# **Dedicated to my parents**

For Their Unwavering Faith, Unmatched Sacrifices and Boundless Support

With Endless Gratitude and Love

#### DECLARATION

I hereby declare that the thesis entitled "Characterization, Valorization, and Application of Non-wood Plant-Based Nanocellulose" submitted to the school of Engineering, Tezpur University, in partial fulfillment of the requirements for the award of the Doctor of Philosophy in the Department of Food Engineering and Technology is a record of original research work carried out by me. Any text, figures, theories, results or designs that are not of my own devising are appropriately referenced in order to give credit to the original author(s). All the sources of assistance have been assigned due acknowledgement. I also declare that neither this work as a whole nor a part of it has been submitted to any other university or institute for any degree, diploma, associateship, fellowship or any other similar title or recognition.

Place: Tezpur Date: 30-12-2024

(Beatrice Basumatary) Registration Number: TZ189568 of 2018



## तेजपुर विश्वविद्यालय/ TEZPUR UNIVERSITY (संसद के अधिनियम द्वारा स्थापित केंद्रीय विश्वविद्यालय) (A Central University established by an Act of Parliament) तेजपुर-784028 :: असम/ TEZPUR-784028 :: ASSAM

(सर्वोत्तम विश्वविद्यालय के लिए कुलाध्यक्ष पुरस्कार,2016 औरभारत के 100श्रेष्ठ उच्च शिक्षण संस्थानों में पंचम स्थान प्राप्त विश्वविद्यालय) (Awardee of Visitor's Best University Award, 2016 and 5<sup>th</sup> among India's Top 100 Universities, MHRD-NIRF Ranking, 2016)

Charu Lata Mahanta Professor Department of Food Engineering and Technology School of Engineering Email: <u>charu@tezu.ernet.in</u> Mob: 91-9435092658

#### **CERTIFICATE OF THE SUPERVISOR**

This is to certify that the thesis entitled "Characterization, Valorization and Application of Non-wood Plant-Based Nanocellulose" submitted to the School of Engineering, Tezpur University in partial fulfilment of the requirements for the award of the degree of Doctor of Philosophy in the Department of Food Engineering and Technology is a record of original research work carried out by Ms. Beatrice Basumatary under my supervision and guidance.

All helps received by him from various sources have been duly acknowledged.

No part of this thesis has been submitted elsewhere for the award of any other degree.

Charm Lata Mahanta

(Prof. Charu Lata Mahanta)

Date: 30-12-2024 Place: Tezpur First and foremost, I thank **Almighty God** for bestowing upon me the strength, courage, wisdom, and perseverance needed to overcome challenges and achieve the successful completion of my research work and thesis.

I express my heartfelt gratitude to all who have supported me throughout this journey. It has been a privilege to work under the guidance of my supervisor, **Prof. Charu Lata Mahanta**. Her academic and personal guidance, coupled with her unwavering support, has been invaluable during my PhD journey. I am deeply indebted to her for her generosity, care, and encouragement, which played a vital role in the successful completion of my thesis. I am especially grateful for her patience and understanding throughout this process. Her knowledge and support have been the foundation upon which I built my achievements.

I would like to express my gratitude to the members of the **Doctoral Committee** (**DC**): **Prof. Laximikant S. Badwaik and Prof. Debendra Chandra Baruah** and **Departmental Research Committee** (**DRC**) for their insightful feedback, guidance, and invaluable contributions that greatly enriched my PhD thesis.

I would like to extend my thanks to the **Head of Department**, **faculty members**, and **technical staff** of the FET department for their selfless service and consideration to me to complete my project.

I am grateful to my **batchmates**, **seniors**, **juniors**, **friends** and all other loving friends and relatives for their love, moral support and encouragement given to me.

I am grateful to the **Ministry of Tribal Affairs (NF-ST)** for granting me a fellowship during my PhD studies.

I appreciate the **Quality Control Lab** and **SAIC** at TU for providing the necessary facilities to conduct and analyze my research.

I would like to express my gratitude to the **Central Library** and **Administration** at Tezpur University.

vii

Finally, my special thanks beyond words go to my **family members** for their deep love, patience and unwavering support.

Here I bow my head before all, as words fail in me to disclose my mind to reveal the flood of gratitude in me.

Ultimately, I offer my heartfelt gratitude to **Almighty God** for His divine intervention, blessings, care, and guidance in every aspect of my life, both past and present, and in all future endeavors.

Beatrice Basumatary

# LIST OF TABLES

| Table No.  | Caption                                                          | Page No. |
|------------|------------------------------------------------------------------|----------|
| Table 3.1  | Independent variables and the coded levels of ultrasonication    | 41       |
|            | and High-pressure homogenizer for banana rachis                  |          |
| Table 3.2  | Independent variables and the coded levels of ultrasonication    | 41       |
|            | and High-pressure Homogenizer for pineapple peel                 |          |
| Table 3.3  | Particle size and zeta potential obtained for the independent    | 45       |
|            | variables using ultrasonication                                  |          |
| Table 3.4  | ANOVA of particle size for quadratic model obtained for          |          |
|            | ultrasonication                                                  | 46       |
| Table 3.5  | ANOVA of zeta potential for quadratic model obtained for         | 47       |
|            | ultrasonication                                                  |          |
| Table 3.6  | Optimum conditions, experimental and predicted values            | 50       |
|            | obtained for ultrasonication                                     |          |
| Table 3.7  | Particle size and zeta potential obtained for the independent    | 52       |
|            | variables using high-pressure homogenization                     |          |
| Table 3.8  | ANOVA of particle size for quadratic model for high-pressure     | 53       |
|            | homogenization                                                   |          |
| Table 3.9  | ANOVA of zeta potential for quadratic model for high-            | 54       |
|            | pressure homogenization                                          |          |
| Table 3.10 | Optimum conditions, experimental and predicted value             | 56       |
|            | obtained for high-pressure homogenization                        |          |
| Table 3.11 | Relative crystallinity and $2\theta$ value of banana rachis, its | 61       |
|            | cellulose fibre and nanocellulose                                |          |
| Table 3.12 | Thermal parameters of raw and treated banana rachis obtained     | 64       |
|            | from DSC analysis                                                |          |
| Table 3.13 | Particle size and zeta potential obtained for the independent    | 70       |
|            | variables using ultrasonication                                  |          |
| Table 3.14 | ANOVA of particle size for quadratic model obtained for          | 71       |
|            | ultrasonication                                                  |          |
| Table 3.15 | ANOVA of zeta potential for quadratic model obtained for         | 72       |
|            | ultrasonication                                                  |          |

| Table 3.16 | Optimum conditions, experimental and predicted values                | 74  |
|------------|----------------------------------------------------------------------|-----|
|            | obtained for ultrasonication                                         |     |
| Table 3.17 | Particle size and zeta potential obtained for the independent        | 76  |
|            | variables using ultrasonication                                      |     |
| Table 3.18 | ANOVA of particle size for quadratic model obtained for              | 77  |
|            | high-pressure homogenization                                         |     |
| Table 3.19 | ANOVA of zeta potential for quadratic model obtained for             | 78  |
|            | high-pressure homogenization                                         |     |
| Table 3.20 | Optimum conditions, experimental and predicted values                | 80  |
|            | obtained for high-pressure homogenization                            |     |
| Table 3.21 | Thermal parameters of raw and treated pineapple peel obtained        | 87  |
|            | from DSC analysis                                                    |     |
| Table 3.22 | Component content of banana rachis and pineapple peel                | 91  |
| Table 4.1  | Independent variables and their corresponding coded levels           | 95  |
| Table 4.2  | Experimental runs for the development of Pickering                   | 95  |
|            | nanoemulsion                                                         |     |
| Table 4.3  | Different formulation of $\beta$ -carotene enriched mayonnaise       | 99  |
| Table 4.4  | Responses obtained: Particle size, PDI and Emulsion stability        | 103 |
| Table 4.5. | ANOVA of particle size for Quadratic model                           | 104 |
| Table 4.6  | ANOVA of PDI for Quadratic model                                     | 105 |
| Table 4.7  | ANOVA of emulsion stability for Quadratic model                      | 106 |
| Table 4.8  | Optimum conditions, experimental and predicted values                | 109 |
| Table 4.9  | Colour analysis of functional mayonnaise samples fortified           | 118 |
|            | with encapsulated $\beta$ -carotene over extended storage periods    |     |
| Table 4.10 | Texture analysis of functional mayonnaise samples                    | 123 |
| Table 4.11 | Power law model parameters of mayonnaise samples                     | 126 |
| Table 4.12 | Quantification of identified $\beta$ -carotene in mayonnaise extract | 129 |
| Table 5.1  | Formulations of ice cream                                            | 139 |
| Table 5.2  | The effect of different concentration of banana rachis               | 147 |
|            | nanocellulose (BRNC) on texture profile of Double network            |     |
|            | (DN) hydrogel                                                        |     |
| Table 5.3  | Colour parameters of ice cream                                       | 153 |
| Table 5.4  | Texture parameters of ice cream                                      | 154 |
|            |                                                                      |     |

| Formulations used to develop aerogels and bioactive aerogels         | 169                                                                                                                                                                                                  |
|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Relative crystallinity and $2\theta$ values of control and bioactive | 180                                                                                                                                                                                                  |
| aerogels                                                             |                                                                                                                                                                                                      |
| Density and porosity of control and bioactive aerogels               | 183                                                                                                                                                                                                  |
| Colour change of indicator and TVB-N (mg/100 g of meat),             | 190                                                                                                                                                                                                  |
| pH changes and TVC (log <sub>10</sub> CFU/g) in minced meat during   |                                                                                                                                                                                                      |
| storage                                                              |                                                                                                                                                                                                      |
|                                                                      | aerogels<br>Density and porosity of control and bioactive aerogels<br>Colour change of indicator and TVB-N (mg/100 g of meat),<br>pH changes and TVC (log <sub>10</sub> CFU/g) in minced meat during |

## LIST OF FIGURE

| Figure No. | Caption                                                                                                                                                                                                                                                                                  | Page No. |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Fig. 2.1   | Formation of Pickering emulsion.                                                                                                                                                                                                                                                         | 16       |
| Fig. 2.2   | Diagrammatic representation of (a) the addition of CNF after the                                                                                                                                                                                                                         | 18       |
|            | emulsification process (b) three stabilisation regimes are                                                                                                                                                                                                                               |          |
|            | displayed (c) depletion flocculation of oil droplets in the CNC-                                                                                                                                                                                                                         |          |
|            | stabilized Pickering emulsions.                                                                                                                                                                                                                                                          |          |
| Fig. 3.1   | Sequence of steps followed for nanocellulose isolation.                                                                                                                                                                                                                                  | 44       |
| Fig. 3.2   | Stages of treatment during nanocellulose isolation from banana rachis.                                                                                                                                                                                                                   | 44       |
| Fig. 3.3   | 3D surface graphs of (a, b) particle size and (c, d) zeta potential of nanocellulose obtained by ultrasonication.                                                                                                                                                                        | 49       |
| Fig. 3.4   | Particle size distribution and zeta potential of the nanocellulose obtained by ultrasonication.                                                                                                                                                                                          | 51       |
| Fig. 3.5   | 3D surface graphs of (a, b) particle size and (c, d) zeta potential of nanocellulose obtained by high-pressure homogenization.                                                                                                                                                           | 55       |
| Fig. 3.6   | Particle size distribution and zeta potential of the nanocellulose obtained by high pressure homogenization.                                                                                                                                                                             | 57       |
| Fig. 3.7   | <ul> <li>(a) Images of nanocellulose suspension obtained from banana rachis,</li> <li>(b) Freeze dried nanocellulose,</li> <li>(c) SEM images of cellulose obtained from ultrasonication and</li> <li>(d) SEM images of cellulose obtained from high pressure homogenization.</li> </ul> | 59       |
| Fig. 3.8   | FTIR spectra of powdered banana rachis (BR), cellulose fibre (CF) and nanocellulose (NC) of ultrasonicated samples.                                                                                                                                                                      | 60       |
| Fig. 3.9   | Overlaid powdered X-ray diffraction of ultrasonicated samples.<br>BR, banana rachis; CF, cellulose fibre; and NC, nanocellulose.                                                                                                                                                         | 61       |
| Fig. 3.10  | TGA, and DTG curve of samples. BR, banana rachis; CF, cellulose fibre; and NC, nanocellulose.                                                                                                                                                                                            | 62       |
| Fig. 3.11  | DSC curve of (a) banana rachis powder, (b) cellulose fibre, and (c) nanocellulose.                                                                                                                                                                                                       | 65       |
| Fig. 3.12  | FE-SEM micrographs of the BR, CF, and NC for 10 $\mu$ m (a, b, and c) and 1 $\mu$ m (x, y, and z) scale, respectively.                                                                                                                                                                   | 66       |

| Fig. 3.13  | TEM micrograph of the nanocellulose (NC).                                                                                                                                                                                       | 67  |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Fig. 3.14  | AFM image of the nanocellulose.                                                                                                                                                                                                 | 68  |
| Fig. 3.15  | Stages of treatment during nanocellulose isolation from pineapple peel.                                                                                                                                                         | 69  |
| Fig. 3.16  | 3D surface graphs of (a, b) particle size and (c, d) zeta potential of nanocellulose obtained by ultrasonication.                                                                                                               | 73  |
| Fig. 3.17  | Particle size distribution and zeta potential of the nanocellulose obtained by ultrasonication.                                                                                                                                 | 75  |
| Fig. 3.18  | 3D surface graphs of (a, b) particle size and (c, d) zeta potential of nanocellulose obtained by high-pressure homogenization.                                                                                                  | 79  |
| Fig. 3.19  | Particle size and zeta potential of the nanocellulose obtained by high-pressure homogenization.                                                                                                                                 | 81  |
| Fig. 3.20  | (a) Images of cellulose, (b) nanocellulose obtained from<br>pineapple peel, (c) SEM images of nanocellulose obtained from<br>ultrasonication and (d) SEM images of nanocellulose obtained<br>from high pressure homogenization. | 83  |
| Fig. 3.21  | FTIR spectra of powdered pineapple peel (PP), cellulose fibre (CF) and nanocellulose (NC).                                                                                                                                      | 84  |
| Fig. 3.22  | X- ray diffraction of powdered pineapple peel (PP), cellulose fibre (CF) and nanocellulose (NC).                                                                                                                                | 85  |
| Fig. 3.23. | Thermogravimetric analysis and 1 <sup>ST</sup> derivatives (DTG) of pineapple peel (PP), cellulose fibre (CF) and nanocellulose (NC).                                                                                           | 86  |
| Fig. 3.24  | DSC curve of raw (a) pineapple peel powder, (b) cellulose fibre and (c) nanocellulose.                                                                                                                                          | 88  |
| Fig. 3.25  | TEM micrograph of the nanocellulose (NC).                                                                                                                                                                                       | 89  |
| Fig. 3.26  | AFM image of the nanocellulose (NC).                                                                                                                                                                                            | 90  |
| Fig. 4.1   | 3D surface graphs: (a, b) particle size, (c, d) PDI, and (e-f) emulsion stability.                                                                                                                                              | 108 |
| Fig. 4.2   | Particle size analysis of optimized Pickering nanoemulsion.                                                                                                                                                                     | 110 |
| Fig. 4.3   | Physical stability check of optimized emulsion during storage at 25°C for 35 days.                                                                                                                                              | 111 |
|            |                                                                                                                                                                                                                                 |     |

| Fig. 4.4        | Particle size of optimized Pickering emulsion for a period of 35                 | 112  |
|-----------------|----------------------------------------------------------------------------------|------|
|                 | days.                                                                            |      |
| Fig. 4.5        | Optical microscopy images of Pickering nanoemulsion (PNE)                        | 115  |
|                 | stabilized with nanocellulose in optimized processing                            |      |
|                 | parameters obtained at 7 days interval during storage at RT                      |      |
|                 | (28°C) for 35 days.                                                              |      |
| Fig. 4.6        | Degradation curve of $\beta$ -carotene in ethanol solution (control)             | 116  |
|                 | and in PNEs under UV-light (C is the content of $\beta$ -carotene after          |      |
|                 | storage for a period t against UV light, while $C_0^{}$ is the initial $\beta$ - |      |
|                 | carotene content at preparation of stabilized $\beta$ -carotene-loaded           |      |
|                 | Pickering emulsions).                                                            |      |
| Fig. 4.7        | Appearance of functional mayonnaise enriched with Pickering                      | 119  |
|                 | nanoemulsions loaded with $\beta$ -carotene.                                     |      |
| Fig. 4.8        | Optical microscopic images of mayonnaise enriched with                           | 121  |
|                 | Pickering nanoemulsions loaded with $\beta$ -carotene.                           |      |
| Fig. 4.9        | Amount of hydroperoxides in mayonnaise samples fortified                         | 124  |
|                 | with $\beta$ -carotene during 14 days of storage at 4°C.                         |      |
| Fig. 4.10       | (a): Storage modulus (G') and (b): loss modulus (G") values (in                  | 125  |
|                 | log) against angular frequency of mayonnaise products enriched                   |      |
|                 | with Pickering nanoemulsions loaded with $\beta$ -carotene.                      |      |
| Fig. 4.11       | HPLC chromatograms of $\beta$ -carotene present in mayonnaise                    | 128  |
|                 | samples.                                                                         |      |
| Fig. 4.12       | Intesting linguage mobile of the merconoise complex stabilized                   | 130  |
|                 | Intestinal lipolysis profile of the mayonnaise samples stabilized                |      |
| $E_{12} = 4.12$ | by Pickering nanoemulsions.                                                      | 131  |
| Fig. 4.13       | $\beta$ -carotene bioaccessibility of mayonnaise samples after in-vitro          | 131  |
| F: 51           | digestion.                                                                       | 142  |
| Fig. 5.1        | Appearance of DN hydrogels loaded with different                                 | 143  |
| E: 50           | concentration of banana rachis nanocellulose (BRNC).                             | 145  |
| Fig. 5.2        | Thermogravimetric analysis and 1 <sup>ST</sup> derivatives (DTG) of DN           | 145  |
|                 | hydrogels with different concentration of BRNC.                                  | 1.40 |
| Fig. 5.3        | Water holding capacity (WHC) of DN hydrogels with different                      | 149  |
|                 | concentration of BRNC.                                                           |      |
|                 |                                                                                  |      |

| Fig. 5.4 | Dynamic rheological properties of hydrogels at different                             | 151 |
|----------|--------------------------------------------------------------------------------------|-----|
|          | concentration of banana rachis nanocellulose (BRNC). (A)                             |     |
|          | Storage modulus G', (B) loss modulus G", and (C) tan $\delta$ during                 |     |
|          | the heating process, (D) Storage modulus G', (E) loss modulus                        |     |
|          | G", and (F) tan $\delta$ during the cooling process.                                 |     |
| Fig. 5.5 | Images of ice creams incorporated with $\beta$ -carotene-enriched                    | 152 |
|          | hydrogels.                                                                           |     |
| Fig. 5.6 | Overrun, gas-hold up, and meltdown of ice creams. Different                          | 156 |
|          | letters indicate significant differences between samples at p $<$                    |     |
|          | 0.05.                                                                                |     |
| Fig. 5.7 | (A) Shear stress, (B) Apparent viscosity, (C) Storage modulus                        | 159 |
|          | (G'), (D) Loss modulus (G''), and (E) Tan $\delta$ of ice creams.                    |     |
| Fig. 5.8 | Free fatty acids release during digestion of ice cream.                              | 161 |
| Fig. 5.9 | Bioaccessibility of $\beta$ -carotene in ice creams.                                 | 162 |
| Fig. 6.1 | Image of the (a) raw butterfly pea flower (b) Freeze dried, and                      | 173 |
|          | (c) Powder form of flower.                                                           |     |
| Fig. 6.2 | Chromatogram of the butterfly pea flower extract detected at                         | 174 |
|          | 330 nm. Peak 1, Delphinidin-3-rutinoside; peak 2, Cynadin-3-                         |     |
|          | rutinoside; and peak 3, Pelargonidin-3-rutinoside.                                   |     |
| Fig. 6.3 | Chromatogram of the butterfly pea flower extract detected at                         | 175 |
|          | 330 nm. Peak no. 1,2,3, not yet identified; 4: Gallic acid; 5:                       |     |
|          | Chlorogenic acid; 6: Caffeic acid; 7: <i>p</i> -Coumaric acid.                       |     |
| Fig. 6.4 | Image of aerogels prepared with (a) PVA, (b) PVA/CF, (c)                             | 176 |
|          | PVA/CF/NC, (d) PVA/BPFE, (e) PVA/CF/BPFE, and (f)                                    |     |
|          | PVA/CF/NC/BPFE before freeze drying.                                                 |     |
| Fig. 6.5 | Morphology of aerogels made with (a) PVA, (b) PVA+CF, (c)                            | 177 |
|          | PVA+CF+NC, (d) PVA+BPFE, (e) PVA+CF+BPFE, and (f)                                    |     |
|          | PVA+CF+NC+BPFE. PVA: polyvinyl alcohol; CF: cellulose                                |     |
|          | fibre; NC: nanocellulose; BPFE: Butterfly pea flower extract.                        |     |
| Fig. 6.6 | (a) FT-IR spectra of the bioactive and non-bioactive aerogels,                       | 179 |
|          | (b) expansion of the zone between $1800 \text{ cm}^{-1}$ and $600 \text{ cm}^{-1}$ . |     |
| Fig. 6.7 | Overlaid powdered XRD pattern of aerogels with and without                           | 181 |
|          | BPFE. BPFE: butterfly pea flower extract.                                            |     |

| Fig. 6.8  | (a) Thermal analysis (TGA), and (b) its first derivatives (DTG)   | 182 |
|-----------|-------------------------------------------------------------------|-----|
|           | of the aerogels with and without BPFE. BPFE: butterfly pea        |     |
|           | flower extract.                                                   |     |
| Fig. 6.9  | Water absorption by aerogels made of PVA, PVA+CF, and             | 184 |
|           | PVA+CF+NC.                                                        |     |
| Fig. 6.10 | BPFE's and a bioactive aerogels' antioxidant properties. The      | 185 |
|           | data here at are presented as the mean $(n=3)$ , and the standard |     |
|           | deviation is shown by the bars in the columns. Significant        |     |
|           | differences between values in a column for each letter (p<0.05).  |     |
| Fig. 6.11 | In-vitro release of BPFE from aerogels under (a) hydrophilic      | 187 |
|           | and (b) hydrophobic food simulation conditions.                   |     |
| Fig. 6.12 | Colour change response of butterfly pea flower (BPF) solution     | 188 |
|           | and BPF based aerogels at pH 3, 5, 7, 9 and 10.                   |     |
| Fig. 6.13 | (A) Reversibility of the BPF-based aerogels to ammonia and        | 189 |
|           | acetic acid vapours and (B) Apparent colour change of BPF-        |     |
|           | based aerogel in minced meat during storage at 4°C.               |     |
|           |                                                                   |     |

# LIST OF ABBREVIATIONS

| Abbreviations | Full Form                                   |
|---------------|---------------------------------------------|
| ENM           | Engineered Nanomaterial                     |
| BC            | Bacterial Nanocellulose                     |
| BR            | Banana Rachis                               |
| PP            | Pineapple Peel                              |
| CF            | Cellulose Fibre                             |
| CNCs          | Cellulose Nanocrystals                      |
| CNFs          | Cellulose Nanofibrils                       |
| NC            | Nanocellulose                               |
| PNE           | Pickering Nanoemulsions                     |
| BRNC          | Banana Rachis Nanocellulose                 |
| HPH           | High-Pressure Homogenisation                |
| XRD           | X-Ray Diffraction                           |
| TEM           | Transmission Electron Microscopy            |
| FESEM         | Field Emission Scanning Electron Microscopy |
| SEM           | Scanning Electron Microscopy                |
| AFM           | Atomic Force Microscopy                     |
| UV-Vis        | UV-Visible Spectroscopy                     |
| FTIR          | Fourier-Transform Infrared Spectroscopy     |
| TGA           | Thermogravimetric Analysis                  |
| DSC           | Differential Scanning Calorimetry           |
| DLS           | Dynamic Light Scattering                    |
| GIT           | Gastrointestinal System                     |
| NEs           | Nanoemulsions                               |
| PUFAs         | Polyunsaturated Fatty Acids                 |
| SPI           | Soy Protein Isolate                         |
| DTG           | Derivative Thermogravimetric                |
| ANOVA         | Analysis Of Variance                        |
| US            | Ultrasonication                             |
| PDI           | Poly dispersibility Index                   |
| BBD           | Box-Behnken Design                          |

| RSM     | Response Surface Methodology           |
|---------|----------------------------------------|
| RP-HPLC | Reverse Phase- High Performance Liquid |
|         | Chromatography                         |
| SGF     | Simulated Gastric Fluid                |
| SIF     | Simulated Intestinal Fluid             |
| DN      | Double Network                         |
| WHC     | Water Holding Capacity                 |
| TVB-N   | Total Volatile Bases-Nitrogen          |
| BPFE    | Butterfly Pea Flower Extract           |
| PVA     | Polyvinyl Alcohol                      |
| TVC     | Total Viable Count                     |

## LIST OF SYMBOLS

| Symbols    | Full form                        |
|------------|----------------------------------|
| Aa         | Amorphous Region                 |
| Ac         | Crystalline Region               |
| nm         | Nanometer                        |
| mg         | Milligram                        |
| °C         | Degree Celsius                   |
| g          | Grams                            |
| h          | Hours                            |
| Kg         | Kilograms                        |
| КОН        | Potassium Hydroxide              |
| L          | Litre                            |
| mL<br>m    | Milli litre<br>Mass              |
| min        | Minutes                          |
| sec        | Seconds                          |
| t          | Time                             |
| Т          | Temperature                      |
| V          | Volume                           |
| W          | Watt                             |
| μg         | Micro Gram (10 <sup>-6</sup> kg) |
| То         | Onset Temperature                |
| Тр         | Peak Temperature                 |
| Tc         | Conclusion Temperature           |
| $\Delta H$ | Enthalpy                         |
| kV         | Kilo Volt                        |
| cu         | Copper                           |
| mV         | Milli Volt                       |
| %          | Percentage                       |
| Ζ          | Coded Levels                     |
| $Z_0$      | Actual Levels                    |
| $\Delta Z$ | Step Change                      |
| Zc         | Actual Value at Central Point    |

| D2                        | Determination Coefficient                    |
|---------------------------|----------------------------------------------|
| R <sup>2</sup>            | Determination Coefficient                    |
| cm <sup>-1</sup>          | Per Centimetre                               |
| θ                         | Theta                                        |
| J/g                       | Joule Per Gram                               |
| b*                        | Yellowness                                   |
| a*                        | Redness                                      |
| L*                        | Lightness                                    |
| V <sub>NaOH</sub>         | Volume of NaoH                               |
| $C_{\text{NaOH}}$         | Concentration of NaoH                        |
| М                         | Molecular Weight of Oil                      |
| rpm                       | Revolutions Per Minute                       |
| RT                        | Room Temperature                             |
| С                         | Content Of B-Carotene After Storage          |
| C <sub>0</sub>            | Initial B-Carotene Content                   |
| G'                        | Storage Modulus                              |
| G"                        | Loss Modulus                                 |
| Κ                         | Consistency Index                            |
| n                         | Flow Behaviour Index                         |
| $\mathbf{W}_{\mathrm{b}}$ | Weight of the Centrifuge Tube Before         |
|                           | Centrifugation                               |
| W <sub>c</sub>            | Weight of the Empty Centrifuge Tube          |
| Wa                        | Weight ff the Centrifuge Tube After Blotting |
|                           | off the Residual Water                       |
| tan δ                     | Phase Angle                                  |
| Pa                        | Pascal                                       |
| ΔΕ                        | Overall Colour Difference                    |
| g.s                       | Gram Sec                                     |
| $\mathbf{W}_{d}$          | Weight of the Dried Sample                   |
| Ws                        | Weight of the Swollen Aerogels               |
| Wa                        | Aerogels' Weight in Grams                    |
| ρc                        | Density of Cellulose                         |
| ABS                       | Absorbance                                   |