
Chapter 5

Families of Congruences for 6-Regular Par-

titions and Partitions k-Tuples with t-Cores

5.1 Introduction

In this chapter, we obtain new infinite families of congruences as well as individ-

ual congruences for two restricted partition functions, namely, 6-regular partition

function and partition k-tuples with 5-cores. The motivation of studying these two

functions together lies in the similarity of the proof techniques for their respective

congruences which mainly include dissections of certain q-products and the theory

of Lucas sequences.

Recall that if b6(n) counts the 6-regular partitions of n, then its generating

function is given by
∞∑
n=0

b6(n)q
n =

f6
f1
.

In 2015, Hou, Sun, and Zhang [72] found infinite families of congruences modulo

Theorems 5.12–5.17 and their proofs of this chapter have been published in Indian Journal of

Pure and Applied Mathematics [106]. The author thanks Dr. Manjil P. Saikia and Mr. Abhishek

Sarma for the collaboration. The other results of this chapter have been submitted for publication

[22].
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3 for b6(n) in the arithmetic progression of squares of certain primes. Their results

are stated in the following theorem.

Theorem 5.1 (Hou, Sun, and Zhang [72]). For α, n nonnegative integers, pi primes

congruent to 13, 17, 19, 23 (mod 24) and j ̸≡ 0 (mod pα+1), we have

b6

(
p21 · · · p2α+1n+

p21 · · · p2αpα+1(24j + 5pα+1)− 5

24

)
≡ 0 (mod 3). (5.1)

For α = 0, it follows that for all primes p ≡ 13, 17, 19, 23 (mod 24), j ̸≡ 0

(mod p) and all n ≥ 0,

b6

(
p2n+ pj + 5

p2 − 1

24

)
≡ 0 (mod 3). (5.2)

Ahmed and Baruah [2] proved the following infinite family of congruences for

b6(n).

Theorem 5.2. [Ahmed and Baruah [2]] If p is a prime such that

(
−6

p

)
L

= −1

and 1 ≤ j ≤ p− 1, then for all α, n ≥ 0, we have

b6

(
p2α+1(pn+ j) + 5

p2α+2 − 1

24

)
≡ 0 (mod 3). (5.3)

Remark 5.3. Here, we have corrected a misprint in [2].

Recently, Ballantine and Merca [13] extended Theorem 5.1 to more choices of

primes. They proved the following theorem.

Theorem 5.4. [Ballantine and Merca [13]] Let α be a nonnegative integer and let

pi ≥ 5, 1 ≤ i ≤ α + 1 be primes. If pα+1 ≡ 3 (mod 4) and j ̸≡ 0 (mod pα+1), then

for all integers n ≥ 0, we have

b6

(
p21 · · · p2α+1n+

p21 · · · p2αpα+1(24j + 5pα+1)− 5

24

)
≡ 0 (mod 3). (5.4)

Ballantine and Merca [13] also conjectured some truncated theta series results

for b6(n) and some related partition functions. Using a formula of Cayley [39] on

the number of partitions of n into parts not exceeding 3, Yao [128] established two

of those conjectures for b6(n).

Very recently, Zheng [136] proved the existence of infinitely many Ramanujan-

type congruences for b6(n) modulo m for every prime m ≥ 5. They also deduced

new congruences for b6(n) modulo 5.
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In this chapter, we find new infinite families of congruences modulo 3 for b6(n).

We state our results in the following theorems.

First, we note some new individual congruences for b6(n) modulo 3.

Theorem 5.5. For n ≥ 0, we have

b6(125n+ r) ≡ 0 (mod 3) where r ∈ {30, 55, 80, 105}, (5.5)

b6(15625n+ s) ≡ 0 (mod 3) where s ∈ {130, 6380, 9505, 12630}. (5.6)

In the following theorem, we state two recurrence relations modulo 3 for b6(n).

Theorem 5.6. For n ≥ 0, the following relations hold:

b6(n) ≡ −b6
(
56n+ 55 + 53 + 5

)
(mod 3), (5.7)

b6(n) ≡ (−1)kb6

(
56kn+

5
(
56k − 1

)
24

)
(mod 3). (5.8)

We now present some new infinite families of congruences modulo 3 for b6(n).

Theorem 5.7. For n ≥ 0 and k ≥ 0, we have

b6

(
56k+3n+

5
(
29 · 56k+1 − 1

)
24

)
≡ 0 (mod 3), (5.9)

b6

(
56k+3n+

5
(
53 · 56k+1 − 1

)
24

)
≡ 0 (mod 3), (5.10)

b6

(
56k+3n+

5
(
77 · 56k+1 − 1

)
24

)
≡ 0 (mod 3), (5.11)

b6

(
56k+3n+

5
(
101 · 56k+1 − 1

)
24

)
≡ 0 (mod 3), (5.12)

b6

(
56(k+1)n+

5
(
56k+4 − 1

)
24

)
≡ 0 (mod 3), (5.13)

b6

(
56(k+1)n+

5
(
49 · 56k+4 − 1

)
24

)
≡ 0 (mod 3), (5.14)

b6

(
56(k+1)n+

5
(
73 · 56k+4 − 1

)
24

)
≡ 0 (mod 3), (5.15)

b6

(
56(k+1)n+

5
(
97 · 56k+4 − 1

)
24

)
≡ 0 (mod 3). (5.16)
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Note that the cases k = 0 of (5.9)–(5.16) are equivalent to the congruences (5.5)

and (5.6). We observe that these congruences also hold for modulo 9. That is, for

n ≥ 0, the following congruences are true:

b6(125n+ r) ≡ 0 (mod 9), where r ∈ {30, 55, 80, 105}, (5.17)

b6(15625n+ s) ≡ 0 (mod 9), where s ∈ {130, 6380, 9505, 12630}. (5.18)

Using an approach different from the proof of Theorem 5.5, we prove (5.17) and

(5.18).

Next, we state two new infinite families of congruences modulo 3 for b6(n) in the

arithmetic progression of certain primes.

Theorem 5.8. Let p be a prime with p ≡ 1 (mod 24). We define

g(p) =



1, if c

(
p− 1

24

)
≡ 0 (mod 3),

2, if c

(
p− 1

24

)
̸≡ 0 (mod 3) and

(
2

p

)
L

= 1,

3, if c

(
p− 1

24

)
̸≡ 0 (mod 3) and

(
2

p

)
L

= −1,

(5.19)

where
∞∑
n=0

c(n)qn :=
f 3
1

f2
. (5.20)

Then, for n ≥ 0, k ≥ 0 with p ∤ (24n+ 1), we have

b6

(
125p(g(p)+1)k+g(p)n+

125p(g(p)+1)k+g(p) − 5

24

)
≡ 0 (mod 3). (5.21)

Theorem 5.9. Let p be a prime with p ≡ 1 (mod 24). We define

h(p) =



1, if d

(
5(p− 1)

24

)
≡ 0 (mod 3),

2, if d

(
5(p− 1)

24

)
̸≡ 0 (mod 3) and

(
2

p

)
L

= 1,

3, if d

(
5(p− 1)

24

)
̸≡ 0 (mod 3) and

(
2

p

)
L

= −1,

(5.22)

where
∞∑
n=0

d(n)qn :=
f 3
2

f1
. (5.23)

Then, for n ≥ 0, k ≥ 0 with p ∤ (24n+ 5), we have

b6

(
p(h(p)+1)k+h(p)n+

5
(
p(h(p)+1)k+h(p) − 1

)
24

)
≡ 0 (mod 3). (5.24)
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Remark 5.10. It is easy to observe that congruences in Theorem 5.8 are different

from those in Theorems 5.1, 5.2, and 5.4. We also note that Theorem 5.9 is not

same as Theorem 5.2 as for p = 73, we have 73 ≡ 1 (mod 24), but

(
−6

73

)
̸= −1.

Also, the choices of primes for Theorems 5.4 and 5.9 are not the same as the first

one is given for pα+1 ≡ 3 (mod 4) and for the later one, all primes are congruent

to 1 modulo 24.

We also prove some Kolberg-type congruences modulo 3 for b6(n) as given in the

following theorem.

Theorem 5.11. Let
∞∑
n=0

A(n)qn =

( ∞∑
m=0

b6(5m+ 1)qm
)( ∞∑

m=0

b6(5m+ 4)qm
)
,

∞∑
n=0

B(n)qn =

( ∞∑
m=0

b6(25m)qm
)( ∞∑

m=0

b6(25m+ 10)qm
)
,

∞∑
n=0

C(n)qn =

( ∞∑
m=0

b6(625m+ 380)qm
)( ∞∑

m=0

b6(625m+ 605)qm
)
,

∞∑
n=0

D(n)qn =

( ∞∑
m=0

b6(3125m+ 1380)qm
)( ∞∑

m=0

b6(3125m+ 2005)qm
)
,

∞∑
n=0

E(n)qn =

( ∞∑
m=0

b6(m)qm
)( ∞∑

m=0

b6(125m+ 5)qm
)
.

Then the following hold:
∞∑
n=0

A(5n+ 1)qn ≡ −
( ∞∑

m=0

b6(m)qm
)( ∞∑

m=0

b6(25m+ 5)qm
)

(mod 3), (5.25)

∞∑
n=0

B(n)qn ≡
( ∞∑

m=0

b6(25m+ 5)qm
)2

(mod 3), (5.26)

∞∑
n=0

D(5n+ 1)qn ≡
( ∞∑

m=0

b6(m)qm
)2

(mod 3). (5.27)

Also, we have

B(5n+ r) ≡ 0 (mod 3), where r ∈ {1, 2, 3, 4}, (5.28)

C(n) ≡ C(5n+ 4) (mod 3), (5.29)

D(5n+ r) ≡ 0 (mod 3), where r ∈ {0, 2, 3, 4}, (5.30)

E(3n+ 2) ≡ 0 (mod 3). (5.31)

Again, we recall from Section 1.4 that the generating function of partitions k-
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tuples with t-cores is given by
∞∑
n=0

At,k(n)q
n =

(qt; qt)kt∞
(q; q)k∞

=
fkt
t

fk
1

. (5.32)

There have been several studies involving the congruence properties of At,k(n) for

different values of t and k. For more details of the works done on this function, we

refer the readers to [51] and the references cited therein.

Recently, Dasappa [100] proved the following infinite family of congruences for

A5,2(n):

A5,2(5
αn+ 5α − 2) ≡ 0 (mod 5α), α ≥ 1. (5.33)

In a similar vein, Majid and Fathima [83] proved the following result:

A5,3(5
αn+ 5α − 3) ≡ 0 (mod 5α), α ≥ 1. (5.34)

Both of these results were proved using elementary techniques which involved

using dissection formulae and induction. We extend these results in the following

theorem.

Theorem 5.12. For all n ≥ 0 and α ≥ 1, we have

A5,4(5
α+1n+ 5α+1 − 4) ≡ 0 (mod 5α+4). (5.35)

We further find some new infinite family of congruences for At,k(n) for some

general values of k and t, as stated in the following results.

Theorem 5.13. Let p ≥ 5 be a prime and let r ∈ N with 1 ≤ r ≤ p − 1, be such

that 24r + 1 is a quadratic nonresidue modulo p. Then, for all n ≥ 0, i ≥ 1, and

N ≥ 1, we have

Ap,pN i−1(pn+ r) ≡ 0 (mod pN).

Theorem 5.14. Let p ≥ 5 be a prime and let r ∈ N with 1 ≤ r ≤ p − 1, be such

that 8r + 1 is a quadratic nonresidue modulo p. Then, for all n ≥ 0, i ≥ 1, and

N ≥ 1, we have

Ap,pN i−3(pn+ r) ≡ 0 (mod pN).

Theorem 5.15. Let p ≥ 5 be a prime and let r ∈ N with 1 ≤ r ≤ p − 1, be the

92



unique value such that 8r + 1 ≡ 0 (mod p). Then, for all n ≥ 0 and i ≥ 1, we have

Ap,pi−3(pn+ r) ≡ 0 (mod p).

We also prove some new individual congruences for A5,t(n) for some specific

values of t.

Theorem 5.16. For all n ≥ 0, the following congruences are true:

A5,2(25n+ 23) ≡ 0 (mod 52), (5.36)

A5,2(125n+ 123) ≡ 0 (mod 53), (5.37)

A5,3(25n+ 22) ≡ 0 (mod 5), (5.38)

A5,3(125n+ 122) ≡ 0 (mod 52), (5.39)

A5,4(25n+ 21) ≡ 0 (mod 55), (5.40)

A5,4(125n+ 121) ≡ 0 (mod 56). (5.41)

Next, we establish a congruence result for At,k(n) modulo powers of primes,

which can be also viewed as an existence result for infinite family of congruences.

Theorem 5.17. Let p be a prime, k ≥ 1, j ≥ 0, N ≥ 1, M ≥ 1, and r be integers

such that 1 ≤ r ≤ pM − 1. If for all n ≥ 0,

Ap,k(p
Mn+ r) ≡ 0 (mod pN),

then for all n ≥ 0, we have

Ap,pM+N−1i+k(p
Mn+ r) ≡ 0 (mod pN).

The following is an easy corollary.

Corollary 5.18. For all i ≥ 0 and n ≥ 0, we have

A5,52i+2(25n+ 23) ≡ 0 (mod 5), (5.42)

A5,53i+2(25n+ 23) ≡ 0 (mod 52), (5.43)

A5,55i+2(125n+ 123) ≡ 0 (mod 53), (5.44)

A5,52i+3(25n+ 22) ≡ 0 (mod 5), (5.45)

A5,54i+3(125n+ 122) ≡ 0 (mod 52), (5.46)

A5,5i+4(5n+ 3, 4) ≡ 0 (mod 5), (5.47)
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A5,53i+4(25n+ 21) ≡ 0 (mod 52), (5.48)

A5,52i+4(25n+ 21) ≡ 0 (mod 5), (5.49)

A5,53i+4(25n+ 21) ≡ 0 (mod 52), (5.50)

A5,54i+4(25n+ 21) ≡ 0 (mod 53), (5.51)

A5,55i+4(25n+ 21) ≡ 0 (mod 54), (5.52)

A5,56i+4(25n+ 21) ≡ 0 (mod 55), (5.53)

A5,58i+4(125n+ 121) ≡ 0 (mod 56). (5.54)

The rest of the chapter is organized as follows. In Section 5.2, we state some

preliminary results that we require for our proofs. In Section 5.3, we use some 5-

dissections of certain q-products and two identities from the list of forty identities

for the Rogers-Ramanujan functions of Ramanujan to obtain Theorems 5.5–5.7. We

prove Theorems 5.8 and 5.9 in Section 5.4 using two identities of Newman [86]. In

Section 5.5, we establish the Kolberg-type congruences of Theorem 5.11. We prove

(5.17) and (5.18) in Section 5.6 using an approach due to Radu [91]. Theorem 5.12 is

then proved in Section 5.7, Theorems 5.13–5.15 are proved in Section 5.8, Theorem

5.16 is proved in Section 5.9. We deduce Theorem 5.17 and Corollary 5.18 in Section

5.10. Finally we close the chapter with some concluding remarks and conjectures in

Section 5.11.

5.2 Preliminaries

In the following lemma, we recall the 5-dissections of χ(q) and 1/χ(−q) given by

(2.68) and (2.70).

Lemma 5.19 (Baruah and Talukdar [21]). We have

χ(q) =
1

f(−q5)f(−q20)

(
φ(q25)f(q15, q35) + qf 2(q15, q35) + q3φ(q25)f(q5, q45)

+ q4f(q5, q45)f(q15, q35) + q7f 2(q5, q45)

)
, (5.55)

1

χ(−q)
=
f(−q10)
f 3(−q5)

(
f 2(q10, q15) + qf(q5, q20)f(q10, q15) + q2f 2(q5, q20)
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+ 2q3ψ(q25)f(q10, q15) + 2q4ψ(q25)f(q5, q20)

)
. (5.56)

Also, by the binomial theorem, for positive integers j, k ≥ 1, we have

G3k(qj) ≡ Gk
(
q3j
)

(mod 3) and H3k(qj) ≡ Hk
(
q3j
)

(mod 3).

We will use these congruences without referring to them.

In the following lemma, we state two identities from this list of forty identities

of Ramanujan for G(q) and H(q).

Lemma 5.20 (Berndt, Choi, Choi, Hahn, Yeap, Yee, Yesilyurt, and Yi [31]). The

following hold:

H(q)G(q6)− qG(q)H(q6) =
χ(−q)
χ(−q3)

, (5.57)

G(q2)G(q3) + qH(q2)H(q3) =
χ(−q3)
χ(−q)

. (5.58)

The next four lemmas contain some generating functions needed for the proof of

Theorem 5.12.

Lemma 5.21. Let
∞∑
n=0

P4(n)q
n =

1

f 4
1

. Then we have

∞∑
n=0

P4(5n+ 1)qn = 4
f 2
5

f 6
1

+ 550q
f 8
5

f 12
1

+ 12500q2
f 14
5

f 18
1

+ 78125q3
f 20
5

f 24
1

.

Proof. Using equation (1.17), extracting the terms involving q5n+1, dividing by q

and then replacing q5 by q, we arrive at

∞∑
n=0

P4(5n+ 1)qn =
f 20
5

f 24
1

(
4

T 15(q)
+

418q

T 10(q)
+

1840q2

T 5(q)

+ 1015q3 − 1840q4T 5(q) + 418q5T 10(q)− 4q6T 15(q)

)
. (5.59)

We use the following formula [29, Theorem 7.4.4]:

1

T (q)5
− 11q − q2T (q)5 =

f 6
1

f 6
5

, (5.60)

to obtain from equation (5.59)
∞∑
n=0

P4(5n+ 1)qn = 4
f 2
5

f 6
1

+ 550q
f 8
5

f 12
1

+ 12500q2
f 14
5

f 18
1

+ 78125q3
f 20
5

f 24
1

. (5.61)
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Lemma 5.22. If
∞∑
n=0

Q4(n)q
n = f 2

5 f
14
1 , then we have

∞∑
n=0

Q4(5n+4)qn = −15625q2f 14
5 f

2
1 .

Proof. Using equation (1.16), we obtain

∞∑
n=0

Q4(n)q
n = f 2

5 f
14
25

(
1

T 14(q)
− 14

q

T 13(q)
+ 77

q2

T 12(q)
− 182

q3

T 11(q)
+ 910

q5

T 9(q)

− 1365
q6

T 8(q)
− 1430

q7

T 7(q)
+ 5005

q8

T 6(q)
− 10010

q10

T 4(q)

+ 3640
q11

T 3(q)
+ 14105

q12

T 2(q)
− 6930

q13

T (q)
− 15625q14 + 6930q15T (q)

+ 14105q16T 2(q)− 3640q17T 3(q)− 10010q18T 4(q) + 5005q20T 6(q)

+ 1430q21T 7(q)− 1365q22T 8(q)− 910q23T 9(q) + 182q25T 11(q)

+ 77q26T 12(q) + 14q27T 13(q) + q28T 14(q)

)
.

Extracting the terms involving q5n+4 and then dividing by q4 and replacing q5 by q,

we have
∞∑
n=0

Q4(5n+ 4)qn = −15625q2f 14
5 f

2
1 .

Lemma 5.23. If
∞∑
n=0

Q5(n)q
n = qf 8

5 f
8
1 , then we have

∞∑
n=0

Q5(5n+4)qn = −125qf 8
5 f

8
1 .

Lemma 5.24. If
∞∑
n=0

Q6(n)q
n = q2f 14

5 f
2
1 , then we have

∞∑
n=0

Q6(5n+4)qn = −f 2
5 f

14
1 .

The proofs of Lemmas 5.23 and 5.24 are exactly similar to the proof of Lemma 5.22.

So, we skip them.

5.3 Proofs of the Theorems 5.5–5.7

Proof of Theorem 5.5. We have
∞∑
n=0

b6(n)q
n =

f6
f1

≡ f 3
2

f1
≡ f2ψ(q) (mod 3). (5.62)

Using the 5-dissections of f1 and ψ(q) given by (1.16) and (2.37) in (5.62), we have
∞∑
n=0

b6(n)q
n ≡ f50

(
T (q10)− q2 − q4

T (q10)

)
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×
(
f(q10, q15) + qf(q5, q20) + q3ψ(q25)

)
(mod 3), (5.63)

from which we extract,
∞∑
n=0

b6(5n)q
n ≡ −qf10ψ(q5) + f10

(
f(q2, q3)

f(−q4,−q6)
f(−q2,−q8)

− qf(q, q4)
f(−q2,−q8)
f(−q4,−q6)

)
≡ −qf10ψ(q5) +

f10
f(−q2,−q8)f(−q4,−q6)

×
(
f(q2, q3)f 2(−q4,−q6)− qf(q, q4)f 2(−q2,−q8)

)
≡ −qf10ψ(q5) +

f 2
2 f5
f10

(
H(q)G3(q2)− qG(q)H3(q2)

)
≡ −qf10ψ(q5) +

f 2
2 f5
f10

(
H(q)G(q6)− qG(q)H(q6)

)
≡ −qf10ψ(q5) +

f 2
2 f5
f10

χ(−q)
χ(−q3)

(from (5.57))

≡ −q f5
f10

ψ2(q5) +
f5
f10

f 4
2

f 2
1

≡ f5
f10

(
−qψ2(q5) + ψ2(q)

)
≡ f5
f10

f(q, q4)f(q2, q3) ( by (2.44))

≡ f 2
5

f10

φ(−q5)
χ(−q)

≡ f 4
5

f 2
10

1

χ(−q)
(mod 3). (5.64)

Employing (5.56) in (5.64), we have
∞∑
n=0

b6(5n)q
n ≡ f 4

5

f 2
10

f10
f 3
5

(
f 2(q10, q15) + qf(q5, q20)f(q10, q15) + q2f 2(q5, q20)

+ 2q3ψ(q25)f(q10, q15) + 2q4ψ(q25)f(q5, q20)

)
(mod 3), (5.65)

which by extraction gives
∞∑
n=0

b6(25n+ 5)qn ≡ f1
f2
f(q, q4)f(q2, q3) (mod 3). (5.66)

≡ f1
f2

f1
f2
f 2
5

G(q)H(q)

G(q2)H(q2)

≡ f 3
5

f10
(mod 3). (5.67)
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Thus, extracting the terms involving q5n+r, 1 ≤ r ≤ 4 from both sides of the above,

we have

b6(125n+ r) ≡ 0 (mod 3), where r ∈ {30, 55, 80, 105}

which proves (5.5).

Again, extracting the terms involving q5n from both sides of the (5.67), and then

replacing q5 by q, we find that
∞∑
n=0

b6(125n+ 5)qn ≡ f 3
1

f2
≡ f1φ(−q) (mod 3). (5.68)

Employing (2.36) and (1.16) in (5.68), we find that
∞∑
n=0

b6(125n+ 5)qn ≡ f25

(
T (q5)− q − q2

T (q5)

)(
φ(−q25)

− 2qf(−q15,−q35) + 2q4f(−q5,−q45)
)

(mod 3), (5.69)

which implies that
∞∑
n=0

b6(625n+ 130)qn ≡ f5

(
− 2T (q)f(−q3,−q7)− φ(−q5)− 2q

T (q)
f(−q,−q9)

)
≡ 2f5φ(−q5) + f5

(
f(−q2,−q3)
f(−q,−q4)

f(−q3,−q7)

+ q
f(−q,−q4)
f(−q2,−q3)

f(−q,−q9)
)

≡ 2f5φ(−q5) +
f5

f(−q,−q4)f(−q2,−q3)

×
(
f 2(−q2,−q3)f(−q3,−q7) + qf 2(−q,−q4)f(−q,−q9)

)
(5.70)

≡ 2f5φ(−q5) +
f 2
1 f10
f5

(
G3(q)G(q2) + qH3(q)H(q2)

)
≡ 2f5φ(−q5) +

f 2
1 f10
f5

(
G(q3)G(q2) + qH(q3)H(q2)

)
≡ 2f5φ(−q5) +

f 2
1 f10
f5

χ(−q3)
χ(−q)

( by (5.58))

≡ 2
f10
f5
φ2(−q5) + f10

f5
φ2(−q) (5.71)

≡ 2
f10
f5
φ2(−q5)

+
f10
f5

(
φ2(−q5)− 4qf(−q,−q9)f(−q3,−q7)

)
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≡ 2q
f10
f5
f(−q,−q9)f(−q3,−q7) (5.72)

≡ 2q
f10
f5
χ(−q)f(q5)f20 (mod 3). (5.73)

Again, using (5.55) in (5.73), we arrive at
∞∑
n=0

b6(625n+ 130)qn ≡ 2q
f10
f5

f(q5)f20
f(q5)f20

(
φ(−q25)f(−q15,−q35)− qf 2(−q15,−q35)

− q3φ(−q25)f(−q5,−q45) + q4f(−q5,−q45)f(−q15,−q35)

− q7f 2(−q5,−q45)
)

(mod 3), (5.74)

from which we extract,
∞∑
n=0

b6(3125n+ 130)qn ≡ 2q
f2
f1
f(−q,−q9)f(−q3,−q7) (mod 3). (5.75)

Using (2.31) and (2.32) in (5.75) and then employing (1.8), we find that
∞∑
n=0

b6(3125n+ 130)qn ≡ 2q
1

χ(−q)
χ(−q)f(q5)f20

≡ 2q
f 3
10

f5f20
f20 ≡ −qf

3
10

f5
(mod 3). (5.76)

Now, extracting the terms involving q5n, q5n+2, q5n+3, and q5n+4 from the right hand

side of the above, we have

b6(15625n+ s) ≡ 0 (mod 3), where s ∈ {130, 6380, 9505, 12630},

which is (5.6). Thus, we complete the proof of Theorem 5.5.

Proof of Theorem 5.6. Extracting the terms involving q5n+1 from both sides of the

(5.74), dividing by q and then replacing q5 by q, we find that
∞∑
n=0

b6(15625n+ 3255)qn ≡ −f
3
2

f1
(mod 3),

which with the aid of (5.62) reduces to

b6(15625n+ 3255) ≡ −b6(n) (mod 3),

which proves (5.7).

Now, by successive iterations of (5.7), we have

b6(n) ≡ −b6
(
56n+ 55 + 53 + 5

)
≡ b6

(
56
(
56n+ 55 + 53 + 5

)
+ 55 + 53 + 5

)
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≡ b6
(
512n+ 511 + 59 + 57 + 55 + 53 + 5

)
...

≡ (−1)kb6
(
56kn+ 56k−1 + 56k−3 + · · ·+ 53 + 5

)
≡ (−1)kb6

(
56kn+

5
(
56k − 1

)
24

)
(mod 3),

which gives (5.8). Thus, we complete the proof of Theorem 5.6.

Proof of Theorem 5.7. From (5.8), we have

b6(n) ≡ (−1)kb6

(
56kn+

5
(
56k − 1

)
24

)
(mod 3). (5.77)

Replacing n by 125n+ 30 in (5.77), we obtain

b6(125n+ 30) ≡ (−1)kb6

(
56k (125n+ 30) +

5
(
56k − 1

)
24

)

≡ (−1)kb6

(
56k+3n+

5
(
29 · 56k+1 − 1

)
24

)
(mod 3). (5.78)

Similarly, replacing n by 125n+ 55, 125n+ 80, and 125n+ 105 in (5.77) respec-

tively, we arrive at the following:

b6(125n+ 55) ≡ (−1)kb6

(
56k+3n+

5
(
53 · 56k+1 − 1

)
24

)
(mod 3), (5.79)

b6(125n+ 80) ≡ (−1)kb6

(
56k+3n+

5
(
77 · 56k+1 − 1

)
24

)
(mod 3), (5.80)

b6(125n+ 105) ≡ (−1)kb6

(
56k+3n+

5
(
101 · 56k+1 − 1

)
24

)
(mod 3). (5.81)

Therefore, (5.9)–(5.12) are evident from (5.78)–(5.81) and (5.5).

Again, replacing n by 15625n+ 130 in (5.77), we find that

b6(15625n+ 130) ≡ (−1)kb6

(
56k (15625n+ 130) +

5
(
56k − 1

)
24

)

≡ (−1)kb6

(
56(k+1)n+

5
(
56k+4 − 1

)
24

)
(mod 3). (5.82)

In a similar way, replacing n by 15625n+6380, 15625n+9505, and 15625n+12630
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in (5.77) respectively, we obtain the following:

b6(15625n+ 6380) ≡ (−1)kb6

(
56(k+1)n+

5
(
49 · 56k+4 − 1

)
24

)
(mod 3), (5.83)

b6(15625n+ 9505) ≡ (−1)kb6

(
56(k+1)n+

5
(
73 · 56k+4 − 1

)
24

)
(mod 3), (5.84)

b6(15625n+ 12630) ≡ (−1)kb6

(
56(k+1)n+

5
(
97 · 56k+4 − 1

)
24

)
(mod 3). (5.85)

Employing (5.6) in (5.82)–(5.85), we arrive at (5.13)–(5.16) which complete the

proof of Theorem 5.7.

5.4 Proofs of Theorems 5.8 and 5.9

First of all, we prove the following two lemmas.

Lemma 5.25. Let p be a prime with p ≡ 1 (mod 24) and c(n) be defined by (5.20).

We have

c

(
pkn+

pk − 1

24

)
= U(p, k)c

(
pn+

p− 1

24

)
+ V (p, k)c(n), (5.86)

where U(p, k) and V (p, k) are defined by

U(p, k + 2) = c

(
p− 1

24

)
U(p, k + 1)−

(
2

p

)
L

U(p, k) (5.87)

and

V (p, k + 2) = c

(
p− 1

24

)
V (p, k + 1)−

(
2

p

)
L

V (p, k) (5.88)

with U(p, 0) = 0, U(p, 1) = 1, V (p, 0) = 1, and V (p, 1) = 0.

Proof. We will prove the lemma by induction on k using the method of Xia [126]

based on Newman’s identities [86] and Lucas sequences. We observe that (5.86) is

true for k = 0 and k = 1 since U(p, 0) = 0, U(p, 1) = 1, V (p, 0) = 1, and V (p, 1) = 0.

We now assume that (5.86) is true for k = m and k = m+1 for some m ≥ 0, which

gives

c

(
pmn+

pm − 1

24

)
= U(p,m)c

(
pn+

p− 1

24

)
+ V (p,m)c(n), (5.89)
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and

c

(
pm+1n+

pm+1 − 1

24

)
= U(p,m+ 1)c

(
pn+

p− 1

24

)
+ V (p,m+ 1)c(n). (5.90)

Newman [86, Theorem 3] proved the following identity for c(n):

c

(
pn+

p− 1

24

)
= c

(
p− 1

24

)
c(n)−

(
2

p

)
L

c

n− p− 1

24
p

 (5.91)

where p is a prime with p ≡ 1 (mod 24).

Replacing n by pn+
p− 1

24
in (5.91), we have

c

(
p2n+

p2 − 1

24

)
= c

(
p− 1

24

)
c

(
pn+

p− 1

24

)
−
(
2

p

)
L

c (n) . (5.92)

Again, replacing n by pmn +
pm − 1

24
in (5.92) and then employing (5.89) and

(5.90), we find that

c

(
pm+2n+

pm+2 − 1

24

)
= c

(
p− 1

24

)
c

(
pm+1n+

pm+1 − 1

24

)
−
(
2

p

)
L

c

(
pmn+

pm − 1

24

)
= c

(
p− 1

24

)(
U(p,m+ 1)c

(
pn+

p− 1

24

)
+ V (p,m+ 1)c(n)

)
−
(
2

p

)
L

(
U(p,m)c

(
pn+

p− 1

24

)
+ V (p,m)c(n)

)
=

(
c

(
p− 1

24

)
U(p,m+ 1)−

(
2

p

)
L

U(p,m)

)
c

(
pn+

p− 1

24

)
+

(
c

(
p− 1

24

)
V (p,m+ 1)−

(
2

p

)
L

V (p,m)

)
c(n)

= U(p,m+ 2)c

(
pn+

p− 1

24

)
+ V (p,m+ 2)c(n),

which implies that (5.86) holds for k = m + 2 also. Hence, by the principle of

mathematical induction we complete the proof of the lemma.

Lemma 5.26. Let p be a prime with p ≡ 1 (mod 24). We have

c

(
p− 1

24

)
U(p, g(p)) + V (p, g(p)) ≡ 0 (mod 3), (5.93)

where c(n), U(p, k), and V (p, k) are given by (5.20), (5.87) and (5.88) respectively.

Proof. From (5.87) and (5.88), we obtain the first four terms of U(p, k) and V (p, k)
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as follows:

U(p, 0) = 0, U(p, 1) = 1, U(p, 2) = c

(
p− 1

24

)
, U(p, 3) = c

(
p− 1

24

)2

−
(
2

p

)
L

(5.94)

and

V (p, 0) = 1, V (p, 1) = 0, V (p, 2) = −
(
2

p

)
L

, V (p, 3) = −c
(
p− 1

24

)(
2

p

)
L

.

(5.95)

Now, the proof is evident from (5.94), (5.95) and (5.19).

Proof of Theorem 5.8. First we substitute (5.91) in (5.86) to arrive at

c

(
pkn+

pk − 1

24

)

= U(p, k)

c(p− 1

24

)
c(n)−

(
2

p

)
L

c

n− p− 1

24
p


+ V (p, k)c(n)

=

(
c

(
p− 1

24

)
U(p, k) + V (p, k)

)
c(n)−

(
2

p

)
L

U(p, k)c

n− p− 1

24
p

 . (5.96)

Replacing k by g(p) in (5.96) and then using (5.93), we find that

c

(
pg(p)n+

pg(p) − 1

24

)
≡ −

(
2

p

)
L

U(p, g(p))c

n− p− 1

24
p

 (mod 3). (5.97)

Again, replacing n by pn+
p− 1

24
in (5.97), we have

c

(
pg(p)+1n+

pg(p)+1 − 1

24

)
≡ −

(
2

p

)
L

U(p, g(p))c(n) (mod 3). (5.98)

Iterating (5.98) for k ≥ 1 times, we arrive at

c

(
p(g(p)+1)kn+

p(g(p)+1)k − 1

24

)
≡
(
−
(
2

p

)
L

U(p, g(p))

)k

c(n) (mod 3). (5.99)

Now, if p ∤ (24n+ 1), then c

n− p− 1

24
p

 = 0 and from (5.97), we have

c

(
pg(p)n+

pg(p) − 1

24

)
≡ 0 (mod 3). (5.100)
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Replacing n by pg(p)n+
pg(p) − 1

24
in (5.99) and employing (5.100), we obtain

c

(
p(g(p)+1)k+g(p)n+

p(g(p)+1)k+g((p) − 1

24

)
≡ 0 (mod 3), (5.101)

where p ∤ (24n+ 1).

Again, from (5.20) and (5.68), we have

b6(125n+ 5) ≡ c(n) (mod 3). (5.102)

Combining (5.101) and (5.102), we complete the proof of the theorem.

Proof of Theorem 5.9. The proof of Theorem 5.9 is similar to the proof of Theorem

5.8. Thus, we omit the details and mention only the required lemmas and an identity

due to Newman [86].

Lemma 5.27. Let p be a prime with p ≡ 1 (mod 24) and d(n) be defined by (5.23).

We have

d

(
pkn+

5(pk − 1)

24

)
= U1(p, k)d

(
pn+

5(p− 1)

24

)
+ V1(p, k)d(n), (5.103)

where U1(p, k) and V1(p, k) are defined by

U1(p, k + 2) = d

(
5(p− 1)

24

)
U1(p, k + 1)−

(
2

p

)
L

U1(p, k) (5.104)

and

V1(p, k + 2) = d

(
5(p− 1)

24

)
V1(p, k + 1)−

(
2

p

)
L

V1(p, k) (5.105)

with U1(p, 0) = 0, U1(p, 1) = 1, V1(p, 0) = 1, and V1(p, 1) = 0.

Lemma 5.28. Let p be a prime with p ≡ 1 (mod 24). We have

d

(
5(p− 1)

24

)
U1(p, h(p)) + V1(p, h(p)) ≡ 0 (mod 3) (5.106)

where d(n), U1(p, k), and V1(p, k) are given by (5.23), (5.104) and (5.105) respec-

tively.

Newman [86] also proved the following identity for d(n):

d

(
pn+

5(p− 1)

24

)
= d

(
5(p− 1)

24

)
d(n)−

(
2

p

)
L

d

n− 5(p− 1)

24
p

 (5.107)

where p is a prime with p ≡ 1 (mod 24).
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5.5 Proof of Theorem 5.11

Proof of (5.25). From (5.63), we have
∞∑
n=0

b6(n)q
n ≡ f50

(
T (q10)− q2 − q4

T (q10)

)
×
(
f(q10, q15) + qf(q5, q20) + q3ψ(q25)

)
(mod 3),

from which we extract
∞∑
n=0

b6(5n+ 1)qn ≡ f10f(q, q
4)
f(−q4,−q6)
f(−q2,−q8)

(mod 3)

and
∞∑
n=0

b6(5n+ 4)qn ≡ −f10f(q2, q3)
f(−q2,−q8)
f(−q4,−q6)

(mod 3).

Therefore, from the above and Lemma 2.8, we have

∞∑
n=0

A(n)qn =

(
∞∑
n=0

b6(5n+ 1)qn

)(
∞∑
n=0

b6(5n+ 4)qn

)
≡ −f 2

10f(q, q
4)f(q2, q3)

≡ −f 2
5 f

2
10

G(q)H(q)

G(q2)H(q2)

≡ −f 2
5 f

2
10

f5f2
f1f10

≡ −f 3
5 f10

1

χ(−q)
(mod 3).

Employing (5.56) in the above and then extracting, we find that
∞∑
n=0

A(5n+ 1)qn ≡ −f 2
2 f(q, q

4)f(q2, q3) ≡ −f
3
2

f1

f 3
5

f10
(mod 3). (5.108)

Now, (5.25) follows from (5.62), (5.67) and (5.108).

Proofs of (5.26) and (5.28). From (5.65), we have
∞∑
n=0

b6(5n)q
n ≡ f 4

5

f 2
10

f10
f 3
5

(
f 2(q10, q15) + qf(q5, q20)f(q10, q15) + q2f 2(q5, q20)

+ 2q3ψ(q25)f(q10, q15) + 2q4ψ(q25)f(q5, q20)

)
(mod 3).
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Thus, in view of Lemma 2.8, we have

∞∑
n=0

B(n)qn =

(
∞∑
n=0

b6(25n)q
n

)(
∞∑
n=0

b6(25n+ 10)qn

)

≡
(
f1
f2
f 2(q2, q3)

)(
f1
f2
f 2(q, q4)

)
≡ f 2

1

f 2
2

f 4
5

G2(q)H2(q)

G2(q2)H2(q2)
≡
(
f 3
5

f10

)2

(mod 3). (5.109)

The proof of (5.26) is evident from (5.67) and (5.109).

Again, extracting the terms involving q5n+r, 1 ≤ r ≤ 4 from (5.109), we obtain

(5.28).

Proofs of (5.27) and (5.30). From (5.74), we have
∞∑
n=0

b6(625n+ 130)qn ≡ 2q
f10
f5

f(q5)f20
f(q5)f20

(
φ(−q25)f(−q15,−q35)− qf 2(−q15,−q35)

− q3φ(−q25)f(−q5,−q45) + q4f(−q5,−q45)f(−q15,−q35)

− q7f 2(−q5,−q45)
)

(mod 3).

From the above and Lemma 2.8, we find that

∞∑
n=0

D(n)qn =

(
∞∑
n=0

b6(3125n+ 1380)qn

)(
∞∑
n=0

b6(3125n+ 2005)qn

)

≡
(
f2
f1
f 2(−q3,−q7)

)(
q
f2
f1
f 2(−q,−q9)

)
≡ q

f 2
2

f 2
1

f 4
10

G2(q2)H2(q2)

G2(q)H2(q)
≡ q

f 6
10

f 2
5

(mod 3), (5.110)

which implies that
∞∑
n=0

D(5n+ 1)qn ≡
(
f 3
2

f1

)2

(mod 3). (5.111)

The proof of (5.27) follows from (5.62) and (5.111).

Again, extracting the terms involving q5n+r, r = 0, 2, 3, 4 from (5.110), we com-

plete the proof of (5.30).

Proof of (5.29). From (5.69), we have the following
∞∑
n=0

b6(125n+ 5)qn ≡ f25

(
T (q5)− q − q2

T (q5)

)(
φ(−q25)
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− 2qf(−q15,−q35) + 2q4f(−q5,−q45)
)

(mod 3),

from which we extract
∞∑
n=0

b6(625n+ 380)qn ≡ 2f5f(−q3,−q7)
f(−q,−q4)
f(−q2,−q3)

(mod 3)

and
∞∑
n=0

b6(625n+ 605)qn ≡ 2f5f(−q,−q9)
f(−q2,−q3)
f(−q,−q4)

(mod 3).

Thus, from the above two equations and Lemma 2.8, we have

∞∑
n=0

C(n)qn =

(
∞∑
n=0

b6(625n+ 380)qn

)(
∞∑
n=0

b6(625n+ 605)qn

)
≡ f 2

5 f(−q3,−q7)f(−q,−q9) (5.112)

≡ f 2
5 f

2
10

G(q2)H(q2)

G(q)H(q)
≡ f5f

3
10χ(−q) (mod 3).

Employing (5.55) in the above and then extracting, we find that
∞∑
n=0

C(5n+ 4)qn ≡ f 2
5 f(−q3,−q7)f(−q,−q9) (mod 3). (5.113)

Now, (5.29) follows from (5.112) and (5.113).

Proof of (5.31). From (5.62) and (5.68), we have
∞∑
n=0

E(n)qn =

( ∞∑
m=0

b6(m)qm
)( ∞∑

m=0

b6(125m+ 5)qm
)

≡ f 3
1 f

3
2

f1f2
≡ f3f6
f1f2

(mod 3). (5.114)

Also, it is known from Chan [41] that if
∞∑
n=0

a(n)qn =
1

f1f2
, then

∞∑
n=0

a(3n+ 2)qn = 3
f 3
3 f

3
6

f 4
1 f

4
2

. (5.115)

The proof of (5.31) is evident from (5.114) and (5.115).

5.6 Proofs of (5.17) and (5.18)

We prove (5.17) and (5.18) by employing a method of Radu [91]. The background

materials required for the method has been presented in Subsection 3.5.1 of Chapter
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3.

Proofs of (5.17) and (5.18) are similar. Hence, we elaborate the proof of (5.17)

only. We have
∞∑
n=0

b6(n)q
n =

f6
f1

≡ f 8
1 f6
f 3
3

(mod 9). (5.116)

Using Conditions 1–5 of Subsection 3.5.1, we have (m,M,N, t, (rδ)) = (125, 6, 6, 30,

(8, 0,−3, 1)) ∈ ∆∗. So, by (3.57), we obtain P (t) = {30, 105}. Lemma 3.7 gives

that


1 0

δ 1

 : δ | N

 is a complete set of representatives of the double cosets in

Γ0(N)\Γ/Γ∞. Using (r′δ) = (1, 0, 0, 0), (3.58), and Mathematica, we find that

p

1 0

δ 1

+ p′

1 0

δ 1

 ≥ 0 for all δ | N ,

⌊ν⌋ = 3,

b6(125n+ j) ≡ 0 (mod 9) for j ∈ {30, 105},

are true for all 0 ≤ n ≤ ⌊ν⌋. Therefore, by Lemma 3.8 and (5.116), for all n ≥ 0,

we have

b6(125n+ j) ≡ 0 (mod 9) for j ∈ {30, 105}.

Again, if we choose (m,M,N, t, (rδ)) = (125, 6, 6, 55, (8, 0,−3, 1)), then by (3.57),

we have P (t) = {55, 80}. Taking (r′δ) = (1, 0, 0, 0), ⌊ν⌋ = 3 and proceeding as above,

for all n ≥ 0, we have

b6(125n+ j) ≡ 0 (mod 9) for j ∈ {55, 80}.

Thus, we complete the proof of (5.17).

The proof of (5.18) follows analogously from Lemma 3.8 and the following table.

Congruence (m,M,N, t, (rδ)) and (r′δ) P (t) ⌊ν⌋

(5.6)
(15625, 6, 6, 130, (8, 0,−3, 1)) and (1, 0, 0, 0) {130, 6380} 3

(15625, 6, 6, 9505, (8, 0,−3, 1)) and (1, 0, 0, 0) {9505, 12630} 2
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5.7 Proof of Theorem 5.12

We prove Theorem 5.12 using elementary q-series techniques, remniscent of the proof

of the result of Majid and Fathima [83]. But, before that we need the following result.

Theorem 5.29. For all integers α ≥ 0, we have
∞∑
n=0

A5,4(5
α+1n+ 5α+1 − 4)qn = Aαf

2
5 f

14
1 +Bαqf

8
5 f

8
1 + Cαq

2f 14
5 f

2
1

+Dαq
3

∞∑
n=0

A5,4(n)q
n, (5.117)

where A0 = 4, B0 = 550, C0 = 12500, D0 = 78125, and for any integer n ≥ 1, An,

Bn, Cn, and Dn are defined as

An = −Cn−1 + 4Dn−1, (5.118)

Bn = −125Bn−1 + 550Dn−1, (5.119)

Cn = −15625An−1 + 12500Dn−1, (5.120)

Dn = Dn+1
0 . (5.121)

Proof. From equation (5.32), we have
∞∑
n=0

A5,4(n)q
n =

f 20
5

f 4
1

.

From equation (5.61), we have
∞∑
n=0

A5,4(5n+ 1)qn = 4f 2
5 f

14
1 + 550qf 8

5 f
8
1 + 12500q2f 14

5 f
2
1 + 78125q3

f 20
5

f 4
1

= 4f 2
5 f

14
1 + 550qf 8

5 f
8
1 + 12500q2f 14

5 f
2
1 + 78125q3

∞∑
n=0

A5,4(n)q
n.

(5.122)

Equation (5.122), is the case for α = 0.

Now assume that the result holds for all values up to α + 1 (α ≥ 0). Replacing

n by 5n+ 4, and by using Lemmas 5.22, 5.23, 5.24, and (5.122), we have
∞∑
n=0

A5,4(5
α+2n+ 5α+2 − 4)qn

= Aα(−15625q2f 2
1 f

14
5 ) +Bα(−125qf 8

1 f
8
5 ) + Cα(−f 14

1 f
2
5 ) +Dα(4f

2
5 f

14
1
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+ 550qf 8
5 f

8
1 + 12500q2f 14

5 f
2
1 + 78125q3

∞∑
n=0

A5,4(n)q
n)

= (−Cα + 4Dα)f
14
1 f

2
5 + (−125Bα + 550Dα)qf

8
1 f

8
5

+ (−15625Aα + 12500Dα)q
2f 2

1 f
14
5 +Dα78125q

3

∞∑
n=0

A5,4(n)q
n

= Aα+1f
14
1 f

2
5 +Bα+1qf

8
1 f

8
5 + Cα+1q

2f 2
1 f

14
5 +Dα+1q

3

∞∑
n=0

A5,4(n)q
n.

Hence, the result is true by induction.

Now, we are in a position to prove Theorem 5.12.

Proof of Theorem 5.12. From equations (5.118), (5.119), (5.120), and (5.121), we

see that

A1 ≡ 0 (mod 55), B1 ≡ 0 (mod 56), C1 ≡ 0 (mod 56), D1 ≡ 0 (mod 57),

A2 ≡ 0 (mod 56), B2 ≡ 0 (mod 57), C2 ≡ 0 (mod 57), D2 ≡ 0 (mod 58),

...
...

...
...

Aα ≡ 0 (mod 5α+4), Bα ≡ 0 (mod 5α+5), Cα ≡ 0 (mod 5α+5), Dα ≡ 0 (mod 5α+6).

Now, it is easy to see that (5.117) implies Theorem 5.12.

5.8 Proofs of Theorems 5.13–5.15

Proof of Theorem 5.13. From the generating function of Ap,pN i−1(n), we have

∞∑
n=0

Ap,pN i−1(n)q
n =

f
p(pN i−1)
p

fpN i−1
1

≡ f
p(pN i−1)
p

fpN−1i
p

f1 (mod pN).

With the help of equation (4.24), we obtain

∞∑
n=0

Ap,pN i−1(n)q
n ≡ f

p(pN i−1)
p

fpN−1i
p

( ∞∑
m=−∞

(−1)mqm(3m−1)/2

)
(mod pN).

For some m and n, we are interested in finding out whether m(3m− 1)/2 = pn+ r.

This is equivalent to asking whether 24pn + 24r + 1 = (6m − 1)2, which implies

24r + 1 ≡ (6m− 1)2 (mod p). However 24r + 1 is a quadratic non residue modulo
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p. It follows that

Ap,pN i−1(pn+ r) ≡ 0 (mod pN).

Proof of Theorem 5.14. Like before, we have

∞∑
n=0

Ap,pN i−3(n)q
n =

f
p(pN i−3)
p

fpN i−3
1

≡ f
p(pN i−3)
p

fpN−1i
p

f 3
1 (mod pN).

With the help of equation (3.66), we obtain

∞∑
n=0

Ap,pN i−3(n)q
n ≡ f

p(pN i−3)
p

fpN−1i
p

(∑
m≥0

(−1)m(2m+ 1)qm(m+1)/2

)
(mod pN). (5.123)

For some m and n, we are interested in finding out whether m(m+ 1)/2 = pn+ r.

This is equivalent to asking whether 8pn + 8r + 1 = (2m + 1)2, which implies

8r + 1 ≡ (2m + 1)2 (mod p). However 8r + 1 is a quadratic nonresidue modulo p.

It follows that

Ap,pN i−(pn+ r) ≡ 0 (mod pN).

Proof of Theorem 5.15. Due to equations (3.66) and (5.123), we must determine

whether pn + r = m(m + 1)/2 for some integers m and n. Completing the square

and considering the result modulo p gives (2m+1)2 ≡ 8r+1 ≡ 0 (mod p). Therefore,

p divides (2m+1)2, implying that p divides 2m+1. Since the coefficient of qm(m+1)/2

in the series representation in equation (3.66) is exactly 2m+ 1, it follows that the

coefficient we are interested in is congruent to 0 modulo p.

5.9 Proof of Theorem 5.16

The proofs of the congruences are similar in nature. So, we only present proofs of

(5.40) and (5.41). For others, we just give the corresponding generating functions.

Proofs of (5.40) and (5.41). First, we prove (5.40). We have,
∞∑
n=0

A5,4(n)q
n =

f 20
5

f 4
1

= f 20
5

∞∑
n=0

P4(n)q
n.
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Then, extracting the terms involving q5n+1 and dividing by q and then replacing q5

by q, we obtain
∞∑
n=0

A5,4(5n+ 1)qn = f 20
1

∞∑
n=0

P4(5n+ 1)qn.

With the help of Lemma 5.21, we have
∞∑
n=0

A5,4(5n+ 1)qn = f 20
1

(
4
f 2
5

f 6
1

+ 550q
f 8
5

f 12
1

+ 12500q2
f 14
5

f 18
1

+ 78125q3
f 20
5

f 24
1

)
= 4f 2

5 f
14
1 + 550qf 8

5 f
8
1 + 12500q2f 14

5 f
2 + 78125q3

f 20
5

f 4
1

.

Using equations (1.17) and (1.16), extracting the terms involving q5n+4, dividing by

q and then replacing q5 by q, we arrive at
∞∑
n=0

A5,4(25n+ 21)qn = 55
(
− 4f 14

1 f
2
5 + 100

f 20
5

f 4
1T

15(q)
+ q

(
10450

f 20
5

f 4
1T

10(q)
− 22f 8

1 f
8
5

)
+ q2

(
46000

f 20
5

f 4
1T

5(q)
− 62500f 2

1 f
14
5

)
+ 25375q3

f 20
5

f 4
1

− 46000q4
f 20
5 T

5(q)

f 4
1

+ 10450q5
f 20
5 T

10(q)

f 4
1

− 100q6
f 20
5 T

15(q)

f 4
1

)
,

which on usage of (5.60) reduces to
∞∑
n=0

A5,4(25n+ 21)qn = 55
(
96f 14

1 f
2
5 + 13728qf 8

1 f
8
5 + 312480q2f 2

1 f
14
5 + 1953125q3

f 20
5

f 4
1

)
,

which implies (5.40).

Proceeding in a similar way, we can also deduce
∞∑
n=0

A5,4(125n+ 121)qn = 56
(
1500004f 14

1 f
2
5 + 214500550qf 8

1 f
8
5 + 4882512500q2f 2

1 f
14
5

+ 30517578125q3
f 20
5

f 4
1

)
which proves (5.41).

Now, we note the following generating functions which will complete the proofs

of the other congruences stated in the result:
∞∑
n=0

A5,2(25n+ 23)qn = 52
(
48f 4

1 f
4
5 + 625q

f 10
5

f 2
1

)
,

∞∑
n=0

A5,2(125n+ 123)qn = 53
(
1202f 4

1 f
4
5 + 15625q

f 10
5

f 2
1

)
,
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∞∑
n=0

A5,3(25n+ 22)qn = 5

(
5838f 9

1 f
3
5 + 233250qf 3

1 f
9
5 + 1953125q2

f 15
5

f 3
1

)
,

∞∑
n=0

A5,3(125n+ 122)qn = 52
(
3643791f 9

1 f
3
5 + 145754625qf 3

1 f
9
5 + 1220703125q2

f 15
5

f 3
1

)
.

This completes the proof of Theorem 5.16.

5.10 Proofs of Theorem 5.17 and Corollary 5.18

Proof of Theorem 5.17. Without loss of generality, we may assume that r =
M−1∑
j=0

pjrj

for 0 ≤ rj ≤ p− 1, as
M−1∑
j=0

pjrj can take any value between 1 and pM − 1.

For integers M ≥ 1 (sufficiently large) and N ≥ 1, we have

∞∑
n=0

Ap,pM+N−1i+k(n)q
n =

f
p(pM+N−1i+k)
p

fpM+N−1i+k
1

=
fpM+N i
p

fpM+N−1i
1

∞∑
n=0

Ap,k(n)q
n

≡ fpM+N−2(p2−1)i
p

∞∑
n=0

Ap,k(n)q
n (mod pN).

Extracting the terms that involve qpn+r0 from the above identity, we obtain
∞∑
n=0

Ap,pM+N−1i+k(pn+ r0)q
n ≡ f

pM+N−2(p2−1)i
1

∞∑
n=0

Ap,k(pn+ r0)q
n

≡ fpM+N−3(p2−1)i
p

∞∑
n=0

Ap,k(pn+ r0)q
n (mod pN).

Again, extracting the terms that involve qpn+r1 from the above identity, we have
∞∑
n=0

Ap,pM+N−1i+k(p
2n+ r0 + pr1)q

n ≡ f
pM+N−3(p2−1)i
1

∞∑
n=0

Ap,k(p
2n+ r0 + pr1)q

n

≡ fpM+N−4(p2−1)i
p

∞∑
n=0

Ap,k(p
2n+ r0 + pr1)q

n (mod pN).

From the above identity, we extract the terms that contain qpn+r2 , and from the

resulting identity, we again extract the terms that contain qpn+r3 and so on. It can

be seen that after the M -th extraction using this iterative scheme, we arrive at

∞∑
n=0

Ap,pM+N−1i+k(p
Mn+ r0 + pr1 + · · ·+ pM−1rM−1)q

n
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≡ f
pN−1(p2−1)i
1

∞∑
n=0

Ap,k(p
Mn+ r0 + pr1 + · · ·+ pM−1rM−1)q

n (mod pN). (5.124)

Therefore, if we assume thatAp,k(p
Mn+r0+pr1+· · ·+pM−1rM−1) = Ap,k(p

Mn+r) ≡

0 (mod pN), then from the above identity, we have

Ap,pM+N−1i+k(p
Mn+ r) ≡ 0 (mod pN).

This completes the proof of Theorem 5.17.

Remark 5.30. We have the following easy corollary, which follows from equation

(5.124) when M = 1.

Corollary 5.31. Let p be a prime, k ≥ 1, j ≥ 0, N ≥ 1, and r be integers such

that 1 ≤ r ≤ p− 1. Then for all n ≥ 0, we have
∞∑
n=0

Ap,pN i+k(pn+ r)qn ≡ f
pN−1(p2−1)i
1

∞∑
n=0

Ap,k(pn+ r)qn (mod pN).

Proof of Corollary 5.18. The proofs of the above congruences follow from Theorems

5.16 and 5.17 and are similar in nature. Hence, here we only present the proof of

(5.48).

The case for i = 0 is true by (5.40).

Using Theorem 5.17, and the case for i = 0, we deduce that
∞∑
n=0

A5,125i+4(25n+ 21)qn ≡
∞∑
n=0

A5,4(25n+ 21)qn ≡ 0 (mod 25),

which completes the proof.

5.11 Concluding remarks

1. In Theorem 5.6, we have proved recurrence relations for b6(n) modulo 3 us-

ing elementary q-series and theta functions manipulations, whereas we have

deduced the individual congruences of b6(n) modulo 9 in (5.17) and (5.18) em-

ploying algorithmic techniques based on the theory of modular forms. It may

be interesting to prove (5.17) and (5.18) via elementary approach. Another

question for further consideration is to find whether Theorems 5.6 and 5.7 hold

for modulo 9 or not.
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2. We have found several congruences modulo powers of 5, individual as well as

infinite families similar to those stated in Theorem 5.17, for A5,k(n) for higher

values of k. The proofs of these are routine execises similar to the proofs of

(5.40) and (5.41) hence, they are not proved here.

For instance, the following congruences are true:

A5,6(25n+ 14, 19, 24) ≡ 0 (mod 52), (5.125)

A5,6(125n+ 119) ≡ 0 (mod 53), (5.126)

A5,7(25n+ 13, 18, 23) ≡ 0 (mod 52), (5.127)

A5,7(125n+ 118) ≡ 0 (mod 53), (5.128)

A5,52i+6(25n+ 14, 19, 24) ≡ 0 (mod 5), (5.129)

A5,53i+6(25n+ 14, 19, 24) ≡ 0 (mod 52), (5.130)

A5,55i+6(125n+ 119) ≡ 0 (mod 53), (5.131)

A5,52i+7(25n+ 13, 18, 23) ≡ 0 (mod 5), (5.132)

A5,53i+7(25n+ 13, 18, 23) ≡ 0 (mod 52), (5.133)

A5,55i+7(125n+ 118) ≡ 0 (mod 53). (5.134)

3. Looking at the sequence of results in (5.33), (5.34) and Theorem 5.12, one

interesting problem may be to study the behaviour of

A5,5i+k(5
αn+ 5α − k) (mod 5α) where k ∈ {2, 3, 4}.

4. Experiments suggest some additional infinite family of congruences modulo

powers of 5 which are stronger results than those given in Theorem 5.17. We

present them in the following conjecture.

Conjecture 5.32. For n ≥ 0,

A5,5i+1(25n+ 24) ≡ 0 (mod 52), (5.135)

A5,52i+2(25n+ 23) ≡ 0 (mod 52), (5.136)

A5,53i+2(125n+ 123) ≡ 0 (mod 53), (5.137)

A5,53i+3(125n+ 122) ≡ 0 (mod 52), (5.138)

A5,54i+4(125n+ 121) ≡ 0 (mod 55), (5.139)

A5,55i+4(125n+ 121) ≡ 0 (mod 56), (5.140)
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A5,52i+6(25n+ 14, 19) ≡ 0 (mod 52), (5.141)

A5,52i+6(125n+ 119) ≡ 0 (mod 53), (5.142)

A5,52i+7(25n+ 13, 18, 23) ≡ 0 (mod 52), (5.143)

A5,53i+7(125n+ 118) ≡ 0 (mod 53). (5.144)
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