
“Physicists have come to realize that mathematics,

when used with sufficient care, is a proven pathway

to truth.”

— Brian Greene

CHAPTER 2
BK EQUATION AND ITS

ANALYTICAL SOLUTION

In this chapter, we study the Balitsky-Kovchegov (BK) evolution equation, which

is a very important nonlinear parton evolution equation at small-x. We present

an approximate analytical solution of the BK equation using a method called the

homotopy perturbation method (HPM). Based on the obtained solution, we extract

the gluon saturation momentum and compare it with the numerical analysis of the

BK equation. The solution presented in this chapter follows published work, “An

analytical solution of Balitsky-Kovchegov equation using homotopy perturbation

method”, International Journal of Modern Physics A 37 (31n32) (2022): 2250190.

2.1 Introduction

The QCD evolution equations are a valuable tool in high-energy physics phenomenol-

ogy, detailing the progression of parton distribution functions (PDFs) within a nuclear

medium. The evolution of PDFs with respect to x and Q2 can be analyzed under

various limits of QCD. At sufficiently large scales where Q2 >> Λ2
QCD, the Q2

evolutions can be obtained from the DGLAP evolution equation utilizing perturbative
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QCD. Conversely, at small-x, indicative of a high energy limit, the evolution in x

is characterized by the BFKL evolution equation [1, 2].When the center of mass

energy in a collision significantly exceeds the fixed hard scale (for instance, in deep

inelastic scattering (DIS), where the photon virtuality represents the hard scale and

s >> Q2), parton densities augment with increasing energy. As collision energy

escalates, parton densities correspondingly increase with rising energy levels. HERA

data confirms a significant increase in gluon density at small-x. As energy escalates,

the gluon density increases more rapidly at small-x, resulting in an exponential

development of the total cross-section with energy. The rapid growth of gluons must

be moderated to maintain the unitarity constraint on the total cross-section, as estab-

lished by Froissart and Martin [3]. Consequently, at exceedingly high energies, the

BFKL equation contravenes the Froissart-Martin bound; therefore, its applicability

is constrained. This equation is not applicable at too high energies.

To address the above problems faced by the BFKL equation, we need to look for

solutions to the related problems. The solution is that at high energy and small-x,

partons themselves start to recombine and get saturated. The first idea of parton-

parton recombination was addressed in Ref. [4–8]. Some analytical solutions of

nonlinear QCD evolution equations incorporating parton-parton recombination can

be found in Ref. [9–12]. The parton-parton recombination will tame down the

gluon density in the high gluon density region of the scattering process. The BFKL

equation, being linear, could not address this nonlinear effect of parton recombination

and saturation and hence was unable to explain underlying physics at high-density

QCD. It is imperative to understand the implicit physics in saturation regions of

partons at small-x. In this region, nonlinear QCD evolution equations come into

play, which helps in understanding the physics in that region. Therefore, to describe

the parton-parton recombination and saturation effect, the linear evolution equations

have to be replaced by the nonlinear QCD evolution equations. The nonlinear
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evolution equations have important features dealing with the saturation effect. They

contain damping terms that reflect the saturation effect arising out of parton-parton

recombination. So, studying nonlinear QCD evolution equations and their solutions

is crucial for phenomenological studies.

The JIMWLK (Jalilian-Marian-Iancu-McLerran-Weigert-Leonidov-Kovner)

equation [13–16] permits gluon saturation in a high gluon density region. The

JIMWLK equation addresses the nonlinear correction using the Wilson renormaliza-

tion group approach. Nevertheless, it is complicated to solve the JIMWLK equation

because of its complex nature. Instead, its mean-field approximation BK equa-

tion [17–20] has been widely used in the context of the saturation effect. Because of

its simple nature, the BK equation can be solved numerically. However, it is tough

to solve the BK equation using general methods. It is an integrodifferential equation

in coordinate space that can be transformed into momentum space, resulting in a

partial differential equation. Resolving the BK equation in momentum space is

advantageous for phenomenological analyses related to several high-energy hadron

scattering investigations. Notwithstanding many numerical investigations, a precise

analytical solution to this problem continues to be unattainable owing to its intricate

character.

This chapter presents an analytical solution to the BK equation using the ho-

motopy perturbation method (HPM) in relation to the FKPP (Fisher-Kolmogorov-

Petrovsky-Piscounov) equation. The FKPP equation is a partial differential equation

classified as a reaction-diffusion equation in statistical physics. The small-x geo-

metric scaling phenomenon observed at HERA can be associated with the traveling

wave solution of the FKPP equation [25]. The seminal research in Ref. [26–28]

demonstrates that the BK equation in momentum space may be converted into the

FKPP equation through a variable transformation [26–28]. The transition of the

scattering amplitude into the saturation zone resembles the creation of the front of
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the traveling wave in the FKPP equation [26]. The BK evolution equation and its

solution may prove beneficial for subsequent phenomenological investigations in the

context of current and forthcoming accelerator facilities.

The chapter is organized as follows: Section 2.2 provides a concise overview of

the BK equation. An overview of the HPM is provided in Section 2.3. An analytical

solution to the BK equation utilizing the HPM is shown in Section 2.4. We graph

the scattering amplitude derived from the analytical solution of the BK equation at

different rapidities and compare it with the scattering amplitude obtained numerically.

Additionally, we derive the saturation momentum from the acquired solution and

compare it with the numerical analysis of the BK equation. Section 2.5 is dedicated

to the discussion and summary of the chapter.

2.2 BK Equation

The BK equation is formulated by I. Balitsky within the context of the effective theory

of high-energy interactions and, independently, by Y. V. Kovchegov utilizing the

color dipole model formalism. The BK equation pertains to the energy dependence

of scattering amplitude; it is frequently advantageous to conduct analyses inside the

pQCD dipole framework of DIS. [29–32]. For clarity, we examine deep inelastic

scattering of a virtual photon on a hadron or nucleus. In the dipole model, the

system is analyzed from the reference frame of the target, whereby the hadron

or nucleus remains stationary. Consequently, all QCD evolution is encompassed

inside the wave function of the incident photon. The primary benefit of the dipole

model of DIS is the decomposition of the scattering process into multiple stages.

In the dipole model, an incoming virtual photon, upon fluctuation, transforms into

a quark-antiquark dipole. The quark-antiquark pair subsequently interacts with

the target proton and recombines to produce final state particles. The color dipole
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representation of electron-proton deep inelastic scattering is schematically illustrated

in Figure 2.1. The transverse dimension of the quark-antiquark pair is denoted as r,

whereas b represents the impact parameter for the dipole-proton interaction. The

quark possesses a fraction of momentum (z) of the photon’s light-cone momentum,

while the antiquark possesses (1 − z).

Figure 2.1: Color dipole picture of e-p DIS.

When the dipole is accelerated to a higher rapidity or supplied with additional

energy, an increased phase space becomes accessible, facilitating the emission of

a gluon from the dipole. If the gluon is real, the parent dipole is partitioned into

two dipoles of sizes r′ and r − r′. These dipoles persist in evolving and interacting

autonomously from the target proton. Gluon emission constitutes a higher-order

modification to the virtual photon wave function, and we anticipate gaining insight

into the energy dependence of the dipole-proton scattering amplitude. We may derive

an evolution equation for the dipole-proton scattering amplitude by accounting for

virtual corrections and interactions with the target proton, leading to the evolution of
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the parent dipole as

∂

∂Y
(r, b, Y ) = αsNc

2π2

∫
d2r′ r2

r′2(r − r′)2

[
N(r′, b+ r − r′

2 , Y ) +N(r − r′,
r′

2 , Y )

−N(r, b, Y ) −N(r′, b+ r − r′

2 , Y )N(r − r′,
r′

2 , Y )
]
.

(2.1)

This is the BK evolution equation that was first derived by Balitsky in Ref. [13] and

by Kovchegov in Ref. [18]. The equation (2.1) is an integro-differential equation

that gives the scattering amplitude N(r, Y ) at any given rapidity Y > 0 if the initial

condition N(r, Y = 0) is known.

The BK equation (2.1) possesses a clear physical significance: A colorless dipole

of size r decays at a constant rapidity into two dipoles of sizes r′ and r − r′. The

initial two linear terms after the equal sign indicate that one dipole evolves and

interacts with the target while the other remains passive, or the nonlinear term

suggests that both dipoles evolve and interact with the target. The inclusion of two

separate interactions inflates the results, as evidenced by the negative sign preceding

the nonlinear term. At elevated rapidities, this nonlinear term becomes essential,

resulting in saturation and a reduction in energy growth.

In the computation of the BK equation (2.1), it is justifiable to presume that

when b fluctuates over distance scales comparable to the dipole size |r|, the change

in the amplitude N(r, b, Y ) with respect to the impact parameter b is minimal. This

is indeed accurate for scattering on a significantly large nucleus that is far from

its periphery. The variations in the impact parameter on the right side of equation

(2.1) can be disregarded due to this assumption. Additionally, we can disregard the

angular dependence of r on the assumption that the nucleus is isotropic. Therefore,



2.2 BK Equation 53

we may substitute N(r, b, Y ) with roughly N(r, Y ) in equation (2.1), yielding

∂

∂Y
N(r, Y ) = αsNc

2π2

∫
d2r′ r2

r′2(r − r′)2

× [N(r′) +N(r − r′) −N(r) −N(r′)N(r − r′)].
(2.2)

Let us transform this coordinate space BK equation into momentum space performing

the following Fourier transformation

N(r, Y ) = r2
∫ d2k

2π e
ik.rN(k, Y ), (2.3)

we write [19]

∂N(k, Y )
∂Y

= ᾱsχ(−∂L)N(k, Y ) − ᾱsN
2(k, Y ), (2.4)

where ᾱs = αsNc

π
and χ(ξ) = 2ψ(1) − ψ(ξ) − ψ(1 − ξ) is the BFKL kernel with

ξ = −∂L, where L = ln(k2/k2
0) with k0 being some fixed low momentum scale.

The equation (2.4) is useful for obtaining approximate solutions for the BK equation

that we will present in this chapter.

The expansion of the BFKL kernel around ξ = 1
2 has been suggested in Ref. [26],

and with this expansion equation (2.4) reduces to the nonlinear partial differential

equation given by

∂YN = ᾱχ̄(−∂L)N − ᾱN2, (2.5)

where

χ̄(−∂L) = χ(1
2) +

χ′′(1
2)

2

(
∂L + 1

2

)2
. (2.6)

In reference to the above expansion and defining ξ̄ = 1 − 1
2

√
1 + 8 χ( 1

2 )
χ′′( 1

2 ) , with the
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following change of variables [26]

t =
ᾱχ′′(1

2)
2 (1 − ξ̄)2Y, x = (1 − ξ̄)

(
L+

ᾱχ′′(1
2)

2 Y

)
,

u(t, x) = 2
χ′′(1

2)(1 − ξ̄)2
×N

(
2t

ᾱχ′′(1
2)(1 − ξ̄)2

,
x

1 − ξ̄
− t

(1 − ξ̄)2

)
,

the equation (2.5) turns into the FKPP equation [23, 24] for u(x, t), can be expressed

as [26]

∂tu(t, x) = ∂2
xu(t, x) + u(t, x) − u2(t, x). (2.7)

Thus, with some variable transformation, it is seen that the BK equation (2.5) can be

transformed to the above equation (2.7), which is the famous FKPP equation.

2.3 Homotopy Perturbation Method

The homotopy perturbation method (HPM) is a widely used method to get analytical

solutions to numerous linear to nonlinear ordinary and partial differential equations,

first proposed by Ji-Huan He. This method is a combined sort of both homotopy

in topology and also the traditional perturbation technique. Recently, this method

has been widely used to solve different problems in engineering, physics, and other

fields [33–39]. One can see the original papers for a better understanding of the

HPM [21, 22]. For completeness, let us move to the fundamental idea of the HPM

and consider the following differential equation nonlinear in nature as

A(q) − f(r) = 0, r ∈ Λ, (2.8)

constrained to the boundary precondition

B(q, ∂q
∂n

) = 0, r ∈ λ, (2.9)
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where A is a general differential operator, B is a boundary operator, and f(r) is a

known analytic function, and λ is the boundary of the domain Λ.

The general differential operator A within the equation (2.8) can be divided into

two parts: the linear part L, which is simple to handle, and the remaining nonlinear

part N . Thus, equation (2.8) can be expressed in the following form:

L(q) +N(q) − f(r) = 0. (2.10)

Now, applying the homotopy technique, one can construct a homotopy h(r, p), which

satisfies

H(h, p) = (1 − p)[L(h) − L(q0)] + p[A(h) − f(r)] = 0, (2.11)

where p ∈ [0, 1] is an embedding parameter, and q0 is an initial guess for the equation

(2.8) satisfying the initial boundary condition(s). We have

p = 0, H(h, 0) = L(h) − L(q0) = 0,

p = 1, H(h, 1) = A(h) − f(r) = 0.
(2.12)

According to the homotopy technique, we can use the embedding parameter p as

an expanding parameter, provided p is a small parameter. Then we can assume the

solution of equation (2.11) as a power series in p as

h = h0 + ph1 + p2h2 + . . . (2.13)

Setting p = 1 within the above equation, the approximate solution of equation (2.11)

is

q = lim
p→1

h = h0 + h1 + h2 + . . . (2.14)
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In general, the equation (2.14) is a convergent series and hence results in the precise

solution of the equation (2.8).

2.4 Analytical Solution to BK Equation

In this section, we provide an analytical solution to the BK equation (2.5) for the

scattering amplitude N(k, Y ). Since BK equation (2.5) can be transformed to FKPP

equation (2.7), we write the following equation for the scattering amplitude N(k, Y )

in connection with BK equation (2.5)

∂YN(k, Y ) = ∂2
kN(k, Y ) +N(k, Y ) −N2(k, Y ), (2.15)

constrained to a initial condition (say)

N(k, 0) = A. (2.16)

Using the HPM discussed in the section 2.3, we can construct the homotopy:

∂N

∂Y
− ∂N0

∂Y
= p

(
∂2N

∂2k
+N(1 −N) − ∂N0

∂Y

)
, (2.17)

and using equation (2.13), we get the approximate solution of equation (2.17) in

series as

N = N0 + pN1 + p2N2 + p3N3 + . . . . (2.18)

Equating the coefficients of powers of p, one can obtain the following set of differ-

ential equations on substitution of equations (2.16) and (2.18) into equation (2.17)
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:

p0 : ∂N0

∂Y
− ∂N0

∂Y
= 0, N0(k, 0) = A,

p1 : ∂N1

∂Y
= ∂2N0

∂2k
+N0 −N2

0 , N1(k, 0) = 0,

p2 : ∂N2

∂Y
= ∂2N1

∂2k
−N0N1 +N1(1 −N0), N2(k, 0) = 0,

p3 : ∂N3

∂Y
= ∂2N2

∂2k
−N0N2 +N2

1 +N2(1 −N0), N3(k, 0) = 0,

...

etc.

(2.19)

Proceeding in this way to solve the system, we obtain

N0(k, Y ) = A,

N1(k, Y ) = A(1 − A)Y,

N2(k, Y ) = A(1 − A)(1 − 2A)Y
2

2! ,

N3(k, Y ) = A(1 − A)(1 − 6A+ A2)Y
3

3! ,

...

etc.

(2.20)

Setting p = 1 in equation (2.18), we can approximate the solution of equation (2.18)

as N = N0 +N1 +N2 +N3 + . . . . Thus, in view of the equation (2.20), we can

express the solution of equation (2.18) in a series form as

N(k, Y ) = A+ A(1 − A)Y + A(1 − A)(1 − 2A)Y
2

2! +

A(1 − A)(1 − 6A+ A2)Y
3

3! + . . . .

(2.21)
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The above solution can be put into the following simplified form using some algebra

with the help of symbolic computation tool as

N(k, Y ) = AeY

1 − A+ AeY
. (2.22)

This is the solution of the BK equation (2.5) in connection with the equation (2.7)

for the scattering amplitude N(k, Y ). Once the initial condition is known to us, the

solution of the BK equation gives the scattering amplitude N(k, Y ) at any given

rapidity Y > 0. In this work, we will use the following initial condition given by K.

Golec-Biernat and M. Wüsthoff (GBW), introduced first in Ref. [40] as

NGBW (r, Y = 0) = 1 − exp

[
−
(
r2Q2

s0
4

)]
. (2.23)

Q2
s0 is the fit parameter, called the initial saturation scale squared. This initial

condition has been chosen since we are working with the BK equation in momentum

space, and it is simple to conduct an analytical Fourier transformation of this initial

condition into momentum space. The momentum space outcome of the GBW initial

condition can be written as

NGBW (k, Y = 0) =
∫ d2r

2πr2 e
ik.rNGBW (r, Y = 0)

= 1
2Γ

(
0, k

2

Q2
s0

)
.

(2.24)

Γ(0, k2/Q2
s0) is the incomplete gamma function. At large values of k2/Q2

s0, this

behaves as

Γ
(

0, k
2

Q2
s0

)
= exp

(
− k2

Q2
s0

)
.

Therefore,

NGBW (k, Y = 0) = 1
2exp

(
− k2

Q2
s0

)
. (2.25)
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Substitution of the above equation in (2.22) for the initial condition, we obtain the

scattering amplitude N(k, Y ) with GBW as the initial condition

N(k, Y ) = eY −k2/Q2
s0

1 − e−k2/Q2
s0 + eY −k2/Q2

s0
. (2.26)

The aforementioned equation serves as an approximate analytical solution to the

BK equation (2.5). The scattering amplitude N(k, Y ) characterizes the traversal of

a quark-antiquark dipole across the target color field inside the dipole model. The

evolution of the scattering amplitude at different rapidities can be seen in Figure 2.2.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

0.6

0.8

1.0

k (GeV)

N
(k
,Y

)

Figure 2.2: The solution of the BK equation in momentum space, N(k), at various rapidities
Y = 2, Y = 5, Y = 9, Y = 15, Y = 21 and Y = 27.

Let us now extract the saturation momentum Q2
s(Y ), which is a function of

rapidity Y , using the solution obtained in the equation (2.26) by requiring the

following condition given in Ref. [41] as

N(k, Y ) = 1
2 for k = Qs. (2.27)

We extracted the saturation momentum Q2
s(Y ) for different rapidities Y and ex-
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pressed in Table 2.1. The extracted saturation momentum Q2
s is plotted as a function

of Y in the Figure 2.4. The saturation momentum as a function of rapidity is

estimated in the numerical analysis of the BK equation given by [42]

Q2
s(Y ) = Λ2exp(∆′√Y +X), (2.28)

where X = (∆′)−2 ln(Q2
0/Λ2) and ∆′ = 3.2. We plot this estimate of saturation

momentum in Figure 2.4.

Y 0 0.5 1 1.5 2
Q2

s (GeV 2) 0.1663 0.3659 0.4678 0.6643 0.7958

Table 2.1: The extracted saturation momentum Q2
s from (2.26) at different rapidities Y .

Figure 2.3: Scattering amplitude N(k, Y ) obtained in this work compared to the scattering
amplitude N(k, Y ) obtained from numerical solution [43] of the BK equation.
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Figure 2.4: Extracted saturation momentum Q2
s from the solution of the BK equation in this

work (dashed line) at different rapidities Y , compared to the estimated saturation momentum
by numerical analysis of the BK equation [42] (solid line).

2.5 Summary

This chapter provided an approximate analytical solution for the BK equation using

the HPM. The connection between the geometric scaling phenomena of solution of

the BK equation and the travelling wave solution of the FKPP equation, proposed

by S. Munier and R. Peschanski in their seminal work, has influenced the scientific

community working in the area of saturation physics. In this chapter, we began with

a quick overview of the BK equation and its relationship to the FKPP equations. We

carried out studies on the pQCD dipole model of DIS, where the measured scattering

amplitude N(k, Y ) obeys the BK equation in momentum space. The momentum

space frame is often regarded as the most natural space frame for working with

at least a travelling wave solution and geometric scaling. Afterward, with some

change of variables and a slight approximation in the BK equation, we obtained
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the approximated analytical solution of the BK equation in momentum space. We

displayed the resulting solution, equation (2.26), at different rapidities in Figure

2.2 to check the solution’s travelling wave nature. Indeed, the solution has the

appearance of a travelling wave. It illustrates that at high energies, the scattering

amplitude acts like a wave, moving from the region N = 1 to N = 0 as k grows

without changing the profile. This is indeed a vital physical result of this travelling

wave approach.

To contrast the analytical analysis of this study with the numerical analysis of

the BK equation, Figure 2.3 illustrates a comparison of the scattering amplitude’s

characteristics with the numerical findings of the BK equation. We observed a

comparable characteristic of the scattering amplitude (traveling wave) with the

scattering amplitude calculated by the numerical solution of the BK equation [43].

Additionally, we derived the saturation momentum from the acquired solution to

examine the characteristics of saturation momentum as rapidity varies. Figure 2.4

presents a comparison between the saturation momentum derived from this study and

that estimated from the numerical analysis of the BK equation [42]. We observed a

strong correlation between our findings and the estimates derived from the numerical

study of the BK equation. Figure 2.4 illustrates that the saturation momentum

escalates with increasing rapidity. Consequently, the analytical solution (2.26) helps

elucidate parton saturation events in high-density QCD.

The solution derived in this study may assist in subsequent phenomenological

investigations of high-density QCD and saturation domains. It will be intriguing to

ascertain the existence of this form of traveling wave solution and geometric scaling

at extremely high energy during the operational phase of the Electron-Ion Collider

(EIC) and other forthcoming projects. Nonetheless, the BK equation, when truncated

with the BFKL kernel, effectively elucidates the observed geometric scaling and the

traveling wave characteristics of its solution at contemporary accelerator facilities.
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We must depend on forthcoming accelerator facilities for accurate measurements of

observed phenomena and their validation.
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[5] Leonid Vladimirovič Gribov, Eugene M Levin, and Michail G Ryskin. Semi-

hard processes in qcd. Physics Reports, 100(1-2):1–150, 1983.

[6] Alfred H Mueller and Jianwei Qiu. Gluon recombination and shadowing at

small values of x. Nuclear Physics B, 268(2):427–452, 1986.

[7] Alfred H Mueller. Small-x behavior and parton saturation: A qcd model.

Nuclear Physics B, 335(1):115–137, 1990.

[8] Wei Zhu and Jianhong Ruan. A new modified altarelli-parisi evolution equation

with parton recombination in proton. Nuclear Physics B, 559(1-2):378–392,

1999.

[9] M Lalung, P Phukan, and JK Sarma. Nonlinear effects in gluon distribution

predicted by glr-mq evolution equation at next-to-leading order in lhc data.

International Journal of Theoretical Physics, 56(11):3625–3637, 2017.



Bibliography 65

[10] P Phukan, M Lalung, and JK Sarma. Nnlo solution of nonlinear glr–mq

evolution equation to determine gluon distribution function using regge like

ansatz. Nuclear Physics A, 968:275–286, 2017.

[11] Pragyan Phukan, Madhurjya Lalung, and Jayanta Kumar Sarma. Studies on

gluon evolution and geometrical scaling in kinematic constrained unitarized

bfkl equation: application to high-precision hera dis data. The European

Physical Journal C, 79(6):1–25, 2019.

[12] M Lalung, P Phukan, and JK Sarma. Small-x analysis on the effect of gluon

recombinations inside hadrons in light of the glr-mq-zrs equation. Nuclear

Physics A, 992:121615, 2019.

[13] Ian Balitsky. Operator expansion for high-energy scattering. Nuclear Physics

B, 463(1):99–157, 1996.

[14] Jamal Jalilian-Marian, Alex Kovner, Andrei Leonidov, and Heribert Weigert.

The bfkl equation from the wilson renormalization group. Nuclear Physics B,

504(1-2):415–431, 1997.

[15] Edmond Iancu, Andrei Leonidov, and Larry McLerran. Nonlinear gluon

evolution in the color glass condensate: I. Nuclear Physics A, 692(3-4):583–

645, 2001.

[16] Heribert Weigert. Unitarity at small bjorken x. Nuclear Physics A, 703(3-

4):823–860, 2002.

[17] Ian Balitsky. Operator expansion for diffractive high-energy scattering. In AIP

Conference Proceedings, volume 407, pages 953–957. American Institute of

Physics, 1997.



66 Bibliography

[18] Yuri V Kovchegov. Small-x f 2 structure function of a nucleus including

multiple pomeron exchanges. Physical Review D, 60(3):034008, 1999.

[19] Yuri V Kovchegov. Unitarization of the bfkl pomeron on a nucleus. Physical

Review D, 61(7):074018, 2000.

[20] Ian Balitsky. Effective field theory for the small-x evolution. Physics Letters B,

518(3-4):235–242, 2001.

[21] Ji-Huan He. Homotopy perturbation technique. Computer methods in applied

mechanics and engineering, 178(3-4):257–262, 1999.

[22] Ji-Huan He. A coupling method of a homotopy technique and a perturba-

tion technique for non-linear problems. International journal of non-linear

mechanics, 35(1):37–43, 2000.

[23] Ronald Aylmer Fisher. The wave of advance of advantageous genes. Annals of

eugenics, 7(4):355–369, 1937.

[24] Petrovskii Kolmogorov and Piskunov. A study of the diffusion equation with

increase in the amount of substance, and its application to a biological problem.

Bull. Moscow Univ. Math. Mech., 1.
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