Dedicated to my parents who have been my first teachers and my biggest support throughout my learning life.

Declaration

I, Barnam Jyoti Saharia, hereby declare that the present thesis, entitled Development of soft computing modality for optimization of Renewable Energy Systems, is the record of work done by me under the supervision of Dr. Nabin Sarmah, Assistant Professor, Department of Energy. The contents of the thesis represent my original work that have not been previously submitted for any Degree/Diploma/Certificate in any other University or Institution of Higher Education.

I certify that

- I have followed the guidelines provided by Tezpur University in writing the thesis.
- I have conformed to the norms and guidelines given in the Ethical Code of Conduct of the university.
- Whenever I have used materials (data, theoretical analysis, and text) from other sources, I have given due credit to them by citing them in the text of the dissertation and giving their details in the references.

This thesis is being submitted to **Tezpur University** for the Degree of Doctor of Philosophy in **Energy**.

Bisabaria

Place: Tezpur University Date: 28/06/2024

(Barnam Jyoti Saharia)

Department of Energy Tezpur University

Napaam, Tezpur- 784028, Assam, India.

Dr. Nabin Sarmah Assistant Professor Phone:+91-3712-275314 Fax:+91 3712 267005 E-Mail : nabin@tezu.ernet.in

Certificate

This is to certify that the thesis entitled "Development of soft computing modality for optimization of Renewable Energy Systems" submitted to Tezpur University in the Department of Energy under the School of Engineering in partial fulfillment of the award of the degree of Doctor of Philosophy in Energy is a record of research work carried out by Barnam Jyoti Saharia under my supervision and guidance.

All helps received by him from various sources have been duly acknowledged. No part of this thesis has been submitted else where for award of any other degree.

2024

(Supervisor)

Dr. Nabin Sarmah Assistant Professor, Department of Energy School of Engineering, Tezpur University Assam, India-784028

June, 2024

Certificate

This is to certify that the thesis entitled "Development of soft computing modality for optimization of Renewable Energy Systems" submitted by Mr. Barnam Jyoti Saharia to Tezpur University in the Department of Energy under the School of Engineering in partial fulfillment of the requirements for the award of the degree of Doctor of Philosophy in Energy has been examined by us on ..27..03...2025... and found to be satisfactory.

The Committee recommends for award of the degree of Doctor of Philosophy.

3/2025 Signature of Principal Supervisor

External Examiner Signatur

Declaration

I, Barnam Jyoti Saharia, hereby declare that the present thesis, entitled Development of soft computing modality for optimization of Renewable Energy Systems, is the record of work done by me under the supervision of Dr. Nabin Sarmah, Assistant Professor, Department of Energy. The contents of the thesis represent my original work that have not been previously submitted for any Degree/Diploma/Certificate in any other University or Institution of Higher Education.

I certify that

- I have followed the guidelines provided by Tezpur University in writing the thesis.
- I have conformed to the norms and guidelines given in the Ethical Code of Conduct of the university.
- Whenever I have used materials (data, theoretical analysis, and text) from other sources, I have given due credit to them by citing them in the text of the dissertation and giving their details in the references.

This thesis is being submitted to **Tezpur University** for the Degree of Doctor of Philosophy in **Energy**.

Place: Tezpur University Date:

(Barnam Jyoti Saharia)

Department of Energy Tezpur University

Napaam, Tezpur- 784028, Assam, India.

Dr. Nabin Sarmah Assistant Professor Phone:+91-3712-275314 Fax:+91 3712 267005 E-Mail : nabin@tezu.ernet.in

Certificate

This is to certify that the thesis entitled "Development of soft computing modality for optimization of Renewable Energy Systems" submitted to Tezpur University in the Department of Energy under the School of Engineering in partial fulfillment of the award of the degree of Doctor of Philosophy in Energy is a record of research work carried out by Barnam Jyoti Saharia under my supervision and guidance.

All helps received by him from various sources have been duly acknowledged. No part of this thesis has been submitted else where for award of any other degree.

(Supervisor)

Dr. Nabin Sarmah Assistant Professor, Department of Energy School of Engineering, Tezpur University Assam, India-784028

June, 2024

Certificate

This is to certify that the thesis entitled "Development of soft computing modality for optimization of Renewable Energy Systems" submitted by Mr. Barnam Jyoti Saharia to Tezpur University in the Department of Energy under the School of Engineering in partial fulfillment of the requirements for the award of the degree of Doctor of Philosophy in Energy has been examined by us on and found to be satisfactory.

The Committee recommends for award of the degree of Doctor of Philosophy.

Signature of Principal Supervisor

Signature of External Examiner

Acknowledgment

It gives me great pleasure to express my gratitude to everyone who has helped me complete my doctoral programme at Tezpur University by providing guidance and support. It would not have been possible for me to enjoy the learning experience and thrive solely through my own efforts. Many people extended their helping hands to me in order to make my work a success. I'd like to thank everyone who helped and supported me while I was working at Tezpur University.

First and foremost, I would like to thank my supervisor, Dr. Nabin Sarmah, for his unwavering support, trust, valuable feedback, encouragement, and countless words of wisdom. He gave me the opportunity to advance my ideas and work at my own pace, and he was always open to discussing any problems that arose along the way. His encouragement and direction have served as the foundation for the successful delivery of my academic research. I'd also like to thank my father, Dr. Kamala Kanta Saharia (Professor, Department of Extension Education, College of Veterinary Sciences, Khanapara (Retired)), my mother, Dr.(Mrs) Rupjyoti Ojah (Deputy Director and Veterinary Information Officer, Department of Animal Husbandry and Veterinary (Retired), Government of Assam) and my wife, Mrs. Dimpy Mala Dutta (Research Scholar, Department of Mathematics, North Eastern Hill University, Shillong, Meghalaya), for their unwavering support and encouragement to continue pursuing my passion and academic research. They have been a source of constant emotional and mental support for me to continue working on my dissertation with dedication and determination.

I would like to express my heartfelt appreciation to all of the doctoral committee members of my research, particularly Prof. Rupam Kataki, for his insightful advice and recommendations, and the support from Dr. Vikas Verma and Dr. Durlav Sonowal for their comments which led to improvement in my work. I wish to convey my gratitude to Professor Sadhan Mahapatra, Professor Deben Chandra Baruah, and Prof. Dhanapati Deka as well for their suggestions from time to time. I'd also like to acknowledge the assistance and support I've received from members of the faculty, Department of Electrical Engineering, from time to time, with special thanks to Prof. Asim Datta, Dr. Md. Rahat Mahboob, Dr. Soumya Samanta. It would be remiss of me if I do not mention the guidance and advice received from Professor Soumik Roy, Department of Electronics and Communication Engineering during the course of my Ph.D. journey for sharing myriad of experiences and for his words of encouragement. I would like to express my heartfelt gratitude to other faculty members of the department of Electrical Engineering and the department's non-teaching staff, for their generous assistance in various ways in completing the work.

I am immensely grateful to all of my colleagues from the Department of Energy especially Dr. Honey Bramha, Mr. Jivajyoti Mahanta, Mr. Avik Ghosh and Mr. Raman Jee Pandey who also collaborated with me during my doctoral research work. Colleagues from the department of Electronics and Communication Engineering Dr. Satyabrat M. Bujarbaruah, Dr. Hilly Gohain Baruah and Dr. Helal Uddin Mullah who have been immensely helpful to me during the preparation of this thesis using $I\Delta T_E X$. I would also like to thank IQAC, Tezpur University and Prof. Dilip Datta for the opportunity to learn $I\Delta T_E X$ in a systematic and organized way to better present the work in this thesis. A special thanks to Dr. Biren Das, Registrar, Tezpur University for allowing me permission to pursue my Ph.D. work as an in-service candidate.

Finally, I would like to thank all those who have directly or indirectly helped me in different capacities to complete my research work.

Barnam Jyoti Saharia

List of Figures

1.1	Architecture of a HRES based on PV and wind power $[102]$	3
1.2	A flowchart of overall workflow of the research work	5
2.1	Classification of Metaheuristic Algorithms considered in the study .	15
2.2	Flowchart of the Grey Wolf Optimizer	21
2.3	Updating the positions of particles iteratively in PSO algorithm $~$.	25
2.4	Flowchart of the Genetic Algorithm	32
2.5	MPPT position with DC-DC converter in standalone PV system	39
3.1	Electrical circuit of a DC-DC Boost Converter	49
3.2	Overall flowchart for the workflow of optimization of DC-DC con- verters using metaheuristic algorithms	54
3.3	Convergence characteristics for the Boost Converter	55
3.4	Standalone PV system with MPPT connected to a load	60
3.5	Schematic of PV system integrated with DC-DC Converter and MPPT algorithm	60
3.6	I-V and P-V curve of the PV module at 1 kW/m^2 and 25 $^{\circ}\mathrm{C}$	61
3.7	Optimized Boost converter based MPPT tracking of PV systems using PSO, CSA, FLA, ANN and P&O techniques	63

3.8	Different set of irradiance profiles selected for analysis of MPPT algorithms	5
3.9	MPPT tracked power for irradiance profile 1 using ANN, P&O, FLA, CSA and PSO based algorithms	3
3.10	MPPT tracked power for irradiance profile 2 using ANN, P&O, FLA, CSA and PSO based algorithms	7
3.11	MPPT tracked power for irradiance profile 3 using ANN, P&O, FLA, CSA and PSO based algorithms	7
4.1	Map of Dimapur District	7
4.2	Load variation in study area for different seasons [181]	3
4.3	Daily average solar insolation data for the study area (2000 to 2014) 79	9
4.4	Monthly Rainfall duration over a year (2000 to 2014) $\ldots \ldots \ldots $)
4.5	Monthly average temperature for the study area (2000 to 2014) \therefore 80)
4.6	Availability of solar radiation and rainfall for a year $(2000 - 2014)$. 82	1
4.7	Variation in the elevation w.r.t length of the basin $[181]$ 82	2
4.8	Monthly Runoff rate for study area $[181]$	2
4.9	Flowchart of the design optimization of HRES system using the Metaheuristic Algorithms	3
4.10	Convergence characteristics of all the Metaheuristic Algorithms 84	1
5.1	Convergence Curve of the ALO, MFO, WOA, PSO, SCA, GWO and GWOSCAPSO for the boost converter)
5.2	Convergence Curve of the ALO, MFO, WOA, PSO, SCA, GWO and GWOSCAPSO for the Boost converter for MPPT Applications with PV systems	2
5.3	Convergence characteristics of the ALO, MFO, WOA, PSO, SCA, GWO and GWOSCAPSO for the optimal sizing of the HRES 103	3

List of Tables

3.1	Parameters defined for the optimization algorithms in the current study	53
3.2	Design parameters and constraints as inputs considered for opti- mization of DC-DC boost converter [202]	55
3.3	Statistical parameters for the optimal design of the boost converter	56
3.4	Optimal value of the design parameters for the Boost converter $\ . \ .$	57
3.5	Variation of Parameters of Kyocera KC-120-1 module under chang- ing irradiance scenarios	62
3.6	Optimal design parameters of the Boost converter for MPPT applications in Standalone PV systems given by GWO and WOA algorithms	62
3.7	Optimal Design of the Boost DC-DC converter for MPPT applica- tions in Standalone PV systems	63
3.8	Tracking efficiency (%), Average Power Output , RPL, RPG and of the P&O, ANN, FLA, CSA and PSO based algorithms	68
4.1	Statistical parameters for the optimal design of the Hybrid PV- Hydro based HRES for LCOE in INR/kW	85
4.2	Optimal parameters for the design sizing of PV-Hydro based hybrid system	86
4.3	Specification of Optimized Hydro System	87
4.4	Specification of Optimized PV System	87

5.1	Results of simulation experiments conducted with Unimodal Benchmark Functions F1-F7
5.2	Results of simulation experiments conducted with Multimodal Benchmark Functions F8-F13
5.3	Results of simulation experiments conducted with Fixed Dimension Multimodal Benchmark Functions F14-F23
5.4	Optimized P_{BOOST} values of the DC-DC boost converter by ALO, MFO, PSO, WOA, GWO, SCA and GWOSCAPSO 99
5.5	Optimized design parameter values for the boost converter obtained by ALO, MFO, WOA, PSO, SCA, GWO and GWOSCAPSO $\ .\ .\ .\ 100$
5.6	Statistical parameters for the Optimized P_{BOOST} values of the DC-DC boost converter for MPPT application in standalone PV systems by ALO, MFO, PSO, WOA, GWO, SCA and GWOSCAPSO . 101
5.7	Optimized design parameters for the boost converter for MPPT application in standalone PV systems obtained by ALO, MFO, WOA, PSO, SCA, GWO and GWOSCAPSO
5.8	Statistical parameters of the algorithms for minimized LCOE (INR/kWh) obtained by ALO, MFO, WOA, PSO, SCA, GWO and GWOSCAPSO
5.9	Optimized Sizing of HRES system obtained by ALO, MFO, WOA, PSO, SCA, GWO and GWOSCAPSO
5.10	Specification of the GWOSCAPSO Optimized Hydro System 106
5.11	Specification of the GWOSCAPSO Optimized PV System 106

List of Algorithms

1 Pseudo-code for the Hybrid GWOSCAPSO algorithm $\dots \dots \dots 92$

List of Acronyms

ABC	Artificial Bee Colony
AC	Alternating Current
ACO	Ant Colony Optimization
AEFA	Artificial Electric Field Algorithm
AHA	Artificial Humming Bird Algorithm
AIS	Artificial Immune System
ALO	Ant Lion Optimization
AMFA	Adaptive Modified Firefly Algorithm
ANN	Artificial Neural Networks
ANFIS	Adaptive Neuro Fuzzy Inference System
ANOVA	One way Analysis of Variance
AOA	Arithmetic Optimization Algorithm
ASO	Atom Search Optimization
AT&C	Aggregate Technical and Commercial
BA	Bat Algorithm
BB-BC	Big Bang Big Crunch
BW	Bandwidth
CCM	Continuous Conduction Mode
CO_2	Carbon Dioxide
COE	Cost of Energy
CS	Cuckoo Search
CVM	Continuous Voltage Mode
DC	Direct Current
DC-DC	Direct Current to Direct Current
DCM	Discontinuous Conduction Mode
DE	Differential Evolution
DFA	Dragon Fly Algorithm
DLH	Dimension Learning Based Hunting
DSM	Demand Side Management
EMI	Electromagnetic Interference

EO	Equilibrium Optimizer
FFA	Firefly Algorithm
FDA	Flow Direction Algorithm
FSC	Fractional Short Circuit
FLA	Fuzzy Logic Algorithm
GA	Genetic Algorithm
GSA	Gravitational Search Algorithm
GWO	Grey Wolf Optimizer
GWOSCAPSO	Grey Wolf Optimizer Sine Cosine Algorithm Par-
	ticle Swarm Optimization
HBB-BCA	Hybrid Big Bang-Big Crunch Algorithm
HBMA	Honey Bee Mating Algorithm
ННО	Harris Hawk's Optimization
HRES	Hybrid Renewable Energy Systems
IC	Incremental Conductance
ICA	Imperialist Completion Algorithm
IGWO	Improved Grey Wolf Optimizer
IMD	Indian Meteorological Department
I-V	Current vs Voltage
LCOE	Levelized Cost of Energy
LV	Low Voltage
MATLAB	Matrix Laboratory
MBA	Mine Blast Algorithm
MFO	Moth Flame Optimization
MNRE	Ministry of New and Renewable Energy
MPA	Marine Predator Algorithm
MPP	Maximum Power Point
MPPT	Maximum Power Point Tracking
MPSO	Modified Particle Swarm Optimization
MOSFET	Metal Oxide Semiconductor Field Effect Transis-
	tor
MVO	Multi Verse Optimizer
MW	Mega Watts
NEEPCO	North Eastern Electric Power Corporation
NHPC	National Hydroelectric Power Corporation
NREL	National Renewable Energy Laboratory
NSGA	Nondominated Sorting Genetic Algorithm
NTPC	National Thermal Power Corporation
O&M	Operation and Maintenance

ONCG	Oil and Natural Gas Commission
OTPC	ONGC Tripura Power Company Limited
P&O	Perturb and Observe
PPU	Power Processing Units
PSO	Particle Swarm Optimization
\mathbf{PV}	Photovoltaic
PWM	Pulse Width Modulation
QOHSA	Quasi-Oppositional Harmony Search Algorithm
RPG	Relative Power Gain
RPL	Relative Power Loss
SA	Simulated Annealing
SCA	Sine Cosine Algorithm
SEFC	Single Ended Forward Converter
SHPS	Small Hydro Power Plant System
SPVS	Solar Photovoltaic System
SSA	Scalp Swarm Algorithm
TLBO	Teaching Learning Based Optimization
WCA	Water Cycle Algorithm
WOA	Whale Optimization Algorithm

List of Symbols

lpha	A scaling factor which is responsible for
	controlling the step sizes in a random fash-
	ion in Firefly Algorithm
β_o	Is the constant that determines the attrac-
	tiveness between fireflies when the distance
	between them is zero.
heta	Parameter responsible for reduction of the
	randomness within the values of $(0,1]$ in
	Firefly Algorithm
Δi_1	Change in inductor current
Δv_o	Change in output voltage
η	Efficiency
η_{tb}	Conversion efficiency of turbine
ω_o	Bandwidth
Ω	Ohm
γ	Parameter regulating the discernibility of
	the fireflies
η_B	Efficiency of Battery,
$\eta_{PV,m}$	Conversion efficiency of the solar module.
ho	Density of water, g/m^3
\overrightarrow{a}	Parameter of the algorithm which reduces
_\ _\	from 2 to zero over iterations
\overrightarrow{A} , \overrightarrow{C}	Co-efficient Vectors
A	Surface area of the PV system, m^2 ,
A_{CC}	Annual capital cost, Rs
$A_{O\&M}$	Annual operation and maintenance cost ,
	Rs.
A_{PV}	Area of the PV system, m^2
$A_{PV.max}$	Maximum Area of the PV system, m^2
A_{Sal}	Annual salvage value of HRES, Rs

ALC	Annual levelized cost, Rs
C	Value of Capacitance/ Capacitor
$\overrightarrow{C_1}, \overrightarrow{C_2}, \overrightarrow{C_3}$	Co-efficient vectors related to position of
	alpha, beta and delta wolf respectively
$C_{A,h}$	Capacity of Battery, Ah
$C_{A,h1}$	Capacity of single Battery, Ah.
$C_{BAT,C}$	Capital cost of batteries ,Rs.
C_{CW}	Cost of Civil Works, Rs
C_{EW}	Cost of Electromechanical Equipment,
	(INR/kW)
C_H	Capacity of the hydro system, W
$C_{H,C}$	Capital cost of hydro system Rs.
$C_{min}, C_{1min}, C_{2min},$	Minimum Value of Capacitor
$C_{max}, C_{1max}, C_{2max}$	Maximum Value of Capacitor
$C_{PV,C}$	Capital cost of PV , Rs.
$C_{PV,e}, C_{H,e}, C_{BAT,e}$	Erection cost of PV and hydro system, and
	batteries respectively Rs.
$C_{PV,m}, C_{H,m}$	Mechanical cost of PV and hydro system,
	Rs.
$C_{PV,O\&M}, C_{H,O\&M}, C_{BAT,O\&M}$	Operation and maintenance cost of PV and
	hydro system, and batteries respectively,
	Rs.
$C_{PV,Sal}, C_{H,Sal}$	Salvage value of PV and hydro system, Rs.
CRF	Capital recovery factor
D	Duty Ratio
$rac{di_1}{dt}$	Rate of Change of Inductor Current
$\frac{dv_o}{dt}$	Rate of Change of output voltage
D_A	Days of Autonomy
D_i	The absolute value of the distance between
	the particle (or search agent) in moth flame $% \left($
	algorithm
D_{max}	Maximum demand, W
DoD	Depth of Discharge
$E_{g,HRES}$	Guaranteed energy output per year, Wh
E_H	Energy generated from the turbine, Wh
$E_L(t)$	Energy supplied, kWh
E_L	Daily energy consumption, Wh
E_{PV}	Energy output from the PV system, Wh
f_s	Switching Frequency

 L_{max}

f_{smin}	Minimum Value of switching frequency
f_{smax}	Maximum Value of switching frequency
F_{j}	Local solution in Moth Flame Algorithm
g	Gravitational acceleration, m/sec^2
g_{besti}	The global best value of the swarm
I	Current
G_T	Incident global radiation, W/m^2 ,
H	Gross head of the turbine, m
H_2	Hydrogen
H_{max}	Maximum head of the turbine, m
i_{inf}	Inflation rate.
i_1	Inductor Current
i_{nom}	Nominal interest rate
I_{MPP}	Current at Maximum Power Point
I_{ph}	Photo Current
I_{SC}	Short Circuit Current
k	Boltzmann's Constant / Coupling factor
L	Value of Inductance/Inductor
L_{max} , L_{1max} , L_{2max}	Maximum Value of Inductor
$L_{min}, L_{1min}, L_{2min}$	Minimum Value of Inductor
m	A factor which depends on capacity of hy-
	dro system and number of units in hydro
	system, $m < 1$.
N_{BAT}	Number of battery required,
P_{besti}	Best particle value
P_{cond}	Power Loss in the capacitor
$P(R_{e,PV})$	Probability of radiation to be exceeded,
$P(R_{e,H})$	Probability of runoff to be exceeded,
P_{ind}	Power loss in the inductor
P_{BOOST}	Power loss in the boost converter
P_H	Capacity of Hydro system, kW
$P_{H,h}$	Hydraulic power at the turbine shaft, W
$P_{H,m}$	Mechanical power output, W
P_{LOAD}	Output Power
$P_{mpp,i}$	MPP tracked by either ANN or FLA
$P_{mpp,P\&O}$	The MPP tracked by the P&O algorithm.
P_{PV}	Capacity of PV system, kW
P_{PV}	Output power from the PV system, W

$P_{PV,e}$	Electrical power output from the PV sys-
	tem, W,
$P_{PV,peak}$	Power output from PV system at peak ra-
	diation, W
P_{ON}	On state power loss
P_{Q1}	Power loss in the switch $Q1$
P_{SW}	Power Loss due to switching
P_{TH}	Theoretical maximum power produced by
	the PV panel at a given condition of Radi-
	ation and Temperature
$Q_{rr}^{Schotty}$	Diode Body Charge as per Schotty equa-
	tion
Q(t)	Water discharge through turbine, m^3/sec
$Q(t)_{min}$	Minimum discharge of turbine
$Q(t)_{max}$	Maximum discharge of turbine
r_{1}, r_{2}	Random numbers between $[0,1]$
r_{ij}	Gives the distance between i^{th} and j^{th} fire-
	flies in terms of the Cartesian co-ordinates
R	Resistance/ Resistor
R_C	Series Resistance of Capacitor
R_{depth}	Direct runoff depth of the drainage, mm
R_D	Radiation used for sizing of PV system,
	W/m^2
$R_{D.max}$	Radiation used for sizing of PV system,
	W/m^2
R_{DS}	On state resistance of MOSFET
R_L	Load Resistance/ Inductors Loss Compo-
	nent of Resistance
R_{LI}	Reflected Load Impedance
R_{IN}	Input Resistance to the converter
R_{MPP}	Resistance at Maximum Power Point
R_s	Series Resistance
R_{SH}	Shunt Resistance
s_i	Particle Trajectory in Moth Flame Algo-
	rithm
t_a	Outside air temperature, $^{\circ}C$,
T	Cell Temperature $^{\circ}C$,
T_C	Concentration time, minute, in

$T_{g,H}$ Guarante	eed time for which runoff to be ex-
ceeded, h	1
$T_{g,PV}$ Guarante	eed time for which radiation to be
exceeded	, h
$T_{h,PV}$ Total sur	nshine duration over year, h .
T_s Switching	g Period
T_{swon} On time	of converter
T_{swoff} Off time	of converter
T_{Sun} Time per	iod for which sunlight is falling on
PV syste	m, h.
$T_{Turbine}$ Time per	riod for which turbine is active, h.
u State of	Switch
V_f On state	voltage drop in semiconductor
V_{DC} DC Volta	age
v_{in}/v_g Input Vo	ltage
v_i^{k+1} Velocity	of the swarms i^{th} particle for the
$(k+1)^{th}$ i	teration
V_{in} Input Vo	ltage
v_o Output V	Voltage
w Initial we	eight Factor
x_i Position	of the i^{th} particle
x_i^{k+1} Position	of the i^{th} particle of the swarm for
	$)^{th}$ iteration
\overrightarrow{X} Vectors of	containing the position of the grey
wolf	
$\overrightarrow{X_P}$ Vectors of	containing the position of the prey
$\overrightarrow{X_{\alpha}}$ Position	vector for alpha grey wolf
$\overrightarrow{X_P} \qquad \text{Vectors of} \\ \overrightarrow{X_{\alpha}} \qquad \text{Position} \\ \overrightarrow{X_{\beta}} \qquad \text{Position} \\ \overrightarrow{X_{\delta}} \qquad \text{Position} \\ \overrightarrow{X_{\delta}} \qquad \text{Position} \\ \end{array}$	vector for beta grey wolf
$\overrightarrow{\mathbf{x}}$ D :::	vector for delta grey wolf