TABLE OF CONTENTS

ABSTRACT	i-iii
DISSEMINATIONS OF THESIS CONTENT	iv
DECLARATION	V
CERTIFICATE OF SUPERVISOR	vi
ACKNOWLEDGEMENT	vii-viii
LIST OF FIGURES	xiv-xvii
LIST OF TABLES	xviii-xix
LIST OF ABBREVIATIONS	xx-xxiv

CHAPTER I: INTRODUCTION1-10

CHAPTER II: REVIEW OF LITERATURE 11-23

2.1.1.	Hallmarks of cancer	12-13
2.1.2.	Genomic instability	14-15
2.1.3.	Evading immune destruction	15-16
2.2.1.	Genomic instability in immune related genes	16
2.2.2 <u>.</u>	Avoiding immune recognition	16
2.2.3.	Inducing immune suppressive microenvironment	17
2.3.1.	Mutations in immune related genes	17
2.3.2.	CNA in immune related genes	17
2.4.1.	Frequently mutated genes in cancer	17-18
2.4.2.	PIK3CA (Phosphatidylinositol-4,5-Bisphosphate 3-	18-19
	Kinase Catalytic Subunit Alpha)	
2.4.3.	TG (Thyroglobulin)	19

2.4.4.	HLA-A and HLA-B	19-20
2.4.5.	HLA-DRB1	20
2.4.6.	CIITA	20
2.5.1.	G-quadruplex	21-22
2.5.2.	G-quadruplex in immune system	22
2.5.3.	G-quadruplex in cancer- can generate genomic	23
	instability	

CHAPTER III: MATERIALS AND METHODS 25-33

3.1.1.	Data collection	26-29
3.1.2.	Analysis of alterations in the DNA sequence of the	29-30
	immune related genes	
3.1.3.	Survival analysis considering mutations	30
3.1.4.	Identification of differentially expressed genes	30
	(DEGs)	
3.1.5.	Identification of over-represented pathways	30
3.1.6.	Estimating infiltration of immune cell to the tumor	30-31
	immune microenvironment	
3.1.7.	Statistical analysis and data visualization	31
3.2.1.	Expression of 4genes (HLA-A, HLA-B, HLA-DRB1	31
	and CIITA) and survival analysis	
3.2.2.	Relationship Between 4genes (HLA-A, HLA-B, HLA-	31
	DRB1 and CIITA) and immune infiltration in the	
	tumor microenvironment	
3.2.3.	Correlation between 4genes (HLA-A, HLA-B, HLA-	32
	DRB1 and CIITA) and HLA-E	

3.3.1.	Identification of putative G-quadruplex in human genome	32
3.3.2.	Visualization of overlap between G4 structures and immune-related genes	32
3.3.3.	Annotation of putative G4 locations onto human genome	32
3.3.4.	Analyzing the density of G4	33
3.3.5.	Examining the frequency of mutations in G4 locations	33

CHAPTER IV: RESULTS AND DISCUSSION

4.1	Characterization of immune related genes with genomic instability in the human genome with respect to cancer	35-68
4.1.1.	Results	35-64
4.1.1.1.	Mutational summary of immune related genes in 24 cancer types	35-45
4.1.1.2.	Frequency of mutated genes in 24 different cancer types	46-51
4.1.1.3.	CNA in frequently mutated immune genes	52-59
4.1.1.4.	G-quadruplexes (G4) and the genes related to immune system mapped onto human genome	59
4.1.1.5.	G4 density in genes and promoters of immune genes, housekeeping genes and proto-oncogenes	60-61
4.1.1.6.	G4 density in genes and promoters of immune classes and proto-oncogenes	61-63
4.1.1.7.	Mutations in G4 of the immune system	64

4.1.2.	Discussion	65-68
4.2.	Functional analysis of immune related genes with	69-103
	genomic instability	
4.2.1.	Results:	69-100
4.2.1.1.	Kaplan Meier survival curves for PIK3CA	69-71
	mutations	
4.2.1.2.	Cox- regression analysis of both mutated and non-	72
	mutated PIK3CA dataset	
4.2.1.3.	Kaplan Meier survival curves for TG mutations	73-74
4.2.1.4.	Survival data for mutations of the 4 antigen	74-82
	presentation genes	
4.2.1.5.	Survival analysis considering expression levels of	83-100
	the 4 antigen presenting genes	
4.2.2.	Discussion	101-103
4.3.	Investigating the crucial role of immune related	104-127
	genes with genomic instability in different type of	
	cancer	
4.3.1.	Results	104-123
4.3.1.1.	Over-represented pathways in PIK3CA mutated	104
	datasets	
4.3.1.2.	Differentially expressed genes in complement and	105-108
	coagulation pathway	
4.3.1.3.	Difference in immune infiltration to tumor	109-111
	microenvironment in mutated versus non-mutated	
	PIK3CA samples and their association to	
	differentially expressed genes	
4.3.1.4.	Over-represented pathways in TG mutated datasets	112

4.3.1.5.	Difference in immune infiltration to tumor	113-114
	microenvironment in mutated and non-mutated TG	
	samples of BRCA	
4.3.1.6.	Differential expression of CIITA, RFX (RFXANK,	115-117
	RFXAP, RFX5), CREB, NFY (NFYA, NFYB,	
	NFYC), HLA-A, HLA-B, HLADRB1, HLA-E and	
	HLA-G in LGG	
4.3.1.7.	Influence of RFX (RFXANK, RFXAP, RFX5),	118-120
	CREB, NFY (NFYA, NFYB, and NFYC), HLA-E	
	and HLA-G expression on survival in LGG	
4.3.1.8.	Correlation between 4genes in our study (HLA-A,	121-122
	HLA-B, HLA-DRB1 and CIITA) and infiltrating	
	immune cells	
4.3.1.9.	Correlation between 4genes (HLA-A, HLA-B,	122
	HLA-DRB1 and CIITA) and HLA-E	
4.3.1.10.	Correlation among CIITA, RFXANK, RFXAP,	122-123
	RFX5, CREB, HLA-A, HLA-B, HLA-DRB1 and	
	HLA-E.	
4.3.2.	Discussion	124-127

CHAPTER V: SUMMARY AND CONCLUSION 128-131

CHAPTER VI: REFERENCES 132-135

SUPPLEMENTARY 136-155