, and Q(p, 1) = 0.

We now assume that (4.26) is true for k = m and k = m+1 for some m ≥ 0, which

gives

p9

(
p2mn+

3(p2m − 1)

8

)
= P (p,m)p9

(
p2n+

3(p2 − 1)

8

)
+Q(p,m)p9(n),

(4.29)

and

p9

(
p2m+2n+

3(p2m+2 − 1)

8

)
= P (p,m+ 1)p9

(
p2n+

3(p2 − 1)

8

)
+Q(p,m+ 1)p9(n).

(4.30)

Newman [85] proved that if p ≥ 3 is a prime, then

p9

(
p2n+

3(p2 − 1)

8

)
= χ(n)p9(n)− p7p9

n− 3(p2 − 1)

8
p2

 , (4.31)

where χ(n) is given by

χ(n) =p9

(
3(p2 − 1)

8

)
+ (−1)

(p−1)(p−19)
8 p3

((
3(p2−1)

8

p

)
L

−

(
3(p2−1)

8
− n

p

)
L

)
.
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For any prime p ≥ 3, we have

p3 ≡ p7 ≡ 1 (mod 2). (4.32)

We can easily observe that

χ

(
pn+

3(p2 − 1)

8

)
= χ

(
p2n+

3(p2 − 1)

8

)
≡ π(p) (mod 2), (4.33)

where π(p) is given by (4.1).

Replacing n by p2n+
3(p2 − 1)

8
in (4.31), we have

p9

(
p4n+

3(p4 − 1)

8

)
= χ

(
p2n+

3(p2 − 1)

8

)
p9

(
p2n+

3(p2 − 1)

8

)
− p7p9(n).

Taking modulo 2 on both sides of above and then employing (4.32) and (4.33),

we arrive at

p9

(
p4n+

3(p4 − 1)

8

)
≡ π(p)p9

(
p2n+

3(p2 − 1)

8

)
− p9(n) (mod 2). (4.34)

Again, replacing n by p2mn+
3(p2m − 1)

8
in (4.34) and then utilizing (4.29) and

(4.30), we find that

p9

(
p2m+4n+

3(p2m+4 − 1)

8

)
≡ π(p)p9

(
p2m+2n+

3(p2m+2 − 1)

8

)
− p9

(
p2mn+

3(p2m − 1)

8

)
≡ π(p)

(
P (p,m+ 1)p9

(
p2n+

3(p2 − 1)

8

)
+Q(p,m+ 1)p9(n)

)
−
(
P (p,m)p9

(
p2n+

3(p2 − 1)

8

)
+Q(p,m)p9(n)

)
≡ (π(p)P (p,m+ 1)− P (p,m)) p9

(
p2n+

3(p2 − 1)

8

)
+ (π(p)Q(p,m+ 1)−Q(p,m)) p9(n)

≡ P (p,m+ 2)p9

(
p2n+

3(p2 − 1)

8

)
+Q(p,m+ 2)p9(n) (mod 2),

which implies that (4.26) holds for k = m + 2 also. Hence, by the principle of

mathematical induction, we complete the proof of the lemma.

Lemma 4.21. For p ≥ 3 prime, we have

π(p)P (p, u(p)) +Q(p, u(p)) ≡ 0 (mod 2), (4.35)

where π(p), P (p, k) and Q(p, k) are given by (4.2), (4.27) and (4.28) respectively.
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Proof. From (4.27) and (4.28), we obtain the first three terms of P (p, k) and Q(p, k)

as follows:

P (p, 0) = 0, P (p, 1) = 1, P (p, 2) = π(p) (4.36)

and

Q(p, 0) = 1, Q(p, 1) = 0, Q(p, 2) = −p. (4.37)

Now, the proof is evident from (4.36), (4.37) and (4.3).

Proof of Theorem 4.14. First we substitute (4.31) in (4.26) to arrive at

p9

(
p2kn+

3(p2k − 1)

8

)

≡ P (p, k)

χ(n)p9(n)− p9

n− 3(p2 − 1)

8
p2


+Q(p, k)p9(n)

≡ (P (p, k)χ(n) +Q(p, k)) p9(n)− P (p, k)p9

n− 3(p2 − 1)

8
p2

 (mod 2). (4.38)

Replacing n by pn+
3(p2 − 1)

8
in (4.38), we find that

p9

(
p2k+1n+

3(p2k+2 − 1)

8

)
≡ (P (p, k)π(p)) +Q(p, k)) p9

(
pn+

3(p2 − 1)

8

)
− P (p, k)p9

(
n

p

)
(mod 2).

(4.39)

Substituting k by u(p) in (4.39) and then employing (4.35) yields

p9

(
p2u(p)+1n+

3(p2u(p)+2 − 1)

8

)
≡ P (p, u(p))p9

(
n

p

)
(mod 2). (4.40)

Replacing n by pn in (4.40), we have

p9

(
p2u(p)+2n+

3(p2u(p)+2 − 1)

8

)
≡ P (p, u(p))p9 (n) (mod 2). (4.41)

Iterating (4.41) for k ≥ 1 times, we arrive at

p9

(
p2(u(p)+1)kn+

3(p2(u(p)+1)k − 1)

8

)
≡ (P (p, u(p))p9 (n))

k (mod 2). (4.42)
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Also, if p ∤ n, then (4.40) implies that

p9

(
p2u(p)+1n+

3(p2u(p)+2 − 1)

8

)
≡ 0 (mod 2). (4.43)

Replacing n by p2u(p)+1n +
3(p2u(p)+2 − 1)

8
in (4.42) and then employing (4.43),

we obtain

p9

(
p2(u(p)+1)(k+1)−1n+

3(p2(u(p)+1)(k+1) − 1)

8

)
≡ 0 (mod 2), (4.44)

where p ∤ n.

Again, from (4.2) and (4.23), we have

b2(n) ≡ p9(n) (mod 2). (4.45)

Combining (4.44) and (4.45), we complete the proof of the theorem.

4.11 Concluding remarks

(1) Theorems 4.3–4.7 of this chapter and and Theorem 1.8 of [57] discuss the

arithmetic densities of at(n) and bt(n) for odd t. But it is not possible to

study the arithmetic densities of at(n) and bt(n) for even t using the similar

techniques. We have studied the density of b2(n) using another approach which

cannot be used for other even values of t. It would be interesting to study the

arithmetic densities of at(n) and bt(n) for the even values of t.

(2) Computational evidence suggests that there are Ramanujan-type congruences

for at(n) and bt(n) modulo powers of 2, 3, and other primes ≥ 5 for various

t which are not covered by the results of [14] and [57]. It will be desirable to

find new congruences for at(n) and bt(n).

(3) Asymptotic formulae for partition functions and other related functions have

been widely studied in the literature. For instance, the asymptotic formulae

for p(n) and ct(n) were obtained by Hardy and Ramanujan [66] and Anderson

[3], respectively. It would be of interest to find an asymptotic formula for

at(n).
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(4) Bandyopadhyay and Baruah [14] deduced several arithmetic identities involv-

ing a5(n), b5(n), and c5(n). A combinatorial treatment to at(n) and bt(n) might

reveal more interesting partition theoretic connections of these two functions.
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