TABLE OF CONTENTS

ABSTRACT	i-iii
DISSEMINATIONS OF THESIS CONTENT	iv
DECLARATION	v
CERTIFICATE OF SUPERVISOR	vi
ACKNOWLEDGEMENT	vii-viii
LIST OF FIGURES	XV-XX
LIST OF TABLES	xx-xxii
LIST OF ABBREVIATIONS	xxiii-xxv

CHAPTER I: INTRODUCTION 1-10

1.1	Introduction	2-7
1.2	References	8-10

CHAPTER II: REVIEW OF LITERATURE 11-25

2.1	Immune response to Dengue	12
2.2	Dengue Virus Cellular Receptors and Tropism	13-14
2.3	Cytokines in Dengue	14
	IL12p70	15
	TNF alpha	15
	IL10	16
	IL6	16
	IL1β	16
2.4	Chemokines in Dengue	16
	CXCL10	17
	CCL2	17
	CXCL9	17

	IL8	17
	CCL5	17-18
2.5	Cytokines in protection and in immunopathogenesis	18
2.6	DENV Envelope and NS1	18-19
2.7	Disease management and the prospect of vaccine	20
2.8	Reverse vaccinology approach in designing vaccine	21
2.9	References	22-25

CHAPTER III: CHARACTERIZATION OF CYTOKINES AND CHEMOKINESLEVELS IN SERUM OF DENGUE INFECTED PATIENTS26-43

3.1	Introduction	27-28
3.2	Materials and methods	28
3.2.1	Study design	28
3.2.2	Study site and population	29
3.2.3	Sample collection and preparation	29
3.2.4	Cytokine and Chemokine protein expression study by	29
	Cytometric bead array assay (CBA)	
3.2.5	Determination of Monocyte and Dendritic cells population by	30
	Flow cytometry	
3.2.6	Statistical analysis	30
3.3	Results	30-39
3.3.1	Demographic and clinical profiles of the study participants	30-31
3.3.2	Cytokine expression	32-33
3.3.3	Chemokine expression	34-35
3.3.4	Correlation of cytokine and chemokine	36-37
3.3.5	Correlation analysis of platelet count with CCL5 and IL12p70	37
3.3.6	Principal Component Analysis	37-38
3.3.7	Monocyte and Dendritic cells population by Flow cytometry	38-39
3.4	Discussion	40
3.5	References	41-43

CHAPTER IV: DETERMINATION OF IMMUNODOMINANT PEPTIDES AND
POTENTIAL B AND T CELL EPITOPES OF ENVELOPE AND NS1 PROTEINS
OF THE DENGUE SEROTYPES44-75

4.1	Introduction	45-46
4.2	Materials and method	46
4.2.1	Peptide array and retrieval of the protein sequences	46-47
4.2.2.	Identification of B cell epitopes using bioinformatics	47
4.2.2.1	Prediction of linear B cell epitopes	47
4.2.2.2	Prediction of conformational B cell epitopes	47
4.2.3	Determining seropositivity and titre by Indirect ELISA	47-48
4.2.4	Criteria for selection of immunodominant peptides	48
4.2.5	Conservancy analysis and antigenicity	49
4.2.6	Surface Localization of Immunodominant Peptide Sequence in Proteins	49
4.2.7	Prediction of T cell epitopes	49
4.3	Results	49-70
4.3.1	Immunodominant epitopes of DENV proteins	49
4.3.1.1	Immunodominant peptide of DENV1 Envelope protein	49-50
	determination using peptide array	
4.3.1.2	Immunodominant peptide of DENV 2 Envelope and NS1	50-51
	protein determination using peptide array	
4.3.1.3	Immunodominant peptide of DENV 3 Envelope and NS1	51-52
	protein determination using peptide array	
4.3.2	B cell epitope mapping by immunoinformatics approach	52
4.3.2.1	Prediction of B cell linear epitope of DENV1 Envelope and	52-53
	NS1 protein	
4.3.2.2	Prediction of B cell linear epitope of DENV2 Envelope and NS1	53-54
	protein	
4.3.2.3	Prediction of B cell linear epitope of DENV3 Envelope and	54-55
	NS1 protein	

4.3.2.4	Prediction of B cell linear epitope of DENV4 Envelope and	55-56
	NS1 protein	
4.3.3	B cell conformational epitope prediction	56
4.3.3.1	B cell conformational epitope prediction of DENV1	56-57
4.3.3.2	B cell conformational epitope prediction of DENV2	58
4.3.3.3	B cell conformational epitope prediction of DENV3	59
4.3.3.4	B cell conformational epitope prediction of DENV4	60
4.3.4	Computationally predicted epitope regions overlapped with	61-62
	Immunodominant peptides	
4.3.5	Conservancy of immunodominant peptides across consensus	62-65
	sequence	
4.3.6	Surface localization of immunodominant peptides	65-67
4.3.7	T cell epitope prediction of DENV E and NS1 proteins	67-70
4.4	Discussion	70-72
4.5	References	73-75

CHAPTER V: DESIGN OF A NOVEL POTENTIAL MULTI EPITOPE-BASED SUBUNIT VACCINE TARGETING STRUCTURAL PROTEINS OF DENGUE

VIRUS	2
-------	---

76-100

VIINUS 2		70-100
5.1	Introduction	77-79
5.2	Materials and method	79
5.2.1	Dengue proteins sequence	79
5.2.2	B cell linear epitope prediction	79
5.2.3	Cytotoxic T Lymphocytes (CTL) epitope prediction	79
5.2.4	Helper T Lymphocytes (HTL) epitope prediction	80
5.2.5	Antigenicity and allergenicity prediction	80
5.2.6	Prediction of various physicochemical properties	80
5.2.7	Cytokine inducing epitope prediction	80
5.2.8	Codon Adaptation	81
5.2.9	Secondary structure prediction	81
5.2.10	Tertiary structure modeling, refinement and validation	81

5.2.11	Discontinuous B-cell epitope prediction	81
5.2.12	Molecular docking of vaccine with immune receptor TLR3	82
5.2.13	Molecular dynamics simulation of receptor-ligand complex	82
5.2.14	In silico immune simulation	82-83
5.2.15	Population Coverage analysis	83
5.3	Results	83-94
5.3.1	Viral protein selection for vaccine preparation	83
5.3.2	Prediction of B-cell epitope	83
5.3.3	HLA-supertype alleles for T cell epitope prediction	83
5.3.3.1	Prediction of T cell epitopes	83-84
5.3.4	Multi-epitope vaccine sequence construction	85
5.3.5	Cytokine-inducing capacity prediction of the epitopes	85
5.3.6	Allergenicity and antigenicity of the vaccine construct	85-86
5.3.7	Physicochemical analysis of vaccine construct	86
5.3.8	Secondary structure prediction	86-87
5.3.9	Tertiary structure modelling	87-88
5.3.10	Prediction of discontinuous B-cell epitope	88
5.3.11	Molecular docking of final vaccine construct with	89
	immunological receptor TLR3	
5.3.12	Molecular Dynamics simulation	90
5.3.13	Codon Adaptation	91
5.3.14	In silico immune simulation	92-93
5.3.15	Population coverage of selected epitopes	93-94
5.4	Discussion	94-96
5.5	References	97-100

CHAPTER VI: EVALUATION OF IDENTIFIED EPITOPES FOR DENGUEVIRUS ANTIBODY DIAGNOSTIC ASSAY101 - 115

6.1	Introduction	102-103
6.2	Materials and methods	103
6.2.1	Construction of a synthetic peptide SP7	103

6.2.2	Prediction of B cell epitope of SP7 construct	103
6.2.3	Physiochemical properties of SP construct	104
6.2.4	Determination of Complementary Determining Region of	104
	Neutralizing Antibody	
6.2.5	Docking of synthetic peptide with Neutralizing antibody	105
	(NAb)	
6.2.6	Standardisation of indirect ELISA assay and determining	105
	seropositivity	
6.2.7	Evaluation of the diagnostic potential of synthetic peptide	106
6.2.8	Determining Sensitivity and specificity	106
6.3	Results	106-112
6.3.1	Visualization of SP7 construct	106
6.3.2	B cell epitopes of SP7 construct	107
6.3.3	Physiochemical properties of SP7 construct	107-108
6.3.4	Determination of CDR region	108-109
6.3.5	Docking of SP7 with Neutralising Antibody	109-110
6.3.6	Interacting residues of CDRs and Nab	111
6.3.7	Evaluation of the diagnostic potential of SP7	111-112
6.4	Discussion	113
6.5	References	114-115

CHAPTER VII: SUMMARY AND CONCLUSION116-121

7.1	Summary	117-119
7.2	Conclusion	119-120
7.3	References	121

APPENDIX

122-124