Dedicated to my Maa, Baba and Dipul

### **DECLARATION BY THE CANDIDATE**

I hereby declare that the thesis entitled "Studies on the anti-cancer potential of crude and a purified protein from *Naja kaouthia* venom of North East India origin" submitted to School of Sciences, Tezpur University, in part fulfilment for the award of the degree of **Doctor of Philosophy** in the Department of Molecular Biology and Biotechnology, is a record of original research work carried out by me. Further, I declare that no part of this thesis has been reproduced elsewhere for award of any other degree.

Date: 08 04 25

**Place: Tezpur** 

Mandina Basumatary Mandira Basumatary

Registration No.: TZ201102 of 2019



## **TEZPUR UNIVERSITY**

(A Central University established by an Act of Parliament in 1994) Department of Molecular Biology and Biotechnology Napaam, Tezpur- 784028, Assam, India

Dr. Robin Doley, Ph.D Professor Department of Molecular Biology and Biotechnology

**Ph. No.** 03712-275412(O) **E-mail:** <u>doley@tezu.ernet.in</u>

#### **CERTIFICATE OF THE PRINCIPAL SUPERVISOR**

This is to certify that the thesis entitled "Studies on the anti-cancer potential of crude and a purified protein from *Naja kaouthia* venom of North East India origin" submitted to the School of Sciences, Tezpur University in part fulfilment for the award of the degree of Doctor of Philosophy in Molecular Biology and Biotechnology is a record of original research work carried out by Ms. Mandira Basumatary under my supervision and guidance.

All help received by her from various sources have been duly acknowledged. No part of this thesis has been submitted elsewhere for award of any other degree.

Place: Tezpur Date: 🍕 ५/२०२५

(Dr. Robin Doley) Principal Supervisor



**TEZPUR UNIVERSITY** 

(A Central University established by an Act of Parliament in 1994) Department of Molecular Biology and Biotechnology Napaam, Tezpur- 784028, Assam, India

Dr. Rupak Mukhopadhyay, Ph.D Associate Professor Department of Molecular Biology and Biotechnology

Ph. No. 03712-275417(O) E-mail: <u>mrupak@tezu.ernet.in</u>

### **CERTIFICATE OF THE CO-SUPERVISOR**

This is to certify that the thesis entitled "Studies on the anti-cancer potential of crude and a purified protein from *Naja kaouthia* venom of North East India origin" submitted to the School of Sciences, Tezpur University in part fulfilment for the award of the degree of Doctor of Philosophy in Molecular Biology and Biotechnology is a record of original research work carried out by Ms. Mandira Basumatary under my supervision and guidance.

All help received by her from various sources have been duly acknowledged. No part of this thesis has been submitted elsewhere for award of any other degree.

Place: Tezpur Date: 08/04/25

Rupan hongy

(Dr. Rupak Mukhopadhyay) Co-Supervisor

#### ACKNOWLEDGEMENT

I would like to express my deepest gratitude and sincere appreciation to my Ph.D Supervisor Prof. Robin Doley, for his mentorship, unwavering support, insightful feedback and encouragement throughout my doctoral journey. His attention to detail and dedication for research have profoundly impacted my professional growth. This journey would not have been completed without his support.

I would like to express my profound gratitude and heartfelt appreciation to my Co-Supervisor Dr. Rupak Mukhopadhyay for his constant support, expert guidance and motivation during my Ph.D tenure.

I am grateful to both of my supervisors for providing me the opportunity to grow and improve my skills through the experiences in the lab and their guidance in every step of the way have shaped my academic path.

I extend my sincere gratitude to the Hon'ble Vice-Chancellor, Pro-Vice Chancellor and Controller of Examinations for providing the academic support, necessary facilities and infrastructure for research.

I would like to thank my respected Doctoral Committee members Prof. Manabendra Mandal and Dr. Suman Dasgupta for their constructive feedback, suggestions and support during my PhD tenure.

I would like to thank Prof. Bolin K. Konwar for his valuable suggestions and academic support during my Ph.D tenure.

I am grateful to the Head of the Department of MBBT and all the faculty members for providing their help, guidance and support in the department.

I am thankful to the non-teaching staff (Samar da, Mudoi da, Guno da, Bijoy da) of the department for their kind help and support.

I am thankful to University Grants Commission (UGC) for providing financial support through JRF and SRF.

I am deeply thankful to my lab senior Dr. Archana, labmates and friends Dr. Rafika, Dr. Susmita, Dr. Manoj and Dr. Arpita for sharing their knowledge and expertise, and also for providing moral support during my tough times in the journey of PhD.

I am also thankful to my other labmates from RD and RM Labs: Jyotirmoy, Mahari, Pushpa, Anupam, Rituraj, Plabita, Nyumpi, Shristi and Manish for their moral support and co-operation in the lab.

I am thankful to receive constant support and company from my dear friends (Minakshi, Adity, Honey, Nitisha, Hirak, Chourajit, Binu, Anutee, Shreaya, Saswati, Panchali), Ph.D batchmates (Muzamil, Drema, Sairem, Mimi, Kritartha, Manpreet) for providing good memories in the campus and all other seniors including Monoj da, Pitambar da, Anindita di, Sayani ba and juniors from the department for their support and encouragement.

I am also beyond grateful to receive constant encouragement from my school friends Phulmani and Sunita and my college mates Upasana and Rangoli. I would also like to acknowledge my labmate Amit for his kind support in times of need during my Ph.D journey.

I am deeply indebted to my family: Maa (Mrs. Pratima Basumatary) and Baba (Mr. Suman Basumatary) for their constant encouragement, selfless sacrifices and heartfelt blessings, and my dear brother Dipanjoy Basumatary for his support and care. I thank them for believing in me and inspiring and giving me the freedom to follow my dreams. I also thank my cousin sister Dwiji for providing me endless love and encouragement.

Finally, I would like to thank the Almighty God and my spiritual Guru (Krishna Guru) for their divine blessings without which this journey would not have been possible.

-Mandira Basumatary

# **List of Figures**

| Figure No. | Figure name                                                                 | Page No. |
|------------|-----------------------------------------------------------------------------|----------|
|            | Chapter 1                                                                   |          |
| Figure 1.1 | Global burden of different cancer types in terms of Incidence and           | 6        |
|            | Mortality.                                                                  |          |
| Figure 1.2 | Incidence of different cancer types among males and females in India.       | 7        |
| Figure 1.3 | Hallmarks of Cancer.                                                        | 8        |
| Figure 1.4 | Animal venoms studied for their anticancer potential.                       | 14       |
| Figure 1.5 | Work flow of research objectives.                                           | 17       |
|            | Chapter 2                                                                   |          |
| Figure 2.1 | Actions triggered by snake toxins which leads to anticancer activity.       | 36       |
| Figure 2.2 | Photographs of Naja kaouthia.                                               | 37       |
| Figure 2.3 | Distribution map of Naja kaouthia: A. Distribution in Asia; B. Distribution | 38       |
|            | in India.                                                                   |          |
| Figure 2.4 | Venom protein families reported from Naja kaouthia and Naja naja from       | 41       |
|            | different locations of India.                                               |          |
|            | Chapter 3                                                                   |          |
| Figure 3.1 | SDS-PAGE (12.5%) of Naja kaouthia crude venom.                              | 51       |
| Figure 3.2 | PLA2 activity of crude Naja kaouthia venom from North-East India            | 52       |
|            | estimated using turbidometric method.                                       |          |
| Figure 3.3 | Recalcification Time of crude Naja kaouthia venom from North-East           | 53       |
|            | India.                                                                      |          |
| Figure 3.4 | Activated Partial Thromoplastin Time of crude Naja kaouthia venom from      | 53       |
|            | North-East India.                                                           |          |
| Figure 3.5 | Prothrombin Time of crude Naja kaouthia venom from North-East India.        | 54       |
| Figure 3.6 | Direct hemolytic activity of crude Naja kaouthia venom from North-East      | 54       |
| C          | India.                                                                      |          |
| Figure 3.7 | Indirect hemolytic activity of crude Naja kaouthia venom from North-East    | 55       |
|            | India.                                                                      |          |
| Figure 3.8 | Cytotoxic effects of crude Naja kaouthia venom on cancer and normal cell    | 56       |
|            | lines.                                                                      |          |

#### Chapter 4

| Figure 4.1               | Fractionation of crude <i>Naja kaouthia</i> venom using Reverse phase high performance liquid chromatography (RP-HPLC).                                                                                                                                                       | 67       |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Figure 4.2<br>Figure 4.3 | <ul><li>SDS-PAGE (12.5%) of RP-HPLC peaks.</li><li>Screening of the collected RP-HPLC fractions/peaks for cytotoxic effects against breast cancer a) MCF-7, b) MDA-MB-231, lung cancer c) A549,</li><li>d) NCI-H522 and normal kidney e) HEK-293T cell lines.</li></ul>       | 68<br>69 |
| Figure 4.4               | Re-chromatography of RP-HPLC fraction P9                                                                                                                                                                                                                                      | 70       |
| Figure 4.5               | Assembled sequence of identified peptides obtained from the LC-MS/MS analysis.                                                                                                                                                                                                | 72       |
| Figure 4.6               | Results of NCBI-BLASTp.                                                                                                                                                                                                                                                       | 73       |
| Figure 4.7               | Pairwise sequence alignment of Cytotoxin 10 from <i>Naja kaouthia</i> venom with their homologous protein using NCBI BLASTp.                                                                                                                                                  | 73       |
| Figure 4.8               | Multiple Sequence Alignment of Cytotoxin 10 with other known Cytotoxins from <i>Naja kaouthia</i> venom and Cytotoxin 10 from other <i>Naja</i> species.                                                                                                                      | 74       |
| Figure 4.9               | Phylogenetic tree analysis                                                                                                                                                                                                                                                    | 75       |
| Figure 4.10              | SDS-PAGE (12.5%) of RP-HPLC peak P9 and re-chromatography peak of P9 (RP9)                                                                                                                                                                                                    | 76       |
| Figure 4.11              | <i>In-silico</i> study of Cytotoxin 10: a) Tertiary structure of Cytotoxin 10. b) Structure validation-Ramachandran plot of Cytotoxin 10.                                                                                                                                     | 77       |
| Figure 4.12              | Comparative analysis of predicted structure of Cytotoxin 10. a) Ribbon model of Cytotoxin 10 from <i>Naja kaouthia</i> venom. b) Overlay of ribbon models of Cytotoxin 10 exhibiting structural similarity with the NMR-structure of 3FTxs from other <i>Naja</i> sp. venoms. | 78       |
| Figure 4.13              | Cell viability in response to treatment of cancer and normal cell lines with Cytotoxin 10 protein of <i>Naja kaouthia</i> venom quantified by MTT Assay.                                                                                                                      | 79       |
| Chapter 5                |                                                                                                                                                                                                                                                                               |          |
| Figure 5.1               | Brightfield images of a) MCF-7, b) MDA-MB-231, c) A549 and d) NCI-<br>H522 after 24 and 48 hours of incubation with Cytotoxin 10 showing<br>distinct morphological changes.                                                                                                   | 91-92    |

| Figure 5.2 | Dual Acridine Orange/Ethidium Bromide (AO/EtBr) staining of cancer               | 93      |
|------------|----------------------------------------------------------------------------------|---------|
|            | cells visualized under a fluorescent microscope to check induction of            |         |
|            | apoptosis by Cytotoxin 10.                                                       |         |
| Figure 5.3 | Flow cytometric analysis to understand the Cytotoxin 10-mediated cell            | 94      |
|            | death in breast (MCF-7) and lung (A549) cancer cell lines.                       |         |
| Figure 5.4 | Western blot analysis of lysates from a) MCF-7 and b) A549 cells in              | 95      |
|            | response to <i>in vitro</i> treatment with Cytotoxin 10 (3µg/ml, 6µg/ml, 9µg/ml) |         |
|            | for 24 hours.                                                                    |         |
| Figure 5.5 | The effects of Cytotoxin 10 on migration and adhesion of breast (MCF-7)          | 97      |
|            | and lung (A549) cancer cells.                                                    |         |
| Figure 5.6 | In silico interaction studies of active site of apoptotic proteins with          | 99-100  |
|            | Cytotoxin 10 compared to their corresponding known inhibitor obtained            |         |
|            | from HADDOCK server.                                                             |         |
| Figure 5.7 | In silico interaction studies of active site of apoptotic proteins with          | 102-103 |
|            | Cytotoxin 10 compared to their corresponding known inhibitor obtained            |         |
|            | from HDOCK server.                                                               |         |
| Figure 5.8 | Proposed mechanism of apoptotic cell death induced by Cytotoxin 10.              | 109     |

## **List of Tables**

| Table no. | Table name                                                                                                                            | Page No. |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------|----------|
|           | Chapter 2                                                                                                                             |          |
| Table 2.1 | Enzymatic and non-enzymatic components of snake venom toxins.                                                                         | 29       |
| Table 2.2 | Protein/protein complex with cytotoxic activity from snake venoms.                                                                    | 31       |
|           | Chapter 3                                                                                                                             |          |
| Table 3.1 | Calculated $IC_{50}$ values of <i>Naja kaouthia</i> crude venom and purified Cytotoxin 10 against all experimental cell lines.        | 57       |
|           | Chapter 4                                                                                                                             |          |
| Table 4.1 | Summary of peptides/proteins obtained from LC-MS/MS analysis of Peak P9 of <i>Naja kaouthia</i> venom (North-East India).             | 71       |
| Table 4.2 | Calculated IC <sub>50</sub> values of <i>Naja kaouthia</i> crude venom and purified Cytotoxin 10 against all experimental cell lines. | 80       |
|           | Chapter 5                                                                                                                             |          |
| Table 5.1 | Interaction of Cytotoxin 10 and target proteins and target proteins with their inhibitors obtained from HADDOCK and HDOCK servers.    | 104      |

# List of Symbols and Abbreviations

| %      | Percentage                                         |
|--------|----------------------------------------------------|
| <      | Lesser Than                                        |
| $\leq$ | Lesser Than Equal To                               |
| >      | Greater Than                                       |
| 2      | Greater Than Equal To                              |
| =      | Equals to                                          |
| Å      | Angstrom                                           |
| °C     | Degree Celsius                                     |
| ®      | Registered                                         |
| ТМ     | Trademark                                          |
| μ      | Micron                                             |
| μg     | Microgram                                          |
| μl     | Microlitre                                         |
| μΜ     | Micromolar                                         |
| ml     | Millilitre                                         |
| 3FTx   | Three-Finger Protein                               |
| AChE   | Acetylcholine Esterase                             |
| ADME   | Absorption, Distribution, Metabolism and Excretion |
| AI     | Artificial Intelligence                            |
| АМРК   | Adenosine Monophosphate Protein Kinase             |
| ANOVA  | Analysis of Variance                               |
| AO     | Acridine Orange                                    |
| AP-1   | Activator Protein-1                                |
| APTT   | Activated Partial Thromboplastin Time              |
| Apaf-1 | Apoptosis Protease Activating Factor-1             |
| APS    | Ammonium Per Sulfate                               |
| ATCC   | American Type Culture Collection                   |
| ATP    | Adenosine Triphosphate                             |
| BC     | Before Christ                                      |
| Bcl-2  | B-cell Lymphoma 2                                  |
| Bid    | BH3 Interacting-Domain                             |
| BLAST  | Basic Local Alignment Search Tool                  |
| BSA    | Bovine Serum Albumin                               |
| CADD   | Computer Aided Drug Design                         |
|        |                                                    |

| CASTp    | Computed Atlas of Surface Topography of Proteins |
|----------|--------------------------------------------------|
| c-IAP    | Cellular Inhibitor of Apoptosis Protein          |
| CIN      | Chromosomal Instability                          |
| CN       | Contorstatin                                     |
| CRiSP    | Cysteine-Rich Secretory Protein                  |
| CTC      | Circulating Tumor Cells                          |
| CTL      | C-type Lectins                                   |
| CTX      | Cardiotoxin                                      |
| CVF      | Cobra Venom Factor                               |
| CYPD     | Cyclophilin D                                    |
| DLF      | Direct Lytic Factor                              |
| DMEM     | Dulbecco's Modified Eagle Medium                 |
| DMSO     | Dimethyl Sulfoxide                               |
| DNA      | Deoxyribonucleic Acid                            |
| DNM-1    | Dynamin-1                                        |
| DR       | Death Receptor                                   |
| DTC      | Disseminative Tumor Cells                        |
| EAC      | Ehrlich Ascites Carcinoma                        |
| ECL      | Enhanced Chemiluminescence                       |
| ECM      | Extracellular Matrix                             |
| EGFR     | Epidermal Growth Factor Receptor                 |
| EMT      | Epithelial-Mesenchymal Transition                |
| ESI      | Electrospray Ionization                          |
| EtBr     | Ethidium Bromide                                 |
| FADD     | Fas-Associated Death Domain                      |
| FACS     | Fluorescence-Activated Cell Sorting              |
| FBS      | Fetal Bovine Serum                               |
| FPLC     | Fast-Protein Liquid Chromatography               |
| GLOBOCAN | Global Cancer Observatory                        |
| GLUT1    | Glucose Transporter 1                            |
| GMQE     | Global Model Quality Estimate                    |
| GNP      | Gold Nanoparticle                                |
| HPLC     | High-Performance Liquid Chromatography           |
| HSP      | Heat-Shock Protein                               |
|          |                                                  |

| HtrA2            | High Temperature Requirement A2                              |
|------------------|--------------------------------------------------------------|
| i.p              | Intraperitoneal                                              |
| IUCN             | International Union for Conservation of Nature               |
| JNK              | c-Jun N-terminal Kinase                                      |
| kDa              | kilo Dalton                                                  |
| KSPI             | Kunitz-type Serine Protease Inhibitor                        |
| LAAO             | L-Amino Acid Oxidase                                         |
| LC               | Least Concern                                                |
| LC-MS/MS         | Liquid Chromatography-tandem Mass Spectrometry               |
| LD <sub>50</sub> | Median Lethal Dose                                           |
| LTX              | Long Neurotoxin                                              |
| МАРК             | Mitogen-Activated Protein Kinase                             |
| MDR              | Multi-Drug Resistance                                        |
| MDSC             | Myeloid-derived Suppressor Cells                             |
| MMP              | Matrix Metalloprotease                                       |
| mRNA             | Messenger RNA                                                |
| miRNA            | Micro RNA                                                    |
| МКК              | Mitogen-activated protein Kinase Kinase                      |
| MLKL             | Mixed-Lineage Kinase-domain Like                             |
| MPT              | Mitochondrial Permeability Transition                        |
| MTLP             | Muscarinic Toxin-like Protein                                |
| MTT              | 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide |
| nAChR            | nicotinic Acetylcholine Receptor                             |
| NCBI             | National Center for Biotechnology Information                |
| NCCS             | National Centre for Cell Science                             |
| NCT              | Normal Clotting Time                                         |
| NF-κB            | Nuclear Factor-KB                                            |
| NK               | Natural Killer                                               |
| ns               | Not Significant                                              |
| NSA              | Non-Swiss Albino                                             |
| O.D              | Optical Density                                              |
| OVACAR           | Ovarian Carcinoma                                            |
| PARP             | Poly (ADP-ribose) Polymerase                                 |
| РаТи             | Pancreatic Tumor                                             |
| PBS              | Phosphate Buffer Saline                                      |
| PDB              | Protein Data Bank                                            |
|                  |                                                              |

| PDE              | Phosphodiesterase                                         |
|------------------|-----------------------------------------------------------|
| PI               | Propidium Iodide                                          |
| PI3K             | Phosphoinositide 3-Kinase                                 |
| PLA <sub>2</sub> | Phospholipase A <sub>2</sub>                              |
| PP2A             | Protein Phosphatase 2A                                    |
| PPP              | Platelet-Poor Plasma                                      |
| PT               | Prothrombin Time                                          |
| PTPC             | Permeability Transition Pore Complex                      |
| PVDF             | Polyvinylidene fluoride                                   |
| RB               | Retinoblastoma                                            |
| RBC              | Red Blood Cells                                           |
| RCD              | Regulated Cell Death                                      |
| RIP              | Receptor Interacting Protein                              |
| RNA              | Ribonucleic Acid                                          |
| ROS              | Reactive Oxygen Species                                   |
| RP-HPLC          | Reverse Phase-High Performance Liquid Chromatography      |
| RT               | Recalcification Time                                      |
| TFA              | Trifluoroacetic Acid                                      |
| TNF              | Tumor Necrosis Factor                                     |
| TNFR             | Tumor Necrosis Factor Receptor                            |
| TRADD            | TNF-Associated Death Domain                               |
| USA              | United States America                                     |
| VEGF             | Vascular Endothelial Growth Factor                        |
| VEGFR-1-3        | Vascular Endothelial Growth Factor Receptor-1-3           |
| VNGF             | Vascular Nerve Growth Factor                              |
| SDS-PAGE         | Sodium-Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis |
| SEM              | Scanning Electron Microscope                              |
| SNTX             | Short Neurotoxins                                         |
| STAT3            | Signal Transducer and Activator of Transcription 3        |
| SVMP             | Snake Venom Metalloprotease                               |
| SVSP             | Snake Venom Serine Protease                               |
| TEMED            | N,N,N'N'-Tetramethylethylenediamine                       |
|                  |                                                           |

| TGF-β  | Tumor Growth Factor-β                      |
|--------|--------------------------------------------|
| TP53   | Tumor protein 53                           |
| TSG    | Tumor Suppressor Gene                      |
| TSP-1  | Thrombospondin-1                           |
| US FDA | United States Food and Drug Administration |
| WBC    | White Blood Corpuscles                     |
| WHO    | World Health Organization                  |
| WTX    | Weak Toxin                                 |
| XIAP   | X-linked Inhibitor of Apoptosis Protein    |
|        |                                            |