
Chapter 5

Development and Comparative

Assessment of a Hybrid

Optimization Algorithm

5.1 Introduction

This chapter presents the design and development of a metaheuristic algorithm

namely GWOSCAPSO hybridizing three popular optimization approaches namely

the Grey Wolf Optimizer (GWO), Sine Cosine Algorithm (SCA) and Particle

Swarm Optimization (PSO). The exploration and exploitation properties of GWO

is enhanced with the application of the SCA and PSO algorithms. The perfor-

mance of the hybrid algorithm is analyzed through the application to solve 23

benchmark functions. Furthermore, the performance of the hybrid GWOSCAPSO

algorithm is compared with the results of widely used optimization algorithms al-

ready obtained in chapters 3 and chapter 4.

5.2 Design and development of a Hybrid Meta-

heuristic Algorithm (GWOSCAPSO)

The objective to locate an optimal solution within a complicated space remains

a prevalent concern in several engineering optimization problems. Metaheuristic

algorithms are a class of numerical methods that draw inspiration from natural

phenomena [154] in the formulation of the optimization algorithm. This preva-
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5.2. Design and development of a Hybrid Metaheuristic Algorithm
(GWOSCAPSO)

lent strategy of the hybridization of distinct algorithms integrates their respective

strengths, to provide an improved algorithm [221]. Additionally, to achieve equi-

librium between exploitation and exploration, it is essential to employ an effective

optimization algorithm [138]. Exploitation refers to the algorithm’s high efficacy

in conducting localized search operations. The inclusion of exploration ability

enhances the efficacy of an algorithm in identifying optimal initial placements,

potentially in close proximity to the global minimum.

The GWO algorithm, which is based on hunting behavior and hierarchical

structure of grey wolves in the natural world (Chapter 2, subsection 2.2.1.9) has

shown a strong initial exploration capability [60], is selected as the base algorithm

for hybridization. It is observed that the exploitation capability of PSO is very

strong with inadequate exploration capability[88, 100, 229, 234]. The SCA algo-

rithm [153] enables the exploitation and exploration phases of global optimization

functions by using the Sine and Cosine functions.

To improve the performance of GWO, we use the SCA to update the

position of the alpha wolves of the GWO algorithm while PSO is implemented to

update the beta and delta wolves in order to improve the overall performance of

the algorithms. The algorithm updates the equations for the alpha wolf taking into

consideration the equations 2.23 and 2.24 using the SCA algorithm (from chapter

2, subsection 2.2.4). Additionally, the GWO algorithm performance is enhanced

by implementing the exploitation ability of PSO by improving the update of beta

and delta wolves of the GWO algorithm given by:
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−→
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Based on the preceding equations, the integration of GWO and PSO variations

is executed by modifying the equations for velocity and position in the following

manner:

vk+1
i = w × (vki ) + c2 × r2 × (X2 − xk

i ) + c3 × r3 × (X3 − xk
i ) (5.3)

The particles position is then updated using equation 2.11 for the next iteration

cycle. This forms the basis of the update of the positions of the alpha, beta and
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delta wolves in the modified hybrid GWOSCAPSO algorithm given by:

−→
X (i+ 1) =

−→
X1 + vk+1

i (5.4)

The pseudo-code for the GWOSCAPSO algorithm is highlighted in Algorithm

1.

Algorithm 1: Pseudo-code for the Hybrid GWOSCAPSO algorithm

Optimize Fitness function subject to lb, ub, dim, fobj;
Where lb - lower bound, ub - upper bound, dim - problem dimension, fobj -
objective function;
Initialize the search agents or population Xi(i = 1, 2, ...n);
Calculate the fitness of each search agent;
Xα = best search agent;
Xβ = second best search agent;
Xδ = third best search agent ;
while t< MaxIteration do

Update position of best search agent and fitness function for each search
agent;
Update the values of a, A, and C using equations 2.3 and 2.4;
Calculate the fitness of all search agents ;
if rand() < 0.5 then

Update the values of Xα using first part of equation 2.23 and
−→
X 1

using equation 2.24 ;

else
rand() ≥ 0.5 Update the values of Xα using second part of equation

2.23
−→
X 1 using equation 2.24;

end
Update the values of Xβ and Xδ using equations 5.1 and 5.2;

Update the value of
−→
X (i+ 1) using equation 5.4;

end
Check for out of bound of search agents and rectify;
Calculate the fitness of each search agent;
Update Xα if current result better than initial value;
Result: return Xα

5.3 Performance evaluation of the developed

GWOSCAPSO optimization algorithm

This section presents the metrics which aid the evaluation of hybrid GWOSCAPSO

algorithm with respect to the computation complexity in time and the significant

statistically tests which help in the comparative assessment of the algorithm.
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5.3. Performance evaluation of the developed GWOSCAPSO optimization
algorithm

5.3.1 Time Complexity

The time complexity refers to the run time required by an algorithm when it

is used to solve a problem by the corresponding executable program. It is an

important metric when evaluating an algorithm’s performance and computational

efficiency. The worst time complexity of the hybrid GWOSCAPSO algorithm is

calculated and compared with that of the original GWO in terms of the big-O

notation by analyzing its pseudo-codes.

The computational complexity involved in both the GWOSCAPSO and

GWO is determined in the five subsequent stages namely, population initialization,

parameters updating, wolf position updating, evaluation of objective function and

wolf leaders updating. The time complexity of an algorithm relays on the popu-

lation size N and the maximum number of iterations T . The time complexity of

the GWOSCAPSO algorithm is given by:

1. For population initialization, the time complexity is indicated as O(N) for

both the GWOSCAPSO as well as GWO.

2. The time complexity for parameter updating for both the algorithms is also

indicated as to be O(N).

3. For the position updating stage of the algorithm, for both GWOSCAPSO

and GWO the time complexity is given by O(TN).

4. For the calculation of the objective functions, the time complexity for

GWOSCAPSO is given as O(TN), which is the same as that of GWO.

5. The time complexity related to the updating of the wolf leaders position is

also given as O(TN) for both the GWOSCAPSO and GWO algorithms.

From the above analysis, it is evident that for the GWOSCAPSO algo-

rithm the time complexity is given as O(TN), which is the same as that for the

GWO. This means that the computational complexity involved in the developed

algorithm does not exceed the complexity involved in the base algorithm, i.e. the

GWO algorithm.

5.3.2 Statistical Performance Analysis

For reliable and quality performance comparison of the developed GWOSCAPSO

algorithm, it is to be tested against the performance of other algorithms to be
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selected based on established metaheuristic algorithms. This is accomplished by

evaluating the efficiency of the algorithms by comparison with well-established

benchmark functions. Each problem from this category of benchmark functions is

run for a minimum of 30 times and the result of these runs are stored. Based on

the results, the best value (min), mean or average value, worst (max) and standard

deviation of each cost function is reported. In order to further establish statistical

significance, we perform the Friedman’s test.

5.3.2.1 Friedman’s Test

The non-parametric Friedman Test will be performed to rank optimization tech-

niques and calculate the p value, which is a statistical metric employed to assess

the importance of outcomes in hypothesis testing. A p value greater than 0.05

indicates rejection of the null hypothesis. The test is a multiple comparison test

utilized to ascertain the significant disparity among the algorithms, and is com-

parable to the repetitive tests and measurements employed in ANOVA. The null

hypothesis of the Friedman test states that there is no difference in the quality of

medians among the data sets. The rejection of the null hypothesis confirms the es-

tablishment of the alternative hypothesis, demonstrating that it is non-directional.

The Friedman test involves transforming the test statistics into rankings.

The steps involved in the process are :

1. To find the result of the 100 runs of all the algorithms under comparison.

2. For each of the benchmark problem, rank values to all of the algorithms from

1 (indicating best algorithm) to k (worst algorithm).

3. The final rank of the algorithm is determined form the rank of average ranks

in the 100 runs.

As a result the test ranks each benchmark problem’s algorithms individu-

ally based on which run produced the best cost function values, and then calculates

the average rank (for 100 such runs) against one benchmark function.

5.3.3 Benchmark Functions

The benchmark functions, including their mathematical models and ranges are

implemented in MATLAB [91]. On 23 traditional benchmark problems, the novel
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Table 5.1: Results of simulation experiments conducted with Unimodal Benchmark
Functions F1-F7

Function
Name

Metrics GWO PSO SCA ALO MFO WOA GWOSCAPSO

F1

Best 3.76E-29 0.90 0.008 2.25E-4 0.41 1.36E-84 7.79E-146
Worst 6.71E-27 40000 77.54 0.005 10002 1.47E-71 1.82E-142
Mean 1.21E-27 10341 5.31 0.002 1345.81 5.08E-73 3.22E-145
Std Dev 1.65E-27 9992 14.14 0.001 3453.68 2.69E-72 0

F2

Best 1.46E-17 30.16 3.93E-5 5.91 0.17 1.46E-17 1.97E-59
Worst 4.01E-16 120 0.083 237.44 90.0 4.01E-16 4.35E-49
Mean 1.14E-16 76.40 0.013 43.07 29.46 1.14E-16 2.91E-50
Std Dev 1.04E-16 23.22 0.016 54.22 18.67 1.04E-16 9.59E-50

F3

Best 5.50E-8 19147 628.5 754.62 4667 19822 2.28E-128
Worst 1.93E-4 115014 28957 8526 31908 76318 1.39E-124
Mean 7.64E-7 39.30 34.45 16.31 66.67 44.24 2.95E-68
Std Dev 3.63E-5 21152 5582 1870 7256 13216 0

F4

Best 5.96E-8 23.68 13.52 5.72 51.92 1.96 1.70E-69
Worst 3.14E-6 52.40 47.11 25.29 82.31 89.25 1.21E-67
Mean 7.64E-7 39.30 34.45 16.31 66.67 44.24 2.95E-68
Std Dev 7.61E-7 7.39 8.28 4.63 7.64 27.53 3.049E-68

F5

Best 26.13 74.03 30.23 19.77 194.22 27.30 27.27
Worst 28.74 1.55 727138 1374 8.01E7 28.77 28.88
Mean 27.25 1.32 74068 266.29 2.68E6 27.98 28.19
Std Dev 0.85 3.62 144847 345.64 1.46E7 0.39 0.35

F6

Best 0.24 1.18 4.32 9.09E-5 0.66 0.12 3.11
Worst 1.48 30101 100.14 0.017 10120 1.13 4.20
Mean 0.85 9680 15.63 0.002 2014.31 0.47 3.64
Std Dev 0.31 8113 23.02 0.003 4081.11 0.25 0.25

F7

Best 4.04E-4 0.02 0.013 0.12 0.056 4.37E-5 1.99E-6
Worst 0.005 61.96 0.62 0.40 40.67 0.01 2.93E-4
Mean 0.002 23.71 0.10 0.23 3.02 0.002 9.46E-5
Std Dev 0.001 20.77 0.11 0.07 7.92 0.003 8.38E-5

hybrid approach’s statistical performance with respect to the mean value, nu-

merical values that represent the best and worst outcomes, as well as standard

deviation, which are of interest in this context were assessed. The three sections

of these classical benchmark test functions—Unimodal, Multimodal, and Fixed

Dimension Multimodal—as listed in literature [231, 265] have been considered in

the analysis in the current work. Due to certain advantages (also popular) in

solving engineering optimization problems the GWO [60,83] , SCA [65], PSO [96],

ALO[17], MFO[89], and WOA [194] are chosen as reference for testing the perfor-

mance of GWOSCAPSO. The experiments are conducted on a computer system

with an Intel Core i7 CPU, 16 GB RAM, and running Windows 10.

Table 3.1 (Chapter 3, section 3.4) presents the optimization algorithms’

control settings. For each method, we used the optimal parameter combinations

as recommended in the primary paper of those algorithms to evaluate peak perfor-

mance. The algorithms’ population size is set at 30, while the maximum iterations

is set at 100. The relevant parameters of the GWOSCAPSO are set as per their
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Table 5.2: Results of simulation experiments conducted with Multimodal Benchmark
Functions F8-F13

Function
Name

Metrics GWO PSO SCA ALO MFO WOA GWOSCAPSO

F8

Best -7158 -8629 -4305 -8278 -10706 -12569 -9056
Worst -5028 -4316 -3337 -5417 -6759 -6752 -5001
Mean -5952 -6451 -3721 -5653 -8640 -10488 -7097
Std Dev 572.30 1009 224.84 628.07 993.12 1843 1003

F9

Best 0 114.94 0.37 43.77 52.96 0 0
Worst 25.71 261.38 160.86 155.21 257.91 0 0
Mean 2.92 190.26 45.63 82.74 153.46 0 0
Std Dev 6.02 39.26 37.66 26.13 45.48 0 0

F10

Best 5.77E-14 14.50 0.16 1.50 0.20 8.88E-16 4.44E-15
Worst 1.50E-13 20.38 20.36 12.37 19.96 7.99E-15 4.44E-15
Mean 1.05E-13 18.98 13.16 5.57 12.79 4.20E-15 4.44E-15
Std Dev 2.06E-14 1.808 9.23 3.08 8.03 1.85E-15 0

F11

Best 0 0.86 0.18 0.01 0.45 0 0
Worst 0.02 270.86 1.66 0.13 90.47 0.21 0
Mean 0.001 108.91 1.01 0.06 3.917 0.007 0
Std Dev 0.005 76.12 0.34 0.03 16.34 0.04 0

F12

Best 0.23 0.31 0.74 6.36 1.82 0.004 0.012
Worst 0.44 2.56E8 1.17E6 24.85 2.56E8 0.13 0.082
Mean 0.33 3.414E7 95273 12.69 8.53E6 0.02 0.038
Std Dev 0.04 8.85E7 265709 4.57 4.67E7 0.025 0.018

F13

Best 1.94 0.76 3.75 0.12 4.79 0.06 0.20
Worst 2.48 4.10E8 2.16E7 58.18 27516.57 1.28 0.92
Mean 2.32 4.10E7 890072 25.93 1036.46 0.49 0.59
Std Dev 0.13 1.25E8 3.97E6 17.73 5023.10 0.29 0.21

base algorithm. To acquire statistical findings, each algorithm in the current study

is run for 100 times, and for each technique, the optimum fitness function value

is recorded in each run. The findings are tabulated in table 5.1 for the Unimodal

benchmark functions, table 5.2 for the Multimodal benchmark functions, while the

results of the comparison for the fixed dimension Multimodal benchmark functions

are presented in table 5.3. In the current study GWOSCAPSO algorithm uses the

parameters of the primary paper of the algorithms involved for ease of implemen-

tation.

From table 5.1 it is evident that the GWOSCAPSO algorithm performs

better than the rest of the algorithms compared to all the algorithms in the study

except function F6. In the case of the multimodal functions as seen in table

5.2, we observe better performances with the GWOSCAPSO algorithm in term

of the statistical parameters considered. For function F8, where the performance

of GWO is slightly better when we consider the metric for comparison to be

standard deviation. The MFO and WOA both give better results for function F8

with respect to mean values as well as best and worst values for the function.

For the set of functions F14-F23, (from Table 5.3) which represent the
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algorithm

Table 5.3: Results of simulation experiments conducted with Fixed Dimension Multi-
modal Benchmark Functions F14-F23

Function
Name

Metrics GWO PSO SCA ALO MFO WOA GWOSCAPSO

F14

Best 0.99 0.99 0.998 0.99 0.99 0.99 0.99
Worst 12.67 3.96 2.98 6.90 10.76 10.76 10.76
Mean 4.65 1.22 1.92 2.05 3.20 3.48 2.82
Std Dev 4.01 0.67 1.00 1.39 2.27 3.57 2.81

F15

Best 3.07E-4 0.002 3.41E-4 5.65E-4 7.44E-4 3.08E-4 3.14E-4
Worst 0.02 0.022 0.002 0.020 0.008 0.002 0.0018
Mean 0.003 0.014 9.87E-4 0.002 0.002 7.96E-4 4.58E-4
Std Dev 0.008 0.009 3.79E-4 0.005 0.002 5.39E-4 3.25E-4

F16

Best -1.03 -1.03 -1.031 -1.031 -1.031 -1.031 -1.031
Worst -1.03 -1.03 -1.031 -1.031 -1.031 -1.031 -1.031
Mean -1.031 -1.031 -1.031 -1.031 -1.031 -1.031 -1.031
Std Dev 2.46E-8 1.62E-5 4.30E-5 6.61-14 0 4.24E-10 0

F17

Best 0.39 0.39 0.39 0.39 0.39 0.39 0.39
Worst 0.39 1.94 0.41 5.04 0.39 0.39 0.39
Mean 0.39 0.55 0.39 0.55 0.39 0.39 0.39
Std Dev 2.49E-4 0.47 0.003 0.84 9.42E-14 2.46E-5 0

F18

Best 3.00 3 3 3 3 3 3
Worst 3.00 91.81 3.00 3 3 3.02 3
Mean 3.00 6.86 3.00 3.00 3 3.00 3
Std Dev 5.27E-5 16.78 5.25E-5 5.99E-6 8.02E-13 0.005 4.4E-15

F19

Best -3.86 -3.86 -3.86 -3.86 -3.86 -3.86 -3.86
Worst -3.85 -3.51 -3.85 -3.86 -3.86 -3.84 -3.85
Mean -3.86 -3.81 -3.85 -3.85 -3.86 -3.85 -3.86
Std Dev 0.002 0.12 0.003 0.002 0 0.004 3.64E-13

F20

Best -3.32 -3.32 -3.26 -3.26 -3.32 -3.32 -3.32
Worst -2.84 -2.43 -1.45 -1.45 -2.99 -3.13 -3.20
Mean -3.24 -2.95 -2.79 -2.75 -3.23 -3.23 -3.28
Std Dev 0.12 0.25 0.50 0.40 0.093 0.058 0.057

F21

Best -10.15 -10.15 -7.13 -10.15 -10.15 -10.15 -8.00
Worst -3.37 -0.49 -0.49 -2.63 -2.63 -2.62 -0.88
Mean -8.74 -6.66 -2.04 -6.55 -6.81 -7.76 -4.75
Std Dev 2.39 3.66 1.89 3.32 3.49 2.80 1.14

F22

Best -10.40 -10.40 -6.17 -7.19 -10.40 -10.40 -10.40
Worst -2.76 -0.75 -0.90 -2.97 -1.83 -1.84 -5.12
Mean -7.45 -7.03 -3.34 -4.8 -6.17 -7.07 -10.22
Std Dev 3.05 3.54 1.48 0.69 3.16 3.43964 0.96

F23

Best -6.02 -10.53 -9.04 -10.53 -10.53 -10.53 -10.53
Worst -3.50 -1.67 -0.94 -1.67 -2.42 -1.67 -10.53
Mean -4.84 -6.72 -4.16 -6.97 -8.33 -7.49 -10.53
Std Dev 0.51 3.91 1.55 3.72 3.43 3.62 8.14E-4

class of fixed dimension multimodal benchmark functions, we can clearly observe

that the proposed GWOSCAPSO algorithm is able to outperform the other al-

gorithms. The performance of PSO and SCA is better for function F14, however

for all the other functions, the proposed algorithm performs better. It is seen

that the developed algorithm outperforms in 20 out of 23 test functions across

different types of benchmarks and as such, it can be concluded that the proposed

GWOSCAPSO algorithm can be implemented for solving global engineering op-

timization problems.
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5.4 Application of hybrid GWOSCAPSO for

solving Renewable Energy Optimization

Problems

In this section the optimal design of a DC-DC boost is carried out using the

developed GWOSCAPSO optimization algorithm. The algorithm is also utilized

for the design optimization of a dc-dc boost converter for MPPT application in

PV systems and for design optimization of the hybrid PV Hydro system. To

study the efficacy of the algorithm in solving the design optimization problems,

it is compared against six popular and established algorithms and the results are

tabulated and discussed. The results obtained indicate that the GWOSCAPSO

algorithm gives better performance and can serve as a suitable algorithm for the

said design optimization problems.

5.4.1 Design Optimization of DC-DC Boost Converter us-

ing GWOSCAPSO

The problem’s constraints and the range of design parameters were taken from

table 3.2 which were also selected in chapter 3, section 3.4.

With the designed GWOSCAPSO optimization technique the optimal

combination of design parameters is determined for the DC-DC boost converter in

a manner that total operational losses are at a minimum. The parameters for al-

gorithms are considered to be same as in the preceding section 5.3.3 for uniformity

in the analysis. Each of the algorithms is run for a minimum of 100 iterations.

The comparison made is based on the statistical performance metrics that include

the best value, mean or average value, worst value standard deviation (SD) and

computational time.

From table 5.4, the best value and optimized solution to the DC-DC con-

verter is 1.75388 W (PBOOST ). And therefore, the overall efficiency of the converter

designed is 91.94 %. It is also observed that all the optimization algorithms reach

this result which indicates that the global optimum has been attained. The results

obtained are best for the GWOSCAPSO considering the standard deviation as well

as requiring the minimum computational time for 100 iterations for each run of

the algorithms. While the best values are found to be equal for the GWO, MFO

and PSO, however in terms of SD within the 100 runs considered, GWOSCAPSO
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Table 5.4: Optimized PBOOST values of the DC-DC boost converter by ALO, MFO,
PSO, WOA, GWO, SCA and GWOSCAPSO

Algorithm Rank Best
Value

Mean
Value

Worst
Value

Standard
Devia-
tion

Computational
Time (sec)

ALO 7 1.76158 1.76428 1.78782 0.0064 14.6096
MFO 2 1.75388 1.75565 1.77729 0.00567 0.76824
WOA 6 1.75403 1.75519 1.83733 0.00856 0.373068
PSO 3 1.75388 1.75548 1.76988 0.00408 0.612471
SCA 5 1.75389 1.75443 1.76507 0.00184 0.620821
GWO 4 1.75389 1.75433 1.7746 0.00233 0.685787
GWOSCAPSO 1 1.75388 1.75388 1.75388 0 0.509022

clearly outperforms MFO and PSO.

Figure 5.1 demonstrates the convergence traits for each algorithm’s best

runs. It is evident that the GWOSCAPSO takes the lowest number of iterations

to reach the minima, thus establishing its superiority with other algorithms in

terms of convergence characteristics. From the results of the Friedman’s test,

we see that with regards to the ranks, GWOSCAPSO outperforms all the other

algorithms (Table 5.4). If the performance metric considered for analysis is the

computational time, then only WOA outperfroms the developed GWOSCAPSO

algorithm. Thus, we observe that collectively considering the performance pa-

rameters like minimum standard deviation, best value of objective function, lower

iteration time and fast convergence characteristics, the developed GWOSCAPSO

gives superior performance when compared against established benchmark opti-

mization algorithms like GWO,SCA, PSO, ALO, MFO and WHO.

Table 5.5 compares the optimal design parameters achieved by various op-

timization methods. The best optimized result is attained with the GWOSCAPSO

with lowest power loss and highest efficiency in the converter design. The more

significant finding is that the optimized design uses the lowest value of filter induc-

tor, among the algorithms which is often the limiting criterion when considering

the converter economics [215]. The obtained results also indicate an improvement

in the design when compared with the work of [202] from three aspects namely,

the optimized power loss in the converter, the efficiency and filter inductor. This

indicates the efficacy of GWOSCAPSO for finding an improved optimized result

for minimizing the power loss by 11.11 %, which is a significant improvement.
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Figure. 5.1: Convergence Curve of the ALO, MFO, WOA, PSO, SCA, GWO and
GWOSCAPSO for the boost converter

Table 5.5: Optimized design parameter values for the boost converter obtained by
ALO, MFO, WOA, PSO, SCA, GWO and GWOSCAPSO

Algorithm L (mH) C (µF) Fs (kHz) PBOOST (W) η(%)
ALO 5.73 81.94 127.95 1.764 91.89
MFO 9.98 99.97 100.04 1.755 91.93
WOA 8.29 97.70 109.65 1.755 91.93
PSO 10 100 100. 1.755 91.93
SCA 7.3 100 100.28 1.754 91.93
GWO 6.16 99.99 100.02 1.754 91.93
GWOSCAPSO 10 89.88 100 1.753 91.94

5.4.2 Optimized design of the Boost Converter for

MPPT applications for standalone PV systems using

GWOSCAPSO

In this current section, we discuss the application of the GWOSCAPSO opti-

mization technique to find the optimal design parameters for the DC-DC boost

converter with an aim to be used for MPPT applications in standalone systems.

The algorithms are run in a similar manner as discussed in section 5.4.1. Table 5.6

gives the statistical performance of the algorithms which includes the best value,

mean or average value, worse value, standard deviation and iteration time.
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Table 5.6: Statistical parameters for the Optimized PBOOST values of the DC-DC
boost converter for MPPT application in standalone PV systems by ALO, MFO, PSO,
WOA, GWO, SCA and GWOSCAPSO

Algorithm Rank Best
Value
(W)

Mean
Value
(W)

Worst
Value
(W)

Standard
Devia-
tion

Iteration
Time (sec)

ALO 7 7.04505 7.05488 7.11271 0.01852 8.623
MFO 2 7.04505 7.04505 7.04505 0 0.465
WOA 6 7.04505 7.09523 7.44597 0 0.383
PSO 3 7.04505 7.04505 7.04505 0 0.48
SCA 5 7.04505 7.04505 7.04505 0 0.4583
GWO 4 7.04505 7.04505 7.04505 0 0.4177
GWOSCAPSO 1 7.04505 7.0457 7.07431 0.00395 0.550

From table 5.6, its is seen that the best optimized design of the boost

converter for the objective function, i.e. PBOOST is equal to 7.045 W which gives

the converter efficiency of 94.37 (%). It is also observed that all the compared al-

gorithms namely, ALO, MFO, WOA, PSO, SCA, GWO and GWOSCAPSO reach

this result indicating that the global optimum has been reached. Although the

GWOSCAPSO algorithm gives comparable performance, in terms of computation

time, it performs only better than the ALO. Considering standard deviation as

well, the GWOSCAPSO algorithm gives comparable performance with respect

to all the algorithms. If we compare the best values, we see that all the values

of the algorithms are the same, but for the mean values we see GWOSCAPSO

outperforms ALO and WOA, and gives similar results with the rest of the algo-

rithms. From the results of the Friedman’s test, we see that in order of the ranks,

GWOSCAPSO outperforms all the algorithms, which points towards its superior

performance even though computationally its performance is comparable with the

rest of the algorithms.

Figure 5.2 for the convergence curve indicates that the algorithm is able to

reach the optimum result in the least number of iterations among all the compared

algorithms, proving its superiority in reaching the optima.

From table 5.7 it is seen that the converter design parameters when con-

sidering both the filter inductor and capacitor are smaller compared to the rest of

the algorithms, except ALO. This indicates that the GWOSCAPSO algorithm is

indeed capable of performing quite well for the optimization problem at hand.
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Figure. 5.2: Convergence Curve of the ALO, MFO, WOA, PSO, SCA, GWO and
GWOSCAPSO for the Boost converter for MPPT Applications with PV systems

Table 5.7: Optimized design parameters for the boost converter for MPPT applica-
tion in standalone PV systems obtained by ALO, MFO, WOA, PSO, SCA, GWO and
GWOSCAPSO

Algorithm L (mH) C (µF) Fs
(kHz)

PBOOST (W) η(%)

ALO 10 37.34 100 7.04505 94.37
MFO 10 92.28 100 7.04505 94.37
WOA 10 95.07 100 7.04505 94.37
PSO 10 92.26 100 7.04505 94.37
SCA 10 94.49 100 7.04505 94.37
GWO 10 92.58 100 7.04505 94.37
GWOSCAPSO 10 65.25 100 7.04505 94.37

5.4.3 Optimal Sizing of Hybrid PV Hydro Renewable En-

ergy System(HRES) using GWOSCAPSO

The results and convergence plot of the evaluated algorithm for the minimized

LCOE for optimal sizing of the hybrid PV Hydro system is presented in figure

5.3 and table 5.8. In the figure 5.3, the convergence characteristics of all the

algorithms do not reach the best optimal results.

Due to the random nature of the algorithms, the recorded best values over
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Figure. 5.3: Convergence characteristics of the ALO, MFO, WOA, PSO, SCA, GWO
and GWOSCAPSO for the optimal sizing of the HRES

Table 5.8: Statistical parameters of the algorithms for minimized LCOE (INR/kWh)
obtained by ALO, MFO, WOA, PSO, SCA, GWO and GWOSCAPSO

Algorithm Rank Best
Value

Mean
Value

Worst
Value

Standard
Devia-
tion

Computational
Time (sec)

ALO 6 6.408 7.67 14.97 1.636 3.71
MFO 3 6.408 6.409 6.441 0.005 4.51
WOA 7 6.506 10.371 18.636 3.360 2.81
PSO 4 6.412 6.488 7.570 0.124 4.70
SCA 5 6.435 6.746 7.288 0.21 2.84
GWO 2 6.408 6.409 6.437 0.006 4.80
GWOSCAPSO 1 6.408 6.409 6.435 0.006 2.87

100 iterations have to be considered to ascertain their performance over a number

of trials. We observe that for the majority of the algorithms the fitness value

of function, i.e. LCOE in our case starts far away from the final value ranging

from 7.5 to 28 (INR/kW), which demonstrates the randomness of algorithms and

best optimal values are reached around the 5-6th iteration for the GWOSCAPSO

curve compared to the next best which is seen to take around the 20th iteration

for the following fastest converging algorithms. The convergence characteristics

(figure 5.3) show similar trends in most of the algorithms except the ALO and

WOA algorithms, indicating that they are not suitable for application to the
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optimization of the HRES problem. It is clearly evident that SCA and PSO starts

very close to the final value as compared to the rest of the algorithms and also

approaches its final value in a smaller number of iterations compared to most of

the other algorithm. While the convergence curves are a good indicator of the

overall performance to attain the best solution of the fitness value, however they

are not the absolute indicators for the same. Due to inherent randomness in the

metaheuristic algorithms, it is essential to carry out a statistical assessment to

ascertain the overall performance of algorithms to solve an optimization problem.

From table 5.8 it is evident that the iteration time of the best algorithms

are WOA, SCA and GWOSCAPSO respectively. However, upon closer reflection

on the statistical parameters and figure 5.3 it is seen that the GWO, PSO and

SCA produce similar results in terms convergence characteristics. However, the

proposed GWOSCAPSO algorithm performs better than any other algorithms

when measured against the convergence curve. Thus with respect to the best cost

function values (the smallest LCOE value), mean values, and standard deviation,

we see that the proposed GWOSCAPSO algorithm is demonstrating its superiority

when compared with the rest of the algorithms. The statistical assessment of

the algorithms is carried out, i.e. GWOSCAPSO is compared with ALO, MFO,

WOA, PSO, SCA and GWO using the Friedman’s Test. From table 5.8 the rank

order of the GWOSCAPSO algorithm is one, establishing the algorithms superior

performance when compared to all the algorithms considered in this study.

From the table 5.9 it is seen that best optimal size of HRES comes upto

31.86 kW in which hydro contributes 15.74 kW and PV contributes 16.12 kW

respectively and optimal head is found to be 9 m and flow rate is 0.21 m3/sec and

optimized area has been found 95.58 m2. This result is obtained in the case of all

the algorithms compared here except the WOA algorithms.

Table 5.10 and 5.11 present the GWOSCAPSO optimized design param-

eters of the Hydro and PV system respectively.

5.5 Discussion

This work presented in this chapter introduces a novel hybrid method that com-

bines the Particle Swarm Optimization (PSO) and Sine Cosine Algorithm (SCA)

with the Grey Wolf Optimizer (GWO). The proposed technique involves updat-
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5.5. Discussion
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Table 5.10: Specification of the GWOSCAPSO Optimized Hydro System

Parameter Specification
Optimum Size (kW) 15.74
Optimum Flow rate (m3/sec) 0.21
Effective Head (m) 9.0
No of Units 3
Flow rate of each Unit (m3/sec) 0.07
Turbine Type Cross Flow @ 85% of Full load

Table 5.11: Specification of the GWOSCAPSO Optimized PV System

Parameter Specification
Optimum Size (kW) 16.12
Total Area (m2) 95.58
Efficiency (%) 16.94
No of Modules 43
Size of Each Module (Wp) 325
Type of module Canadian Solar Max Power

CS6X-325 Poly-crystalline

ing the location of the alpha grey wolf in the Grey Wolf Optimization (GWO)

algorithm using the position update equation of the Sine Cosine Algorithm (SCA)

and the position of the beta and delta wolves is updated using the position up-

date equation of the Particle Swarm Optimization (PSO). The objective of the

developed method is to enhance the exploration and exploitation capability of the

GWO algorithm with possible faster convergence. The governing equations for

hybridization and the philosophy of the inspiration behind the proposed effective

improvement in the exploration and exploitation of the GWO algorithms is cov-

ered in detail. The performance metrics including the statistical techniques which

establish the framework for comparison of algorithms utilized in the current study

has also been discussed.

The performance of GWOSCAPSO algorithm was evaluated and com-

pared with other meta-heuristic techniques, including PSO, GWO, ALO, WOA,

MFO and SCA. A total of twenty-three classical functions were utilized in or-

der to assess and validate the precision, optimal global solution, and efficiency

of the recently devised methodology to arrive at the best optimal solution. The

results obtained from the simulations demonstrate that the newly developed hy-

brid method exhibits a higher level of accuracy compared to the GWO, SCA,

ALO. MFO, WOA and PSO algorithms. The hybrid GWOSCAPSO outperforms

the rest of the algorithms 20 out of 23 times, statistically which shows that the

algorithm can be used for solving engineering optimization problems.
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5.6. Summary

In addition, GWOSCAPSO algorithm is applied to three design optimiza-

tion problems namely the design optimization of DC-DC Boost converter, de-

sign optimization of a DC-DC Boost Converter for MPPT applications in stan-

dalone PV systems and the optimal sizing of the HRES with PV and Hydro

power as the primary sources. The findings conclusively support the efficacy of

the GWOSCAPSO algorithm in solving design engineering problems. The perfor-

mance of the algorithm is evaluated using statistical parameters and the results

indicate that the GWOSCAPSO technique distinctly outperforms all other meth-

ods.

In recent years, hybridization of algorithms has become a key area of

research interest in the optimization studies. The work presented here can be

further extended to compare with established hybrid algorithms and to test for

efficacy in finding optimal solutions. Furthermore, the work is to be extended to

real work engineering problems like design optimization related to fields of civil and

mechanical engineering problems as well as other related areas that find increasing

application of optimization approaches.

5.6 Summary

This study analyzed the performance of a novel hybrid GWOSCAPSO algorithm

for solving optimization challenges in the field of renewable energy studies. A total

of six established and popular metaheuristic algorithms are taken as reference and

compared in solving the engineering optimization problems. A set of 23 standard

benchmark functions are first solved using the algorithm and then the algorithm

is applied to solve three design engineering problems. These include the design

optimization of DC-DC boost converter at minimized loss, the optimal design

of a DC-DC boost converter for MPPT application in PV systems and the size

optimization problem of a HRES at minimized LCOE.

The GWOSCAPSO algorithm, when applied to three design engineering

problems showed superior performance in the optimized results. Comparison be-

tween all the implemented algorithms show that the GWOSCAPSO algorithm is

better than the other algorithms in terms of a range of performance metrics that

includes best values of objective function, statistically significant results and fast

convergence characteristics.
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