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To model the inactivation kinetics of enzyme (pectin methylesterase) and 

microbe (Escherichia coli) in orange juice during atmospheric cold plasma 

processing 

4.1 Introduction 

Pectin methylesterase (PME) is an enzyme naturally present in oranges that 

significantly influences the texture and stability of the orange juice. It is responsible 

for the quality deterioration of juice during processing and storage (Lacroix et al., 

2005; Arya et al., 2023). Several studies have demonstrated that cold plasma (CP) can 

significantly inactivate the various endogenous enzymes in fruit and vegetable juice 

(Xu et al., 2017; Andreou et al., 2023; Sauza et al., 2023). The Escherichia coli (E. 

coli), a commonly studied bacterium in food safety, can cause foodborne illnesses 

(Pokhrel et al., 2017). Maintaining microbiological safety in beverage and juice 

production is a major concern, as juices are often consumed raw or minimally 

processed, which increases the risk of contamination. Several conventional heat-based 

and non-thermal technologies have also been employed to decontaminate or inactivate 

the various microbes in foods through processing (Lee et al., 2009; Hosseini et al., 

2020; Van Impe et al., 2018; Liao et al., 2018; Pokhrel et al., 2017). Namouras studies 

reported that non-thermal CP has a potential application for the inactivation of E. coli 

in food products (Santos et al., 2018; Sauza et al., 2023; Hosseini et al., 2020; 

Mošovská et al., 2023). However, inactivation kinetics modelling using mathematical 

equations is crucial for food safety, quality retention, and process optimisation. 

Therefore, this study focused on the inactivation kinetics modelling of PME enzyme 

and E. coli in orange (cv. Wakro) juice during atmospheric cold plasma (ACP).  

 

4.2 Materials and Methods  

4.2.1 Raw materials and chemicals  

The raw materials, oranges (cv. Wakro) of Northeast India origin cultivated across 

Arunachal Pradesh, were procured from the local vendor in the Tezpur area, Assam, 

India. Pectin, Luria-Bertani Broth agar (LBA), NaCl, and NaOH were purchased from 

HiMedia Laboratories Pvt. Ltd., India, and Merck Specialities Pvt. Ltd., India.  

4.2.2 Juice preparation  
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The ‘Wakro’ cultivar of oranges was procured from the local market of the Tezpur 

area, Assam. The oranges were cleaned and rinsed, split into two pieces using a knife, 

and then manually squeezed by a stainless-steel Dynore juicer. Further, the juice was 

strained through two layers of fine muslin cloth. The Brix-acid ratio of squeezed 

filtered juice was standardized at constant (⁰Brix/acid ≈ 30) by maintaining total 

soluble solids (TSS) and titratable acidity (TA) at 12.2 ± 0.10 ⁰Brix and 0.41 ± 0.02% 

(Kumar et al., 2024).  

4.2.3 Experimental design 

A full factorial design was used to plan the experimental runs with voltage (16, 20, 

and 24 kV) and treatment time (0.5, 1, 1.5. 2, 2.5, and 3 min). The dependent 

parameters were the residual activity (RA) of the PME enzyme and log CFU/mL of E. 

coli. In this study, the juice sample depth was constant at 4.6 mm (as obtained from 

objective 1). The gap between electrodes was fixed at 15 mm during ACP treatment. 

The detailed experimental plan for the kinetic study of PME enzyme and E. coli 

inactivation is presented in Fig. 4.1.  

4.2.4 Atmospheric cold plasma treatment  

The schematic diagram of the ACP system and treatment process is shown in Fig. 4.2. 

The ACP device consists of dielectric barrier plates, a treatment chamber, a voltage 

regulator, gas inlet and outlet pipes, and a glass cover.  In this study, a known amount 

(23 mL, i.e., 4.6 mm depth) of juice was poured onto a petri dish (diameter: 80 mm) 

and placed in a treatment chamber for the ACP treatment with different voltage and 

treatment time combinations. After treatment, the juice was immediately taken out to 

analyze PME activity and the survival population of E. coli.  

4.2.5 Enzyme (pectin methylesterase) activity 

PME activity in orange (cv. Wakro) juice was determined using the titration method 

according to the assay described by Basak and Ramaswamy (1996) and the detailed 

procedure is mentioned in Section 3.2.6 of Chapter 3.  
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Fig. 4.1 Detailed work plan for objective 2. 

 

Fig. 4.2 Schematic diagram of atmospheric cold plasma (ACP) treatment on enzyme 

(pectin methylesterase) and microbe (Escherichia coli) in orange (cv. Wakro) juice.   
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4.2.6 Microbial (Escherichia coli) analysis  

The microbial load in untreated and ACP-treated juice samples was measured using 

the standard FDA’s Bacteriological Analytical Manual (BAM) methods (2001). A 

pour plate method with serial dilutions (up to 10-5) was employed to determine the log 

CFU/mL of E. coli (MTCC 40) in orange (cv. Wakro) juice before and after ACP 

treatment. Saline water was prepared by adding 0.85% NaCl (w/v). A 15–20 mL LBA 

solution was poured into the sterile petri plates and solidified for 30 min at room 

temperature. After plating the microbial cultures, the plates were incubated at 37 ⁰C 

for 24 h. The colonies in plates were enumerated manually and expressed as CFU/mL, 

as shown in Eq. 4.1.  𝐶𝐹𝑈/𝑚𝐿 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑙𝑜𝑛𝑖𝑒𝑠 ×𝑡𝑜𝑡𝑎𝑙 𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑐𝑢𝑙𝑡𝑢𝑟𝑒 𝑝𝑙𝑎𝑡𝑒𝑑 𝑖𝑛 𝑚𝐿                                                   (4.1)      Log 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 = 𝑙𝑜𝑔10(𝑁0) − 𝑙𝑜𝑔10(𝑁𝑡)                                                              (4.2) 

Where, ‘𝑁0’ is the initial viable counts of E. coli before treatment, ‘𝑁𝑡’ is the viable 

count of E. coli after treatment at a time ‘t.’  

4.2.7 Enzyme inactivation kinetics models 

The first-order model is commonly used for characterizing the inactivation kinetics of 

various enzymes in fruits and vegetable products during processing (Ludikhuyze et 

al., 1999; Pankaj et al., 2013). The first-order model was expressed in Eq. 4.3.  𝐴𝑡𝐴0 = 𝑒𝑥𝑝(−𝑘𝑝𝑡)                         (4.3) 

Where, 𝑘𝑝 is the inactivation rate constant, min-1.  

The two-parameter Weibull distribution model was fitted to evaluate kinetic behavior, 

as shown in Eq. 4.4 (Pankaj et al., 2013).  

𝐴𝑡𝐴0 = exp [− (𝑡𝛿)𝛽]                       (4.4)                

Where, 𝛽 is the shape factor (dimensionless), and 𝛿 is the scale factor (min). The 𝛽  

indicate the survival curve's convexity (shoulder-forming) or concavity (tailing-

forming). 𝛽 < 1, denotes upward concavity and 𝛽 > 1 represents downward 

concavity. 𝛽 = 1, it would correspond to the first-order or linear kinetic model. 

The nth order model for n ≠ 1 was expressed in Eq. 4.5 (Weemaes et al., 1998). 
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𝐴𝑡𝐴0 = {𝐴0(1−𝑛) + (𝑛 − 1)𝑘𝑠𝑡} 1(1−𝑛)                (4.5)        

Where ‘n’ represents the order of the reaction in the nth-order model.  

The fractional conversion model is tested for a highly heat-resistant or plasma-

resistant enzyme fraction that remains after prolonged treatment (Shalini et al., 

2008). This non-linear kinetic model was expressed in Eq. 4.6 (Rizvi and Tong, 

1997).  𝐴𝑡𝐴0 = 𝐴𝑟 + {(𝐴0 − 𝐴𝑟) exp(−𝑘𝑓𝑡)}                                                            (4.6)               

Where, 𝐴𝑟 is the fractional resistant, 𝑘𝑓 is the inactivation rate constant.  

4.2.8 Microbe (Escherichia coli) inactivation kinetics models 

The log-linear model assumes that microbial inactivation follows first-order kinetics. 

This equation suggests that the logarithmic reduction in microbial population over 

time follows a straight line, with the slope of the line being the inactivation rate 

constant, 𝑘𝑚. The simplified log-linear model for microbial (E. coli) inactivation was 

expressed in Eq. 4.7.  𝑙𝑜𝑔 (𝑁𝑡𝑁0) = − 𝑘𝑚𝑡ln (10)                                                                                                  (4.7)                     

The Weibull model with two parameters is widely used for the kinetics of E. coli 

inactivation, as shown in Eq. 4.8 (Liao et al., 2018).  

𝑙𝑜𝑔 (𝑁𝑡𝑁0) = − 12.303 (𝑡𝛿)𝛽
                                                                                            (4.8)                   

The Membré model is a mathematical approach developed by Membré et al. (1997) to 

characterize various microorganisms' thermal and non-thermal inactivation kinetics in 

foods. This model is also named a convex model due to the convex shape of the 

survival curve. The convex model was tested for the inactivation kinetics of E. coli, as 

shown in Eq. 4.9.   𝑙𝑜𝑔𝑁𝑡 = (1 + 𝑙𝑜𝑔𝑁0) − exp (𝑘𝑐𝑡)                                                                          (4.9)                            

Where, 𝑘𝑐 is the inactivation rate constant, min-1.  

4.2.9 Goodness-of-fit parameters 
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The statistical parameters, the coefficient of determination (R2), and root mean square 

error (RMSE) were considered to assess the goodness-of-fit of the proposed 

regression models in the kinetic study (Kumar and Srivastava, 2024). The equations 

of R2 and RMSE are shown in Eq. 4.10 and 4.11. The R2 determines how well the 

regression model fits the observed data. The R2 is a valid statistical parameter for 

examining the potency of any mathematical model. The ranges of R2 values lie 

between 0 and 1; R2 values close to one indicate a perfect fit.  

𝑅2 = 1 − ∑ (𝑌𝑖−𝑌𝑝)2𝑛𝑖=1∑ (𝑌𝑖−𝑌𝑎)2𝑛𝑖=1                                                                                               (4.10) 

The RMSE calculates the magnitude of errors produced by a regression model. A 

lower value of RMSE indicates the model is well-fit, which means the observed 

values are closer to the predicted values.   

𝑅𝑀𝑆𝐸 = √1𝑛 ∑ (𝑌𝑖 − 𝑌𝑝)2𝑛𝑖=1                                                                                   (4.11) 

Where ‘n’ is the number of observations, ‘𝑌𝑖’ and ‘𝑌𝑝’ are observed and predicted 

values, and ‘𝑌𝑎’ is the average observed value, respectively.   

4.2.10 Model assessment and validation  

The accuracy factor (𝐴𝑓) and bias factor (𝐵𝑓) have been used for model validation and 

performance evaluation, which was proposed by Ross (1996).  Eq. 4.12 and 4.13 were 

used with a set of observed data for this purpose (Vega et al., 2016).   𝐴𝑓 = 10∑ |log (𝑌𝑝/𝑌𝑖)|/𝑛𝑛𝑖=1                                   (4.12) 𝐵𝑓 = 10∑ {log (𝑌𝑝/𝑌𝑖)}/𝑛𝑛𝑖=1                                                                    (4.13) 

Where ‘n’ is the total number of observations. The 𝐴𝑓 represents how well the 

prediction ties the observations (close to 1 indicates little deviations). The 𝐵𝑓 shows 

whether the observed data lie above or below the prediction line. The 𝐵𝑓 >1 

represents over prediction, 𝐵𝑓 < 1 indicates under-prediction, and 𝐵𝑓 = 1 implies exact 

prediction (Pipliya et al., 2022).  

4.2.11 Model Selection Criteria  

4.2.11.1 Akaike information criterion 
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It is essential that reasonably, sometimes multiple models fit equally well in a 

particular given set of data, and those data sets do not support selecting one model 

(Kumar and Srivastava, 2024). The Parsimony principle states that, out of the several 

competing models, the one with the lowest number of model parameters should be 

considered (Vega et al., 2016). However, in addition to this, other parameters should 

be considered to segregate the competing models (Kumar and Srivastava, 2024). 

Akaike information criterion (AIC) ranks, discriminates, and selects the best model 

among multiple competing models, as shown in Eq. 4.14 (Serment-Moreno et al., 

2015).  𝐴𝐼𝐶 = −2𝑙 + 2𝑚; 𝑙 = − 𝑛2 ln (𝜎̂2)                             (4.14)                            

Where ‘m’ is the number of model parameters, ‘𝜎̂2’ is the variance, and ‘l’ is the 

maximum log-likelihood estimate.  

4.2.11.2 Akaike increment 

The smallest AIC makes ranking the model for assessing the specific data set simple. 

Based on the AIC values, the model with the lowest AIC value will receive a value of 

0, and the subsequent model that comes after receiving a value greater than 0; this is 

known as the Akaike increment (∆𝑖) (Eq. 4.15) (Akaike, 1998).  ∆𝑖=  𝐴𝐼𝐶𝑖 −  𝐴𝐼𝐶𝑚𝑖𝑛                   (4.15) 

Where, 𝐴𝐼𝐶𝑚𝑖𝑛corresponds to the best candidate model with the smallest AIC value. 

However, ∆i values are straightforward and allow for easy comparison, interpretation, 

and ranking of competing models (Kumar and Srivastava, 2024). The fitted models 

are evaluated and chosen according to the following criteria: models with ∆𝑖 ≤ 2 are 

considered to have strong support; those with 2 ≤ ∆𝑖≤ 10 are regarded as having 

considerably less support, and models with ∆𝑖 >10 are deemed to have no support 

across all model selections (Burnham and Anderson, 2001). 

4.2.12 Statistical analysis 

The results of the experiments were expressed as mean ± standard deviation (SD). 

Inactivation kinetics modelling was done using MATLAB R2015a software. 

Statistical parameters R2 and RMSE were obtained from MATLAB. Other statistical 

parameters like Af, Bf, AIC, and ∆i were calculated using Microsoft Excel 2021. 
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4.3 Results and Discussion  

4.3.1 Effect of ACP treatment on PME inactivation  

The PME activity in orange (cv. Wakro) juice was significantly inactivated during 

ACP treatment (voltage: 16–24 kV, treatment time: 0.5–3 min), as can be seen in Fig. 

4.3. The RA of PME in juice decreased from 100 ± 0.00% to 14.67 ± 1.89% for 3 min 

at voltage 24 kV, indicating a maximum 85.33% inactivation. The 24 kV voltage 

enhanced the plasma intensity and the generation of reactive species during the 3-min 

treatment. As a result, the oxidative damage and mechanical disruption from plasma 

contributed to a significant PME inactivation. On the other hand, PME inactivation 

was achieved by 58.55% and 70.67% for 3 min treatment duration at voltages of 16 

kV and 20 kV, respectively. The study's results revealed that the PME inactivation 

was significantly influenced by voltage and plasma exposure time. It was observed 

that RA of PME decreased with increasing the treatment time at all voltages (Fig. 

4.3). A study reported that the jet source CP with helium gas treatment (duration: 2–

30 min, voltage: 4–7 kV) inactivated 55–80% PME enzyme in orange juice (Andreou 

et al., 2023). Xu et al. (2017) and Kumar et al. (2023) reported that enzyme 

inactivation in juice is also impacted by juice volume or depth in petri plates, the used 

working gas and its composition, the initial activity of enzymes, and the nature of 

fruits, and varieties, respectively. The mechanism involved in enzyme inactivation 

could be attributed to the interaction of plasma-generated reactive species with the 

enzyme structure. The consequence of this interaction leads to protein denaturation, 

thereby reducing enzyme functionality (Pankaj et al., 2018).  

 

Fig. 4.3 Effect of atmospheric cold plasma (ACP) on RA of PME.  
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4.3.2 Inactivation kinetics modelling of PME enzyme 

As shown in Fig. 4.4, the curves illustrating the RA of PME decreased in juice during 

ACP treatment. An accurate kinetics modelling is crucial to understanding the 

behavior of PME activity reduction in juice by ACP. Therefore, the following 

suggested models were fitted for characterizing the kinetics behavior of PME.  

Table 4.1 Model constant and goodness of fit parameters for PME.  

Model Parameters  PME 

16 kV 20 kV 24 kV 

First-order 𝑘𝑝 (min-1) 0.3205 ± 0.04 0.4304 ± 0.04 0.6386 ± 0.03 

 R2 0.9879 0.9923 0.9991 

 RMSE 0.0234 0.0221 0.0092 

Weibull  β 0.8548 ± 0.15 0.8847 ± 0.14 0.9552 ± 0.05 

 δ (min) 3.3760 ± 0.43 2.3960 ± 0.21 1.5640 ± 0.05 

 R2 0.9964 0.9972 0.9997 

 RMSE 0.0140 0.0146 0.0061 

nth order 𝑘𝑠 (min-1) 0.4095 ± 0.12 0.5163 ± 0.15 0.6789 ± 0.07 

 A0 1.0040 ± 0.05 1.0030 ± 0.05 1.0000 ± 0.02 

 n  1.6910 ± 0.75 1.4070 ± 0.58 1.1060 ± 0.14 

 R2 0.9979 0.9978 0.9998 

 RMSE 0.0120 0.0144 0.0058 

Fractional 

conversion  

𝑘𝑓  (min-1) 0.5269 ± 0.22  0.5819 ± 0.24 0.6953 ± 0.08 

A0 1.0030 ± 0.04 1.0010 ± 0.06 0.9998 ± 0.02 

Ar  0.2630 ± 0.15 0.1568 ± 0.17 0.0413 ± 0.04 

R2 0.9981 0.9976 0.9998 

RMSE 0.0114 0.0150 0.0054 

4.3.2.1 First-order model  

The first-order kinetics modelling for RA of PME at various voltages (16–24 kV) 

against time (0.5–3 min) is shown in Fig. 4.4a. In this model, the k value rose 

proportionally from 0.3205 to 0.6386 min-1, increasing the voltage from 16–24 kV, 

indicating that voltage affected the PME activity in juice (Table 4.1) (Fig. 4.4a). A 

greater k (min-1) was observed at high CP voltage (24 kV), as shown in Fig. 4.4a and 

Table 4.1. Pankaj et al. (2013), Chutia et al. (2019), Pipliya et al. (2022), and Dong et 

al. (2021) also observed a similar trend of inactivation rate constant, k concern with 

the CP voltage. The model's performance in terms of fit was adequate (R2 = 0.9879–

0.9991). In contrast, RMSE values were not desirable because they were 

correspondingly more significant than the Weibull, nth-order, and fractional 

conversion models (Table 4.1). The previous studies reported that the first-order 

model is quite simple for explaining the enzyme inactivation kinetics after ACP 

treatment (Pankaj et al., 2013; Dong et al., 2021; Pipliya et al., 2022). This could be 
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attributed to the enzyme's complex structure and the varying methods by which 

different plasma reactive species break down the enzyme structure or individual 

bonds (Dong et al., 2021). However, the consequences suggest that the first-order 

model is unsuitable to describe the PME inactivation kinetics following ACP 

treatment.  

4.3.2.2 Weibull model  

The Weibull model is usually used to describe the kinetics modelling of enzyme and 

microbial inactivation in diverse foods because of its flexibility and non-linearity 

character in the fitting curves (Dong et al., 2021; Pipliya et al., 2022). Therefore, the 

Weibull model was fitted into the experimental data to explain the kinetic behavior of 

RA of PME during ACP treatment. The scale factor (δ) and shape factor (β) of the 

Weibull model were obtained by fitting the data in Eq. 4.4. As shown in Table 4.1, δ 

values ranged from 3.3760 to1.5640 min, implying a relationship between high PME 

inactivation with increasing the applied voltage. The lower δ value of PME 

inactivation under ACP treatment conditions suggests a higher plasma stability in the 

juice sample. A high voltage may lead to rapid inactivation by producing more 

reactive species and free radicals, which impacts the δ value. The shape factor, β < 1, 

indicated a concave nature of the model curve for RA of PME (Fig. 4.4b and Table 

4.1) and explained the tailing phenomena. Similar behavior of δ and β with CP 

voltage was reported by Kumar et al. (2023) and Pipliya et al. (2022) in kiwifruit juice 

and pineapple juice. As shown in Table 4.1, the R2 values ranged from 0.9964–

0.9997, indicating a strong fit with observed data for predicting the RA of PME. The 

low RMSE (0.0140–0.0061) was also more effective than the first order for predicting 

the PME inactivation.  

4.3.2.3 nth order model  

The nth-order model gives an insight into better understanding the mechanism in the 

non-linear kinetic behaviors associated with loss of enzyme activity in the food matrix 

during processing (Saxena et al., 2017). The parameters of the nth-order model, like 𝑘𝑠, Ao, and n for the PME inactivation were calculated using Eq. 4.5 and presented in 

Table 4.1. The inactivation kinetics curves of the nth-order equation are shown in Fig. 

4.4c. The inactivation rate constant, 𝑘𝑠 value for PME ranged from 0.4095 to 0.6789 

min-1 at 16–24 kV voltage levels. The RA of PME decreased with increasing the 
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voltage, indicating PME inactivation increased with the rise in CP voltage; this could 

be correlated with increasing the 𝑘𝑠value. The inactivation order (n) value varied from 

1.6910 to 1.1060 at the applied voltage range of 16–24 kV, indicating the RA of PME 

decreased during ACP treatment (Table 4.1). The PME inactivation rate depends 

upon their structural stability and treatment time. Other studies also fitted the nth-order 

model for characterizing the enzyme inactivation kinetics (Chakraborty et al., 2015; 

Saxena et al., 2017; Kumar et al., 2023). The coefficient of determination value for 

the nth order model was R2 > 0.98 while RMSE < 0.013, suggesting a good fitting 

performance with the observed data (Table 4.1).  

4.3.2.4 Fractional conversion model 

The fractional conversion model is specifically applicable for describing the 

inactivation kinetics of enzymes that show both resistant and liable characteristics 

while subjected to thermal and non-thermal treatment (Kumar and Srivastava, 2024). 

The values of model parameters such as A0, Ar, and 𝑘𝑓  (min-1) are presented in Table 

4.1. The plasma-resistant fractions of PME were obtained from 0.2630 to 0.0413, 

indicating that Ar decreased with increasing the applied voltage (Table 4.1). This 

suggests that the RA of PME required more treatment time at low voltage to achieve 

maximum PME inactivation. The 𝑘𝑓 values of the RA of PME were in the range of 

0.5269–0.6953 min-1, indicating that inactivation increased with the rise of voltage. 

The R2 > 0.99 with low RMSE < 0.0055 values suggested the good fitting of the 

model (Table 4.1). However, it could not be confirmed with the goodness of fit 

parameter values for selecting the best model among the several competing models. 

Therefore, other statistical parameters (Af, Bf, AIC, and ∆i) were assessed to select a 

best-fit model.  

 



CHAPTER 4  

 

 78 

 

 

 

 

 

 

0.00

0.20

0.40

0.60

0.80

1.00

0.0 0.5 1.0 1.5 2.0 2.5 3.0

A
t/A

0

Treatment time (min)

(a) 16 kV

20 kV

24 kV

0.00

0.20

0.40

0.60

0.80

1.00

0.0 0.5 1.0 1.5 2.0 2.5 3.0

A
t/A

0

Treatment time (min)

(b) 16 kV

20 kV

24 kV

0.00

0.20

0.40

0.60

0.80

1.00

0.0 0.5 1.0 1.5 2.0 2.5 3.0

A
t/A

0

Treatment time (min)

(c) 16 kV

20 kV

24 kV



CHAPTER 4  

 

 79 

 

 

 

Fig. 4.4 RA of PME kinetics at different voltages (16–24 kV) (a) First-order model, (b) 

Weibull model, (c) nth-order model, (d) Fractional conversion model. Different color marks 

(▲, ♦, ●) and lines (▬, ▬, ▬) in the graphs indicated the experimental and predicted values 

of the RA of PME.   

4.3.3 Model validation and selection for PME inactivation   

Table 4.2 Model validation and selection for PME.  

Model Parameters  PME 

16 kV 20 kV 24 kV 

First order Af 1.0007 1.0005 1.0006 

Bf 1.0007 1.0005 1.0006 

 AIC -64.16 -71.05 -71.92 

 ∆i 0.00 0.00 0.00 

Weibull  Af 1.0007 1.0005 1.0006 

Bf 1.0052 1.0036 1.0041 

 AIC -60.16 -67.05 -67.92 

 ∆i 4.00 4.00 4.00 

nth order  Af 1.0007 1.0005 1.0006 

Bf 1.0052 1.0036 1.0041 

 AIC -62.16 -69.05 -69.92 

 ∆i 2.00 2.00 2.00 

Fractional conversion  Af 1.0353 1.0007 1.0009 

Bf 0.9659 1.0007 1.0009 

 AIC -60.16 -67.05 -67.92 

 ∆i 4.00 4.00 4.00 

4.3.3.1 Performance of the models and its validation  

The accuracy factors (Af) in all the fitted models (first-order, Weibull, nth-order, and 

fractional conversion) showed approximately 1, which indicates that observed data 

can be predicted with reasonable accuracy (Table 4.2). Vega et al., 2016 suggested 

that a model would be robust and reliable if the Bf value is close to 1. The Bf values in 
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all the fitted models exhibited close to 1 expect fractional conversion model at 16 kV 

(Table 4.2). Bf < 1 implies that the model fails to capture the complexity of the data, 

leading to underfitting. It was observed that the first-order, Weibull, and nth-order 

models showed good precision with minimum error in the fitted curve. In this kinetic 

study, the fractional conversion model showed the same at 20 kV and 24 kV voltages. 

However, after examining the Af and Bf factors, all the fitted models effectively 

predicted the experimental results with minimal error and maximum precision. The 

contradiction between goodness-of-fit parameters (R² and RMSE) and the validation 

indices (Af and Bf) arose because R² and RMSE promoted closer fits to the data. Still, 

they don’t account for overfitting or model complexity (Table 4.1 and 4.2). In 

contrast, AIC and ∆i are more robust in selecting models that generalize well, not just 

those that fit the data very closely. The low AIC and ∆i values suggest the best-fitting 

model with easy comparison, interpretation, and ranking of competing models 

(Kumar and Srivastava et al., 2024). Therefore, AIC and ∆i were employed to 

determine the best-fitting model from the tested competing models for predicting the 

RA of PME after ACP treatment.  

4.3.3.2 Model selection by the Akaike information criterion and Akaike 

increment  

The AIC and ∆𝑖 criteria were employed to pick the best model from the four 

aforementioned models. The computed values of AIC for Weibull and fractional 

conversion model were obtained more than the first-order and nth-order models 

(Table 4.2). Nonetheless, Akaike increment also exhibited less substantial support 

(∆𝑖= 4) (Table 4.2). As a result, Weibull and fractional models cannot be considered 

for best-fit prediction. According to the Akaike increment thumb rule, these models 

showed substantially less support (2 ≤ ∆𝑖≤ 10) and should not be considered for 

overall model selection (Vega et al., 2016; Pipliya et al., 2022).  

The AIC value of the first-order model was found to be the lowest, followed by the 

nth-order model (Table 4.2). At all conditions, the calculated ∆i value of the first-order 

model was found to be 0, which indicates that the model has significant support. 

However, looking into the goodness-of-fit parameters (RMSE: 0.0234–0.0092) were 

relatively higher than the other three models (Table 4.1). Consequently, it is 

challenging to select the best model. Kumar and Srivastava (2024) and Vega et al. 

(2016) reported that the first-order model should not be a primary choice. They 
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acknowledged that information criteria theory penalizes models more with more 

parameters. Finally, the nth-order model estimated the second least AIC values with ∆i 

= 2 for the PME enzyme. This model was also supported by Af and Bf, values close to 

the simulation line, and goodness-of-fit parameters (R2 and RMSE) (Table 4.1). Thus, 

Akaike’s criteria theory and other statistical parameters suggested that the nth-order 

model should be the primary selection for predicting the inactivation of PME in 

orange (cv. Wakro) juice.  

4.3.4 Effect of ACP treatment on E. coli inactivation  

The initial log CFU/mL of E. coli was 7.44 ± 0.03. Fig. 4.5 shows that the ACP 

treatment effectively inactivated the E. coli in orange (cv. Wakro) juice while 

extending the treatment time (0.5–3 min) under the same voltage. At 24 kV for 3 min, 

log CFU/mL for E. coli was achieved by 2.45 ± 0.21, indicating higher voltage 

resulted in faster inactivation of E. coli in orange (cv. Wakro) juice (Fig. 4.5). A 5-log 

cycle reduction was accomplished in just 3 min, probably due to the higher 

concentration of plasma reactive species, which effectively eliminated E. coli in the 

juice. At the voltage of 24 kV, treatment with only 1.5 min resulted in 4.49 ± 0.14 

CFU/mL in activation of E. coli. Nonetheless, the 20 kV voltage required 3 min of 

treatment to achieve 4.43 ± 0.07 log CFU/mL. However, at 16 kV voltage, ACP 

treatment with 3 min showed 5.87 ± 0.02 log CFU/mL in juice. Therefore, the study 

revealed that ACP is voltage-dependent when inactivating E. coli in orange juice (cv. 

Wakeo).  Other studies also demonstrated that the ACP could more efficiently 

inactivate E. coli in various food matrices (Liao et al., 2018; Sauza et al., 2023). The 

study's results also indicate that the E. coli is susceptible to ACP treatment since their 

total viable counts were considerably reduced within the range of treatment duration 

(0.5–3 min). The inactivation of E. coli by CP primarily disrupts the bacterial cell 

membrane (Nwabor et al., 2022). The reactive species like oxygen reactive species 

(ROS) and nitrogen reactive species (RNS) produced by CP in orange (cv. Wakro) 

juice may be responsible for the disruption of microbial cell walls, leading to 

inactivation or reduction of the survival population (Ikawa et al., 2010; Joshi et al., 

2011). Numerous investigations have shown that the ROS and RNS obtained from CP 

could oxidize and attack the lipid bilayer of cell walls, resulting in a leakage of 

intercellular components and the eventual death of microbial cells (Liao et al., 2018; 

Joshi et al., 2011; Alkawareek et al., 2014).  
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Fig. 4.5 Survival population of microbe (Escherichia coli) in orange (cv. Wakro) 

juice after atmospheric cold plasma (ACP) treatment.  

4.3.5 Inactivation kinetics modelling of E. coli  

In the kinetic study, the log reduction of E. coli was plotted against the plasma 

treatment time to examine the kinetics behavior using different models. The kinetic 

profiles of the survival curves of tested microorganism (E. coli) were obtained from 

the fitted log-linear, Weibull, and Membre model (Fig. 4.6). The estimated model 

constant and goodness-of-fit parameters derived from fitted models with experimental 

data for the inactivation kinetics of E. coli are shown in Table 4.3.  

Table 4.3 Model constant parameters and goodness of fit for E. coli. 

Model Parameters  E. coli 

16 kV 20 kV 24 kV 

log-linear k (min-1) 1.2780 ± 0.43 2.5210 ± 0.43 4.2700 ± 0.89 

 R2 0.8625 0.9558 0.9077 

 RMSE 0.2581 0.2600 0.5303 

Weibull  Β 1.0760 ± 1.23 0.9746 ± 0.59 0.6247 ± 0.17 

 δ (min) 0.8450 ± 1.04 0.3788 ± 0.42 0.0599 ± 0.06 

 R2 0.8643 0.9561 0.9914 

 RMSE 0.2808 0.2841 0.1775 

Membre  k (min-1) 0.3436 ± 0.09 0.5115 ± 0.10 0.6537 ± 0.17 

 R2 0.8223 0.8287 0.4791 

 RMSE 0.2933 0.5119 1.2600 

4.3.5.1 log-linear model  

The estimated log-linear model constant (k) and goodness-of-fit parameters (R2 and 

RMSE) for E. coli inactivation kinetics are presented in Table 4.3. The survival curve 

of the log-linear model fitting is shown in Fig. 4.6a. As observed in Table 4.3, the 
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inactivation rate constant (k) increased with increasing the voltage (16–24 kV), 

indicating ACP significantly affected the E. coli in orange (cv. Wakro) juice (Table 

4.3). A lower value of k implies a slower inactivation rate. The R2 value of the first-

order model was comparatively lower than the Weibull model in all the cases of 

voltages, as shown in Table 4.2.  However, the RMSE values at voltage 16 kV and 20 

kV were obtained minimum compared to the Weibull model, indicating lower 

prediction error (Table 4.2). On the other hand, at 20 kV voltage, the R² value of the 

log-linear model was greater than that of the Weibull model, as observed in Table 

4.2.  With these consequences, it cannot be confirmed that the log-linear model has a 

good correlation.  

4.3.5.2 Weibull model  

The Weibull model was successfully fitted to the experimental data after ACP 

treatment, as seen in Fig. 4.6b.  and Table 4.3. The value of the shape factor, β < 1 at 

voltage 20 kV and 24 kV, exhibits that the inactivation curve has upward concavity or 

tailing, whereas β > 1 indicates downward concavity at voltage 16 kV. This upward 

concavity is formed mainly due to the fast inactivation of sensitive cells of the 

microbial population and the slow inactivation of resistant cells (Peleg, 2006; Feng et 

al., 2008). Esua et al. (2022) observed that tailing (upward concavity) with β <1 

during E. coli inactivation by the CP. Pokhrel et al. (2017) also observed downward 

concavity during E. coli inactivation in carrot juice was achieved by combined 

ultrasound and heat treatment. It was observed that the scale factor (δ) decreased from 

0.8450 to 0.0599 min (Table 4.3). Decreasing the δ values was also reported for the 

inactivation of E. coli with increasing the voltage during ACP treatment (Liao et al., 

2018).  

4.3.5.3 Membre model  

The convex shape of the fitting curve of the Membre model during E. coli inactivation 

by ACP is shown in Fig. 4.6c. In this model, k (min-1) increased with the voltage, 

indicating E. coli was significantly inactivated by ACP, as seen in Table 4.3. 

Regarding the R2 value ranging from 0.8223 to 0.479, the Membre model showed 

poorer data fit than the Weibull and log-linear model. This model produced higher 

RMSE than log-linear and Weibull, indicating that the prediction error was more 

distant from the observed value (Table 4.3).  
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Fig. 4.6 E. coli (MTCC 40) inactivation kinetics at different voltages (16–24 kV) (a) 

log-linear model, (b) Weibull model, and (c) Membre model. Different color marks 

(▲, ♦, ●) and lines (▬, ▬, ▬) in the graphs indicated the experimental and predicted 

values of the log reduction (Log Nt/N0).  
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4.3.6 Model validation and selection for E. coli inactivation  

4.3.6.1 Performance of the models and their validation  

Apart from the standard statistics, the Af and Bf were employed further to validate the 

models' performance (Table 4.4). If the Af and Bf values show close to 1, the model 

predictions are accurate, and there is no over and under prediction (Jaiswal and 

Srivastava, 2024). At all conditions, the actual factor (Af) for log-linear, Weibull, and 

Membre model of inactivation kinetics were in the range from 1.0054–1.0093, 

1.0038–1.0000, and 1.0049–1.0388, respectively (Table 4.4). The Af values with all 

CP voltages exhibited close to 1, indicating minimal deviations between the predicted 

and experimental data. For pathogen inactivation models, Ross (1999) classified Bf 

value as good in the range of 0.90–1.05, acceptable in the range of 0.70–0.90 or 1.06–

1.15, and as unacceptable for values less than 0.70 or greater than 1.15. The Bf values 

for the log-linear and Weibull models showed close to 1, whereas the Membre model 

with all CP voltage exhibited less than 1 (Table 4.4). Bf values close to 1 indicate 

good agreement between observed and predicted values, whereas a Bf smaller than 1 

indicates under-prediction (Pokhrel et al., 2017). According to Ross (1999), the Bf 

values of the log-linear and Weibull models are in the good range. The Bf values of 

the Membre model with CP voltage 16 kV showed a good range (except 20 kV and 24 

kV), as shown in Table 4.4. Comparing and assessing each model’s overall 

performance was challenging with these Af and Bf indices. 

Table 4.4 Model validation and selection for E. coli.  

Model Parameters  E. coli  

16 kV 20 kV 24 kV 

Log-linear  Af 1.0054 1.0015 1.0093 

Bf 1.0054 1.0015 0.9908 

 AIC -33.17 -41.74 -7.97 

 ∆i 1.00 0.00 101.99 

Weibull  Af 1.0038 1.0020 1.0000 

Bf 1.0268 1.0143 1.0000 

 AIC -34.17 -33.07 -109.96 

 ∆i 0.00 8.67 0.00 

Membre  Af 1.0049 1.0168 1.0388 

Bf 0.9665 0.8900 0.7659 

 AIC -33.01 -6.48 12.52 

 ∆i 0.16 35.27 122.48 
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4.3.6.2 Model selection by the Akaike information criterion and Akaike 

increment  

The model's prediction error is assessed using the AIC, which also serves as a 

statistical tool to rank and choose the model that best fits the data (Kumar et al., 

2024b). The previously discussed statistical matrices faced difficulty selecting the 

most suitable model among tested competing models. Therefore, AIC and ∆𝑖 
parameters were introduced as the alternatives to determine the best-fit model. The 

AIC and ∆𝑖values of the tested models were summarized in Table 4.4. The model 

best matches experimental data, while the AIC (∆𝑖 = 0) values are relatively small 

(Panigrahi et al., 2021; Kumar et al., 2024a). The AIC and ∆𝑖 values of the Membre 

model showed more than log-linear and Weibull models, as observed in Table 4.4. 

Thus, the criteria theory suggests that the Membre model does not match the observed 

data. Further, the log-liner and Weibull model were also compared using the values of 

AIC and ∆𝑖.  The AIC values of the log-linear model were observed more at a voltage 

of 24 kV and less at 20 kV, while at 16 kV, they showed the same as the Weibull 

model (Table 4.4).  On the other hand, ∆𝑖 values of the Weibull model were found to 

be zero at voltage 16 kV and 24 kV except for 20 kV (∆𝑖= 8.67). This indicates that 

the Weibull model with CP voltage 16 kV and 24 kV has significant support, while ∆𝑖= 8.67 at 20 kV received less substantial support. According to the Akaike 

increment thumb rule, the Weibull model was established as the best-fit model for 

predicting the inactivation of E. coli in the ACP-treated juice for a specific data set. 

The Weibull model can also be considered the best-fit model.  

4.4 Conclusion  

The impact of ACP on PME and E. coli inactivation with kinetics modelling was 

investigated at different voltages (16–24 kV) as a function of time (0.5–3 min). The 

study revealed that the ACP parameters significantly affected the PME activity and E. 

coli in orange (cv. Wakro) juice. In the tested models, the inactivation rate constant, k, 

increases with the increase in voltage (16–24 kV), indicating that CP voltage 

significantly impacted the PME and E. coli inactivation in orange (cv. Wakro) juice. 

Higher voltage with extended treatment time showed a greater inactivation rate of 

PME and E. coli. This could be attributed to the large production of reactive species 

from CP, which leads to a faster inactivation rate. The nth-order model showed the 

highest fitting accuracy for PME inactivation (R² > 0.98; RMSE < 0.012; ∆i = 2). On 
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the other hand, the Weibull model was best suited for E. coli inactivation kinetics 

(R² > 0.85; RMSE < 0.2841; ∆i = 0 (for 16 and 24 kV) and ∆i = 8.67 (for 20 kV)). The 

accuracy factor (Af) and bias factor (Bf) for the respective models of PME and E. coli 

inactivation were close to the simulation line (closer to 1), suggesting the accuracy of 

these models in predicting. The study's results demonstrate the potential use of ACP 

treatment to maintain fruit juices' microbial safety and quality stability. 
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