Dedicated to Ema § Epa

Declaration

I hereby declare that the thesis entitled "Characterization of antibody and cellular response to Dengue virus infection to determine cytokine/chemokines markers of inflammation and serological diagnosis of Dengue virus infection." is an authentic work carried out by me under the supervision of Prof. Shashi Baruah, Department of Molecular Biology and Biotechnology, Tezpur University, Assam-784028. No part of this has been presented for any other degree or diploma earlier.

Sushnita Singla

Place: Tezpur

Date : 26-03-2025

(Sushmita Singha)

TEZPUR UNIVERSITY (A Central University by an Act of Parliament) Napaam, Tezpur-784028 District:Sonitpur, Assam, India

CERTIFICATE OF SUPERVISOR

This is to certify that the thesis entitled "Characterization of antibody and cellular response to Dengue virus infection to determine cytokine/chemokines markers of inflammation and serological diagnosis of Dengue virus infection." submitted to the School of Sciences, Tezpur University in requirement of partial fulfilment for the award of the degree of Doctor of Philosophy in Molecular Biology and Biotechnology is a record of research work carried out by Ms. Sushmita Singha under my supervision and guidance. All help received by her from various sources has been duly acknowledged. No part of this thesis has been submitted elsewhere for award of any other degree.

Convale

(Signature of supervisor)

Date:26-03-2025 Place: Tezpur

Name: Dr. Shashi Baruah Designation: Professor School: Sciences Department: Molecular Biology and Biotechnology, Tezpur University.

Acknowledgement

I would like to express my sincere gratitude to my supervisor, Prof. Shashi Baruah, for her unwavering support and encouragement throughout my Ph.D. journey. Her invaluable guidance, advice, and motivation have not only played a crucial role in shaping my research work but have also empowered me to find my voice and take a stand for myself in life. Her mentorship has been instrumental in my personal and professional growth, and I am truly grateful for her presence in my academic journey.

I am deeply thankful to the Honorable Vice-Chancellor of Tezpur University for granting me the opportunity to pursue my Ph.D. and carry out my research at this esteemed institution. I extend my heartfelt appreciation to my Doctoral Committee members –Dr Anupam Nath Jha, Dr Nima D Namsa, Dr Lahari Saikia– for their invaluable suggestions and insightful inputs during my Ph.D. tenure.

I am very much thankful to our medical collaborators Dr Neena Nath, Dr Vaishali Sarma and other medical staffs of Gauhati Medical College and Hospital for their immense help in samples and data collection during my PhD tenure.

I am grateful to the Head, Department of Molecular Biology and Biotechnology at Tezpur University for his constant support and encouragement throughout my Ph.D. journey. I am also grateful to all the faculty members and non-teaching staff of the department for their assistance and cooperation.

I am grateful for the financial support provided by Tezpur University and DRDO,

Government of India for funding the PhD research work.

I would like to express my gratitude to my lab seniors – Neelanjana Di, Saurav Da, Debashree Ba, and Akash Da, Arnav bhaiya for their continuous support and encouragement throughout my Ph.D. tenure.

I am thankful to my wonderful labmates, Mayuri Di, Dalal, Bhaswatee Di and Da Chourajit, for creating a supportive and cheerful environment in the lab. I am forever thankful to my lovely didis- Anupama, Archana, and little brother Subrata for making this journey so cheerful and jolly. They all have been there with me in all my ups and downs throughout my Ph.D. journey and I adore them a lot for being so an awesome human being.

I am thankful to Kangkana, Anahita, Shristi, Sonali, Somia, Krishanu, Koyel and Pranay

and all other juniors of the department for their lively and cheerful nature.

I would like to acknowledge and appreciate my Ph.D. mates and friends – Pushpa, Anutee, Yazum, Nazmin, Monalisha, Priyanka, Cinmoyee, Upasana, Debanjan, Mahari, Jyotirmoy, Hirak and Bikash – for their companionship and support throughout this journey.

I would also like to express my heartful thanks to my extended family in Tezpur University-Sweeta, Olivia, Pooya, Pamja, Che Monica, Che Sophia and Ditimoni for always being there for me in my ups and down.

I am grateful to my childhood friends Manaoubi, Ritu, Ranji, Thadoi, W. Sujata, Premila, and Ashabari for being there through all the challenges and joys. I would also like to thank our little angel Stela for always greeting me warmly and happily.

I am forever indebted to my Papa (Mr. Chandra Kirty Singha), and Mama (Mrs. Namila Singha), my little brothers Parambir and Birbhadra for their unwavering support, motivation, unconditional love, and blessings. I cannot forget to mention my biggest cheerleader Sheitajit Singh who makes my existence worthwhile and brings so much happiness into my life.

With heartfelt gratitude, Sushmita Singha

LIST OF FIGURES

	CHAPTER II: REVIEW OF LITERATURE	Page No.
Figure 2.1.	Structure of Dengue virus and the receptors. (A) Schematic	14
	representation of DENV structure .envelope protein	
	homodimers and the membrane proteins, capsid protein	
	homodimers (B) Cell surface receptors involved in DENV	
	entry: mannose receptor, GAGs, , DC-SIGN, HSP90/HSP70	
	and TIM/TAM, and Fcy receptors.	
	CHAPTER III: CHARACTERIZATION OF	
	CYTOKINES AND CHEMOKINES LEVELS IN	
	SERUM OF DENGUE INFECTED PATIENTS	
Figure 3.1	A) Quantification of inflammatory cytokine proteins in	32
	healthy participants. Flow cytometry image showing	
	results of bead-based capture of all the six cytokine	
	proteins (IL-10, IL-12p70, TNF, IL-1 β , IL-6, and IL-8) in	
	an individual sample (B) and Fluorescence intensity of the	
	proteins in that sample.	
Figure 3.2	Expression of cytokines in healthy controls and dengue-	33
	positive subjects. Values indicate protein expression in	
	pg/mL and error bars represent the standard deviation from	
	the mean. Unpaired t-tests were performed using GraphPad	
	Prism 10.1.0 to determine significance, with a threshold p-	
	value of < 0.05.	
Figure 3.3	(A)Quantification of chemokine proteins in healthy	34
	participant. Flow cytometry image showing results of bead-	
	based capture of all the five chemokines (CCL2, CCL5, IL8,	
	CXCL0, and CXCL9) in an individual sample (B) and	
	Fluorescence intensity of the proteins in that sample.	
Figure 3.4	Expression of chemokines in healthy controls and dengue-	35
	positive subjects. Values indicate protein expression in	

		,
	pg/mL and error bars represent standard deviation from the	
	mean. Unpaired t-tests were performed using GraphPad	
	Prism 10.1.0 to determine significance, with a threshold p-	
	value of < 0.05.	
Figure 3.5	Heatmap showing expression of key cytokines and	37
	chemokines in dengue patients. Light green color	
	represents very high expression, dark green color	
	represents intermediate expression and red color represents	
	low expression. Expression profile similarities are depicted	
	by the branch lengths of the dendrogram	
Figure 3.6	Correlation analysis revealed a positive correlation of	37
	expression of A) CCL5 and B) IL12p70 with platelet count	
	in dengue.	
Figure 3.7	Principal Component Analysis (PCA), platelet count,	38
	cytokines, and chemokines were the active variables under	
	consideration.	
Figure 3.8	Flow Cytometric Analysis showing gating strategy A)	38
	Differential Monocyte population in blood sample of	
	dengue patient B) Differential Dendritic Cell population in	
	blood sample of dengue patient	
Figure 3.9	Percentage Frequency of A) Classical B) Intermediate C)	39
	Non-classical monocytes in Dengue patients and in controls.	
	Unpaired t-tests were performed using GraphPad Prism	
	10.1.0 to determine significance, with a threshold p-value of	
	< 0.05.	
F ' 2 10		20
Figure 3.10	Percentage Frequency of A) Conventional Dendritic Cell	39
	and B) Plasmacytoid Dendritic Cell in Dengue patients and	
	in controls. Unpaired t-tests were performed using	
	GraphPad Prism 10.1.0 to determine significance, with a	
	threshold p-value of < 0.05 .	

	Chapter IV: DETERMINATION OF	
	IMMUNODOMINANT PEPTIDES AND POTENTIAL	
	B AND T CELL EPITOPES OF ENVELOPE AND NS1	
	PROTEINS OF THE DENGUE SEROTYPES.	
Figure 4.1	Seropositive peptides of DENV 1 Envelope peptide array.	50
	Here the frequency of patients recognizing the peptides	
	with greater than or equal to 1.5 A. U is shown in a	
	bracket.	
Figure 4.2	Seropositive peptides of DENV2 A) Envelope peptide	51
	array NR510 and B) NS1 peptide array NR508. Here the	
	frequency of patients recognizing the peptides with greater	
	than or equal to 1.5 A. U is shown in a bracket.	
Figure 4.3	Seropositive peptides of DENV3 A) Envelope peptide	52
	array NR511 and B) NS1 peptide array NR2753. Here the	
	frequency of patients recognizing the peptides with greater	
	than or equal to 1.5 A. U is shown in a bracket.	
Figure 4.4	Schematic diagram of mapping immunodominant peptides	61-62
	and predicted B cell epitopes. Here Dengue Envelope and	
	NS1 protein sequences are represented by a box of	
	respective amino acid lengths. Immunodominant peptides	
	identified by the Peptide array are represented by blue lines,	
	B cell linear epitopes are represented by orange lines and B	
	cell conformational epitopes are represented by green lines.	
Figure 4.5	Surface localization of immunodominant peptides A)	66
	Envelope (3G7T) proteins of DENV1. Each peptide has	
	been represented by different colours and the whole protein	
	by red colour.	
Figure 4.6	Surface localization of immunodominant peptides A)	66
	Envelope (3J2P) and B) NS1(7WUR) proteins of DENV2.	
	Each peptide has been represented by different colours and	
	the whole protein by red colour.	

Figure 4.7	Surface localization of immunodominant peptides A)	67
C	Envelope (7A3P) and B) NS1proteins of DENV3. Each	
	peptide has been represented by different colours and the	
	whole protein by red colour.	
	CHAPTER V- DESIGN OF A NOVEL POTENTIAL	
	MULTI EPITOPE-BASED SUBUNIT VACCINE	
	TARGETING STRUCTURAL PROTEINS OF	
	DENGUE VIRUS 2	
Figure 5.1	A Schematic diagram of the vaccine construct. CTL	85
i iguio e i i	epitopes were joined with the help of AAY linkers (blue)	
	while HTL epitopes were joined with the help of GPGPG	
	linkers (brown). 331 amino acid long vaccine construct	
	consisting of an adjuvant (purple) at N-terminal end linked	
	with the help of EAAAK linker (black).	
Figure 5.2	A representation of secondary structure of the vaccine	87
1 Iguit 5.2	construct consisting of alpha-helix (32.12%), β -strands	07
	(23.86%) and coils (44.12%).	
Figure 5.3a	3D model of vaccine construct	88
Figure 5.3b	Comparison of tertiary protein structures. The initial and the	88
Figure 5.50	refined model are colored in green and blue, respectively	00
Figure 5.3c	Validation of multi-epitope vaccine tertiary structure by	88
Figure 5.5c	Ramachandran plot where 97.4% residues were found in the	00
	favored region, 2.2% residues were found in allowed region	
	and 0.4% residues were lies in generously allowed region.	
Figure 5.4a	Vaccine-TLR3 docked complex	90
Figure 5.4b	-	90 90
	Interacting residues between Vaccine and TLR3	
Figure 5.5 a	RMSD of TLR3 and vaccine construct	91
Figure 5.5 b	RMSF of TLR3 and vaccine construct	91
Figure 5.5 c	Rg of TLR3 and vaccine construct	91
Figure 5.5 d	H-bond plot of TLR3-vaccine complex.	91
Figure 5.6	Representation of the immune simulation performed using	92-93
	C-IMMSIMM. (A) Immunoglobulin response to the	

	-	
	vaccine injection (lines shown in black) and specific	
	subclasses of immunoglobulins are indicated by coloured	
	lines, (B,) B-cell population, (C) Rise in the plasma B-cell	
	population throughout the injections, (D) Increase of the	
	helper T-cell population, , (E) Increase in the cytotoxic T	
	lymphocyte population throughout the injections,(F,G,)	
	Dendritic cell and macrophage cell stimulus, (H) Level of	
	different types of cytokines induced by injection.	
Figure 5.7	Population coverage map of selected CTL and HTL	94
	epitopes	
	Chapter VI: EVALUATION OF IDENTIFIED	
	EPITOPES FOR DENGUE VIRUS ANTIBODY	
	DIAGNOSTIC ASSAY	
Figure 6.1	A) Structure of an antibody molecule, -B) Complementary	104
	Determining Region of Antibody.	
Figure 6.2	3D model of the synthetic peptide SP7	106
Figure 6.3	Linear B cell Epitope region of SP7 as predicted by	107
	BepiPred 2.0	
Figure 6.4	Conformational B cell Epitope region of SP7 as predicted	107
	by ElliPro.	
Figure 6.5	Identifying CDRs of Antibody using AbRSA server	109
Figure 6.6	Docked complex of SP7 (Cyan) and NAb(Green)	110
Figure 6.7a	SP7 interaction with light chain	110
Figure 6.7b	SP7 interaction with heavy chain	110
Figure 6.8	Graph showing seroreactivity of SP peptide with dengue	112
	positive (GD) J.E positive (JE) and healthy sera (ND). Cut-	
	off is indicated by the horizontal dotted line in the	
	graph.GD=Dengue positive, JE= J.E positive and ND=	
	non-dengue healthy samples.	
	CHAPTER VII: SUMMARY & CONCLUSION	
Figure 7.1	Schematic diagram of the selection of immunodominant	117
	epitopes of Dengue Virus Envelope and NS1 Proteins	

	using both peptide array and computational approaches and evaluation of the diagnostic potential of the designed synthetic peptide SP7.	
Figure 7.2	In Dengue disease, activated monocytes secrete TNF and IL-1β. The elevated levels of TNF promote the Proliferation of dendritic cells. Additionally, the higher secretion of CXCL10 by monocytes aids in the migration of dendritic cells. This process also triggers the activation of NK cells and the release of IL-10, which targets endothelial cells and contributes to platelet aggregation, leading to thrombocytopenia in Dengue	118
Figure A1	APPENDIX Standardization of indirect ELISA with DENV1-3 monoclonal antibodies	124

LIST OF TABLES

	CHAPTER III	Page No.
Table 3.1	Demographic and clinical profile of participants	31
Table 3.2	Correlation matrix (Pearson) between cytokines,	36
	chemokines and Platelet count	
	CHAPTER IV	
Table 4.1	B cell linear epitopes of DENV1 Envelope and NS1	53
	protein predicted by BepiPred 2.0. Antigenicity score by	
	VaxiJen 2.0 (threshold>0.4).	
Table 4.2	B cell linear epitopes of DENV2 Envelope and NS1	54
	protein predicted by BepiPred 2.0. Antigenicity score by	
	VaxiJen 2.0 (threshold>0.4).	
Table 4.3	B cell linear epitopes of DENV3 Envelope and NS1	55

	protein predicted by BepiPred 2.0. Antigenicity score by	
	VaxiJen 2.0 (threshold>0.4).	
Table 4.4	B cell linear epitopes of DENV4 Envelope and NS1	55-56
	protein predicted by BepiPred 2.0. Antigenicity score by	
	VaxiJen 2.0 (threshold>0.4).	
Table 4.5	B cell conformational epitopes of DENV1 Envelope and	57
	NS1 protein predicted by ElliPro	
Table 4.6	B cell conformational epitopes of DENV2 Envelope and	58
	NS1 protein predicted by ElliPro.	
Table 4.7	B cell conformational epitopes of DENV3 Envelope and	59
	NS1 protein predicted by ElliPro.	
Table 4.8	B cell conformational epitopes of DENV4 Envelope and	60
	NS1 protein predicted by ElliPro.	
Table 4.9	Conservancy of immunodominant peptides of DENV1 E	63
	across consensus sequence	
Table 4.10	Conservancy of immunodominant peptides of DENV2 E	64
	and NS1 across consensus sequence	
Table 4.11	Conservancy of immunodominant peptides of DENV3 E	65
	and NS1 across consensus sequence	
Table 4.12	Predicted T cell epitopes MHC Class I of DENV envelope	67
	protein	
Table 4.13	Predicted T cell epitopes MHC Class I of DENV NS1	68
	protein	
Table 4.14	Envelope MHC Class II binding T cell epitopes	69
Table 4.15	DENV NS1 MHC Class II binding T cell epitopes	70
	CHAPTER V	
Table 5.1	CTL and HTL epitopes selected for vaccine construct. T-	84
	cell epitopes selected are shown to be overlapping with B-	
	cell epitopes.	
Table 5.2	Physicochemical analysis of vaccine construct	86
Table 5.3	Discontinuous B-cell epitopes of the vaccine construct	88-89

	CHAPTER VI	
Table 6.1	Physiochemical properties of SP7 construct	108
Table 6.2	Number of interacting residues with CDRs of NAb	111
Table 6.3	Sensitivity and specificity of the recombinant peptide SP7	112
	APPENDIX	
Table A1	HLA-I and II supertype alleles	123

List of Abbreviations

DENV- Dengue virus

- DENV1- Dengue virus serotype 1
- DENV2- Dengue virus serotype 2
- DENV3- Dengue virus serotype 3

DENV4- Dengue virus serotype 4

WHO- World Health Organisation

DHF- Dengue Hemorrhagic Fever

DSS- Dengue shock syndrome

DF- Dengue Fever

SD- Severe Dengue

E- Envelope

NS1- Non- structural 1

C- Capsid

M- Membrane

- prM-Premembrane
- ER- Endoplasmic reticulum

CYD-TDV - Chimeric yellow fever-dengue virus (DENV) tetravalent dengue vaccine

IgM- Immunoglobulin M

IgG- Immunoglobulin G

ADE- Antibody-Dependent Enhancement

IL6- Interleukin-6

IL8- Interleukin-8

IL10- Interleukin-10

IL1 β - Interleukin-1 β

IL12p70- Interleukin-12p70

IFN-γ- Interferon-gamma

CCL2- C-C Motif Chemokine Ligand 2

CCL5- C-C Motif Chemokine Ligand 5

CXCL9- C-X-C motif chemokine ligand 9

CXCL10- C-X-C motif chemokine ligand 10

ELISA- Enzyme-Linked immunosorbent Assay

- NAAT- Nucleic acid amplification tests
- **RDT-** Rapid Diagnostic Test
- LFA- Lateral Flow Assay
- SARS-COV-2- Severe Acute Respiratory Syndrome Coronavirus 2
- CBA- Cytometric Bead Array
- J.E- Japanese encephalitis
- IEDB- Immune Epitope Database and Analysis Resource
- SP- Synthetic Peptide
- CDR- Complementarity-determining region
- DC- Dendritic cell
- NK- Natural Killer Cell
- CTL- Cytotoxic T Lymphocyte
- HTL- Helper T Lymphocyte
- CD- Cluster of differentiation
- LC- Langerhans cells
- DC-SIGN- Dendritic cell-specific ICAM-grabbing non-integrin
- MR- Mannose receptor
- GAG- Glycosaminoglycans
- HSP- Heat Shock Protein
- MHC- Major histocompatibility complex
- HLA- Human Leukocyte Antigen
- MIG- Monokine induced by interferon-y
- CXCR3- C-X-C Motif Chemokine Receptor 3
- GMCH- Gauhati Medical College and Hospital
- TMCH- Tezpur Medical College and Hospital
- AA Austro-Asiatic and
- IE- Indo-European
- TB- Tibeto-Burman
- PCA- Principal Component Analysis
- PBS- Phosphate Buffer Saline
- **OD-** Optical Density
- SD- Standard Deviation

TMB- 3,3',5,5'-Tetramethylbenzidine

A.U- Arbitrary Unit

E1P- Dengue virus 1 envelope protein peptide

EP- Dengue virus 2 envelope protein peptide

E3P- Dengue virus 3 envelope protein peptide

NSP- Dengue virus 2 non-structural 1 protein peptide

NS3P- Dengue virus 3 non-structural 1 protein peptide

NP- Nucleoprotein

HA-Hemagglutinin

CAI- Codon Adaptation Index

RMSD- Root Mean Square Deviation

RMSF- Root Mean Square Fluctuation

TLR3- Toll-like receptor 3

NAb- Neutralising antibody

HRP- Horse Raddish Peroxidase

pI- Isoelectric point

GRAVY- Grand average of hydropathicity