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1.1 Introduction to creatinine: a significant metabolic waste product 

‘Metabolic processes’ and ‘life forms’ are two inextricable terms, as every living 

organism is an abode to multiple chemical synthesis (anabolism) or breakdown 

(catabolism) reactions that are imperative for its survival. Decades of research have been 

dedicated to decoding the intricated mechanistic pathways of those metabolic processes 

and research in this field continues. While many of the proposed mechanistic pathways 

have widely been accepted, the precise mechanisms for some processes are still 

unbeknownst. The metabolic processes yield several products and waste products, and one 

example of a waste product formed in the muscle tissues by the catabolism of creatine 

{IUPAC name: 2-[Carbamimidoyl(methyl)amino]acetic acid} is a nitrogenous base named 

creatinine (IUPAC name: 2-amino-3-methyl-4H-imidazol-5-one). It has been reported that 

the biosynthesis of creatine in the human body involves three amino acids, namely, 

arginine, glycine and methionine; two enzymes, namely, L-arginine:glycine 

amidinotransferase (AGAT) and glycine N-methyltransferase (GAMT); and, meanwhile, 

follows an inter-organ (kidney to liver) pathway [1]. Following its biosynthesis, creatine 

is ingested into the bloodstream and located predominantly in the skeletal muscles, which 

contain approximately 95% of the total creatine pool [2, 3]. The muscle cells offer the site 

where a reversible phosphorylation reaction of creatine occurs for energy storage to 

produce phosphocreatine, catalyzed by the creatine kinase enzyme [4, 5]. However, both 

the compounds, creatine and phosphocreatine, break down spontaneously, non-

enzymatically and irreversibly in the muscle cells to produce creatinine [4, 5]; the exact 

cause and chemistry behind which is not yet well-established. The biosynthesis of creatine 

and creatinine has been illustrated in Scheme 1.1. 

 

Scheme 1.1: Steps involved in the biosynthesis of creatine and creatinine. 
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 Despite being a waste product of muscle metabolism which ought to be excreted 

out of the body via urine, creatinine holds great significance in the field of healthcare and 

research. After permeating the muscle cell membranes, creatinine diffuses into the 

bloodstream and is eventually filtered out by healthily functioning kidneys through 

glomerular filtration [6]. The glomerular filtration rate (GFR), which can be defined as the 

rate at which the filtration through the glomerulus occurs (or, the rate at which the filtered 

fluid flows through the kidneys), is a standard measure of renal function. When an 

individual suffers from Chronic Kidney Disease (CKD), several symptoms such as nausea, 

fatigue, pain, anxiety, insomnia, etc. may show up [7]. Simultaneously, the individual's 

GFR decreases and the concentration of creatinine in serum or urine consequently deviates 

from normalcy. The normal range of serum creatinine varies from 0.7 to 1.5 mg/dL for 

healthy males and from 0.6 to 1.4 mg/dL for healthy females [8], while creatinine level in 

normal human urine ranges from 280 mg/L to 2590 mg/L i.e., from 2.48 mM to 22.92 mM 

[9, 10]. Any deviation from these normal ranges would indicate a poor GFR which reflects 

malfunctioning of kidneys. Hence, creatinine is a direct marker for any renal 

dysfunctionality and the accurate determination of creatinine in body fluids is of utmost 

necessity to monitor the renal function of an individual.   

A question that can be posed here is why creatinine, among several other biological 

components, is widely accepted as the marker for renal dysfunctionality. The answer lies 

in the catabolism rate of muscular creatine and phosphocreatine as the non-enzymatic 

conversion of these compounds to creatinine occurs at an almost constant rate of 2 % per 

day [11], which results in a fairly stable concentration of creatinine in the serum unless 

deviated due to renal malfunctions. Furthermore, creatinine is also filtered freely, unbound 

to any protein, by the glomerulus and does not get reabsorbed in the renal tubules either 

[12]. Historically, urea and blood urea nitrogen (BUN) have also been used as markers to 

assess renal function [13]. In fact, urea was the first used marker in this context, followed 

by BUN in the mid-1900s [13]. However, non-renal factors like diet and urea cycle 

enzymes can lead to the overproduction of urea, and soaring of the BUN level due to 

pregnancy or intake of protein-rich food has also been reported [14]. Thus, urea and BUN 

are regarded as poor markers, while creatinine emerges as more reliable. 

Some low molecular weight proteins (LMWPs) such as β2-microglobulin (B2M), 

β-trace protein (BTP) and cystatin C are also currently in focus as potential renal function 
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markers [13, 14]. It is debatable if the determination of B2M concentration in urine can 

evaluate renal functions precisely, as some studies have proven that B2M mostly gets 

destroyed by proximal tubular cells after it’s filtered through the glomerulus, which 

markedly lowers its quantity in daily excreted urine to below 400 ng [15, 16]. Nevertheless, 

its serum level increases with a decrease in renal functions [15, 17] and, unlike creatinine, 

its concentration in serum is not dependent on muscle mass [18]. Therefore, recently, some 

researchers [19-26] have explored the usage of B2M as a renal function marker but no 

major advantage over creatinine can be claimed as its concentration in serum is reported 

to increase due to many other factors like lymphoproliferative disorders [27]. BTP exhibits 

properties similar to B2M as the former also gets filtered through the glomerulus in a free 

state and reabsorbed by the proximal tubular cells, with its concentration in serum being 

proportionally affected by deteriorating GFR [28]. Thus, BTP has also been utilized as a 

laboratory tool to assess the functioning of kidneys [24-26] but it has been critiqued that 

BTP shows no improvement in accuracy or precision over other renal function markers 

[29]. Amongst the low molecular weight proteins, cystatin C has been the most explored 

one in this regard [30-39]. While some studies in the early 2000s acknowledged the 

superiority of cystatin C over serum creatinine due to being independent of age, gender 

and muscle mass, and being more efficient in determining GFR or renal functions in 

patients suffering from diabetes (type 1 and type 2) or cirrhosis [40-44], some latest 

investigations have outlined the dependence of cystatin C levels in the serum on several 

non-GFR factors like steroid intake, thyroid dysfunction, adiposity and inflammation [45]. 

In comparison to creatinine, another challenge for the LMWPs in the discussion is their 

respective normal concentration in serum; 1.5 to 3 mg/L for B2M, < 0.70 mg/L for BTP 

and 0.59 to 1.04 mg/L for cystatin C [46, 47]. The normal concentrations of these LMWPs 

are many-fold lower than the normal concentration of serum creatinine, which presents an 

uphill task to the researchers as the detection techniques for the LMWPs have to be 

comparatively more sensitive to detect the lower concentrations precisely.  

From the brief discussion above, it can be argued that although some other 

biological components are being considered for the development of a better renal function 

marker, several adversities have to be addressed and thus, the significance of creatinine as 

the most reliable and widely accepted renal function marker is unlikely to be obsoleted in 

the near future.  
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1.2 Creatinine clearance and GFR: formulas, comparison and ranges 

 Another important term that emphasizes the role of creatinine and needs to be 

discussed in this chapter is ‘creatinine clearance’ (CLcr). CLcr can be defined as the volume 

of plasma from which creatinine gets completely filtered out due to glomerular filtration 

in unit time. A CLcr test provides an assessment of the functioning of the kidneys, much 

like the determination of GFR does.  

CLcr  =  
(UCr) × (VU)

SCr
    

(Eq. 1.1) 

 Equation 1.1 represents the traditional formula used for determining CLcr (in 

mL/min), where UCr is the urinary creatinine concentration (in mg/100 mL), SCr is the 

serum creatinine concentration (in mg/100 mL) and VU is the volume of urine collected in 

24 hours [48]. This traditional formula merely compares the creatinine concentrations in 

serum and urine. In a report published in 1959, Edwards and Whyte [49] used another 

formula which highlighted the importance of body surface area (BSA, expressed in m2) 

for calculating CLcr, (in mL/min/1.73 m2) as represented by Equation 1.2. 

CLcr  =   
(UCr) × (VU) × 1.73

SCr × BSA
  

(Eq. 1.2) 

BSA can be calculated by using the Du Bois formula [50], where body weight 

(BW) is expressed in kg and height (Ht) in cm, as represented by Equation 1.3. 

BSA =  0.007184 × BW0.425  ×  Ht0.725  

(Eq. 1.3) 

  Some detailed analyses further identified the dependence of CLcr on multiple 

factors like age, BW, BSA, Ht, creatinine production rate and gender. Hence, new 

alternative formulas for CLcr were deduced by incorporating one or more of these factors 

as variables, along with SCr (in mg/100 mL), but didn’t require the collection of urine 

specimens. Although UCr is not included in the final versions of the alternative formulas, 

a common step in deducing the formulas required the determination of the 24-hour urinary 

creatinine concentrations. A comprehensive explanation of all the steps involved in the 

deduction of these formulas is not included here as it is beyond the scope of this present 
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work. However, a brief description of some widely accepted formulas for CLcr and their 

variables is presented below. 

 In 1973, Roger W. Jelliffe [51] deduced two formulas for determining CLcr: first, a 

non-normalized gender-based formula for CLcr (in mL/min) by incorporating age, and 

second, a normalized gender-based formula for CLcr (in mL/min/1.73 m2) by incorporating 

both age and BSA (expressed in m2), as represented by Equation 1.4 and Equation 1.5 

respectively. 

CLcr (for males) =
98 − [0.8 × (Age −20)])

SCr
  

(Eq. 1.4) 

CLcr (for males)  =  
{98 −[0.8 × (Age −20)} × (

BSA

1.73
)

SCr
     

(Eq. 1.5) 

 CLcr for females can be determined using Jelliffe’s equation by multiplying CLcr 

obtained from Equation 1.4 and Equation 1.5 with 0.90. The age of the individual whose 

CLcr has to be determined must be rounded off to the nearest digit divisible by 10 in these 

equations. 

 In 1976, Donald W. Cockcroft and M. Henry Gault [52] incorporated BW (in kg) 

and age to deduce a gender-based formula to determine CLcr (in mL/min), as represented 

by Equation 1.6. 

CLcr (for males)  =  
(140 −Age) × (BW)

72 × SCr
    

(Eq. 1.6) 

 CLcr for females can be determined using the Cockcroft-Gualt equation by 

multiplying CLcr obtained from Equation 1.6 with 0.85. Amongst the CLcr determining 

formulas, the Cockcroft-Gault equation has been extensively applied in the literature [53-

57]. 

 In 1988, Daniel E. Salazar and George B. Corcoran [58] incorporated BW (in kg), 

Ht (in m) and age to deduce gender-based formulas to determine CLcr (in mL/min), 

specifically for obese individuals, as represented by Equation 1.7 and Equation 1.8. 
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CLcr (for males)  =  
(137 −Age) × [(0.285 × BW) + (12.1 × Ht2)]

(51 × SCr)
    

(Eq. 1.7) 

CLcr (for females)  =  
(146 −Age) × [(0.287 × BW) + (9.74 × Ht2)]

(60 × SCr)
     

(Eq. 1.8) 

 All the new CLcr determining formulas mentioned above have a common 

limitation, as these formulas apply to individuals with stable levels of SCr [48]. Hence, in 

2002, Roger Jelliffe [48] reported another formula to calculate CLcr (in hundreds of 

mL/min) for individuals with unstable levels of SCr, by incorporating BW (in hundreds of 

grams), adjusted creatinine production rate (Padj, expressed in mg/day) and recording two 

serum creatinine concentrations (SCr1 and SCr2, expressed in mg/100 mL) after a period 

of T (expressed in number of days), as represented by Equation 1.9. 

CLcr  =  
(Padj × T) − 0.4BW(SCr2− SCr1)

T × SCravg × 1440
    

(Eq. 1.9) 

 In Equation 1.9, SCravg is the average of SCr1 and SCr2, and 1400 is the minutes in 

24 hours. In this 2002 Jelliffe formula, Padj was calculated by equating it with 24-hour 

urinary creatinine concentration [48]. 

On the other hand, based on the determination methods, GFR can be broadly 

classified as the measured GFR (mGFR) and the estimated GFR (eGFR). While mGFR 

can be determined by assessing the clearance of exogenous filtration markers like inulin, 

iohexol, chromium 51-ethylenediamine tetraacetic acid, technetium 99m 

diethylenetriamine pentaacetic acid and iothalamate, eGFR can be determined by 

assessing the clearance of endogenous filtration markers like serum creatinine and cystatin 

C [59]. Due to the impractical and expensive approach to determining mGFR, the 

determination of eGFR, despite its lack of precision, has found prominence in clinical 

practices [59]. At this point, a similarity between the calculated eGFR (based on the 

clearance of creatinine) and CLcr can be reckoned, and the terms are often used 

interchangeably. For example, there are reports where the Cockcroft-Gault equation is 

stated to be used to determine GFR [60, 61]. However, it is important to note that although 

CLcr provides a close evaluation of eGFR, the values obtained for simultaneously recorded 
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CLcr and eGFR are unlikely to be equal for an individual with stable SCr. A study in 2011 

reported the overestimation of GFR by using the Cockcroft-Gault equation due to the 

tubular excretion of creatinine [62]. Another analysis, published in the year 2006, reported 

the underestimation of GFR by 14 % in normal-weight diabetic patients, and 

overestimation of GFR by 15 % and 55 % in overweight and obese diabetic patients 

respectively, by using the Cockcroft-Gault equation [63]. In 1958, Edwards and Whyte 

reasoned out that the value obtained for CLcr is ‘equivalent’ to that of GFR [49]. In 2016, 

Fernandez-Prado et al. also rightly distinguished between CLcr and eGFR, as they 

compared the Cockcroft-Gualt equation with the equation for eGFR proposed by Chronic 

Kidney Disease Epidemiology Collaboration (CKD-EPI) [64]. 

eGFR =  142 × min(
SCr

κ
, 1)a1 × max  (

SCr

κ
, 1)a2  ×  0.9938Age  × 1.012 (if female) 

(Eq. 1.10)  

Equation 1.10 represents the equation for eGFR (in mL/min/1.73 m2) proposed by 

CKD-EPI in 2021 where SCr is expressed in mg/100 ml; κ is 0.9 for males and 0.7 for 

females; min(SCr/κ, 1) refers to the minimum of SCr/κ and 1; max(SCr/κ, 1)  refers to the 

maximum of SCr/κ and 1; the coefficient a1 (-0.302 for males and -0.241 for females) is 

used when SCr for males is ≤ 0.9 mg/100 mL for males and ≤ 0.7 mg/100 mL for females; 

and the coefficient a2 (-1.200) is used when SCr is > 0.9 mg/100 mL for males and > 0.7 

mg/100 mL for females [65]. This 2021 CKD-EPI equation is an updated version of 

another equation proposed by CKD-EPI in 2009, which was race-dependent. The task 

force formed by the National Kidney Foundation (NKF) and the American Society of 

Nephrology (ASN) recommends the 2021 CKD-EPI equation over the 2009 CKD-EPI 

equation, ruling out the race factor from the equation [66].  

Apart from CKD-EPI equation, some formulas proposed by the Modification of 

Diet in Renal Disease (MRDR) study for calculating eGFR (in mL/min/1.73 m2) are also 

popularly used. The formulas for eGFR proposed by the MRDR study are based on age, 

gender, demography and several serum and urine variables (SCr, concentration of serum 

urea nitrogen and albumin and urine urea nitrogen excretion) [67-69]. Later, a simplified 

MRDR equation, named the abbreviated MRDR (aMRDR) equation, was deduced [69]. 

Equation 1.11 represents the aMRDR equation, which depends on SCr (in mg/100 mL), 
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age, gender and ethnicity.  The MDRD equations, however, faced criticisms due to poor 

precision and performance in calculating eGFR > 60 mL/min/1.73 m2 [70]. 

eGFR = 186 × SCr−1.1554  × Age−0.203  × 0.742 (if female)  × 1.21 (if African

− American) 

(Eq. 1.11) 

 With eGFR unit expressed in mL/min/1.73 m2, according to the published 

guidelines by Kidney Disease: Improving Global Outcomes (KDIGO), eGFR ≥ 90 (G1 

stage) is considered normal or high; 60 ≤ eGFR ≤ 89 (G2 stage) refers to a slight decline 

in renal function; 45 ≤ eGFR ≤ 59 (G3a stage) refers to a mild or moderate decline in renal 

function; 45 ≤ eGFR ≤ 59 (G3b stage) refers to a moderate or severe decrease in renal 

function; 15 ≤ eGFR ≤ 29 (G4 stage) refers to a critical decline in renal function; and, 

eGFR ≤ 15 (G5 stage) refers to renal failure [71, 72]. While it can be inferred that any 

individual who is at the G3a, G3b or G4 stage, is suffering from kidney disease, the G2 

stage infers the early stage of renal issues, and patients at the G5 stage require dialysis. 

Notably, although the lower eGFR has conventionally been associated with renal 

malfunctions, high eGFR might also indicate hyperfiltration of blood due to any possible 

renal injury [73]. 

1.3 Creatinine determination methods used in clinical practices and their 

limitations 

 As the previous sections highlighted the importance of creatinine, it is 

comprehensible now that the accurate determination of creatinine concentration in human 

body fluids is necessary to well-utilize its role in monitoring human health (renal function). 

Apart from accuracy, the other aspects that must be considered in developing creatinine 

quantification methods are sensitivity, robustness, longevity, cost and time. Since the late 

19th century, several methods have been proposed for creatinine detection and 

quantification in urine and serum. However, only two methods, the ‘Jaffe method’ and the 

‘Enzymatic method’, are popularly used in clinical practices. A brief description of the 

development and principles of both methods, along with a comparison of their analytical 

performances, is provided in the sub-sections below. 
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1.3.1 Jaffe method 

The Jaffe method is regarded as the traditional method for determining creatinine 

levels. It is based on the reaction between creatinine and sodium picrate in an alkaline 

medium to form an orange-red coloured creatinine-picric acid complex (Janovsky 

complex). It was in 1886 when Max Jaffe studied the behaviour of picric acid in human 

urine and reported that creatinine reacts with picric acid in the presence of a few drops of 

dilute potassium and sodium hydroxide solution to form the coloured complex [74]. 

Although Jaffe established the principle, Otto Folin and Morris developed the reaction for 

clinical practices by mixing 1 mg of creatinine with 20 mL of picric acid and 1.5 mL of 10 

% sodium hydrate solution.[75]. The mixture was incubated for 10 minutes before 

subjecting it to a colorimeter [75, 76]. As the colour of the complex was noted to be more 

intense for samples with higher concentration of creatinine, the complex exhibited an 

absorption peak at 520 nm with its intensity proportional to creatinine concentration [74, 

77, 78]. Thus, a colorimetric determination of creatinine could be carried out using the 

Jaffe reaction. Scheme 1.2 is a structural representation of the Jaffe reaction. The structure 

of the Janovsky complex, as shown in Scheme 1.2, is well-established in the literature [79, 

80]. 

 

Scheme 1.2: Structural representation of the Jaffe reaction. 

 

 The wide acceptance of the Jaffe reaction in clinical practices had ceased the 

clinical use of the Neubauer reaction for creatinine determination, which was proposed in 

the late 19th century and was based on a creatinine-zinc coloured complex formation in an 

alcoholic medium [81]. However, the major drawback of the Jaffe reaction for creatinine 

determination was the non-specificity of the reaction, as Max Jaffe himself noted that the 

formation of the Janovsky complex was affected in the presence of organic compounds 
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like glucose and acetone [74, 81].  Further studies confirmed that other body fluid 

components like protein, glucose, bilirubin, uric acid, antibiotics, etc. or high doses of 

administered aminoglycoside antibiotics like streptomycin interfere with the Jaffe reaction 

[82-85].  

Several modifications of the Jaffe reaction have also been proposed to minimize 

the effect of interference. The kinetic study of the Jaffe reaction proposed by J. G. H. Cook 

emerged as a notable modification of the traditional method [86]. Cook recorded the 

increase in the absorption peak at 510 nm for the system containing standard creatinine 

solution/serum and Jaffe reagents, at a time interval of 60 s, and the kinetic study revealed 

that the rate of increase of the absorption peak is proportional to the creatinine 

concentration [86]. Another interesting modification of the Jaffe reaction involves an 

additional step of deproteinizing the serum before adding the Jaffe reagent, as the use of 

sodium dodecyl sulphate, tungstic acid and potassium ferricyanide has been reported for 

the removal of proteins from the sample [87-91]. In 1935, Borsook also demonstrated the 

use of Lloyd’s reagent to adsorb creatinine from acid serum or plasma, followed by its 

elution in an alkaline medium and determination via the Jaffe reaction [92]. These 

modified methods were not free from limitations either. While the Kinetic Jaffe method 

suffers from imprecision at low creatinine levels, the deproteinization step doesn’t assure 

the minimisation or removal of interference by other body fluid components, and the 

process of adsorption by Lloyd’s reagent, although ensures higher specificity, results in the 

loss of creatinine in the subsequent elution step [93, 94]. An electrochemical study of the 

Jaffe reaction with Edge Plane Pyrolytic Graphite electrode and screen-printed carbon 

electrode was also reported with its application restricted to detecting only urinary 

creatinine [79]. 

 Nevertheless, despite some limitations, the Jaffe method is the oldest method that 

is still used in clinical practices for determining creatinine levels. 

1.3.2 Enzymatic method 

The use of enzymes for determining creatinine levels stemmed from the attempt to 

develop interference-free methods as an alternative to the Jaffe method, and it succeeded 

to a great length. It was especially in the early 1980s when several promising enzymatic 

methods, using spectroscopic techniques, were reported. Initially, the enzyme ‘creatinine 
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iminohydrolase’ was preferred, which hydrolyses creatinine to produce N-

methylhydantoin (IUPAC: 1-methylimidazolidine-2,4-dione) and ammonia [95-97]. 

Sunberg et al. used creatinine iminohydrolase to develop an enzymatic creatinine 

determination method by mixing the produced ammonia with bromophenol blue indicator 

and analysing the change in the absorption band at 600 nm, which was proportional to 

creatinine concentration [95].  Toffaletti et al. also utilized the same reaction scheme and 

studied the difference in reflection density at 600 nm at an angle of 45°, which was 

dependent on creatinine concentration [96]. Tanganelli et al., although used creatinine 

iminohydrolase to yield N-methylhydantoin and ammonia, the produced ammonia was 

subjected to an auxiliary reaction with α-ketoglutarate, catalysed by glutamate 

dehydrogenase, in the presence of NADPH [97]. The auxiliary reaction produces L-

glutamate and NADP+, with the concentration of NADP+ proportionally varying with 

creatinine concentration in the sample [97].  After an incubation period of 15 min, the 

change in the absorbance at 340 nm was recorded to determine creatinine concentration 

[97]. Scheme 1.3 illustrates the reported reaction steps for the enzymatic creatinine 

determination using the creatinine iminohydrolase enzyme [95-97]. 

 

Scheme 1.3: Enzymatic hydrolysis of creatinine by ‘creatinine iminohydrolase’ and the subsequent steps 

for creatinine determination. 
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It can be seen that the enzymatic determination of creatinine using creatinine 

iminohydrolase is dependent on the produced ammonia. Thus, interference by endogenous 

ammonia is a major drawback of this system. Although Tanganelli et al. mentioned the 

necessity of a preincubation stage for eliminating endogenous ammonia, where the 

auxiliary reaction is carried out without adding the enzyme to the system, this is a 

cumbersome and time-consuming process that cannot be apt for clinical practices [97]. 

Hence, researchers deflected their attention to developing enzymatic creatinine-

determining methods that can be labour-saving and independent of any endogenously 

present component. 

The exploration of the enzyme, creatininase (creatinine amidohydrolase), resolved 

the complication mentioned above to a large extent. Concomitantly, a few enzymatic 

creatinine-determining methods were reported, based on the initial hydrolysis of creatinine 

by creatininase to produce creatine, followed by different subsequent enzyme-catalysed 

steps [78, 98, 99]. However, in all these methods, the role of ammonia in determining 

creatinine level is completely obliterated and no additional preincubation step is required. 

Such advantageous observations eventually led to the development of an automated and 

sensitive multi-enzyme, multi-step process for creatinine determination, that was also 

accepted for clinical practices. The reactions occurring in this clinically practiced 

enzymatic method can be explained in 4 steps: ‘Step 1’ is the hydrolysis of creatinine by 

creatininase to produce creatine; ‘Step 2’ is the hydrolysis of creatine by creatinase to 

produce sarcosine and urea; ‘Step 3’ is the oxidation of sarcosine by sarcosine oxidase to 

produce glycine, formaldehyde and hydrogen peroxide; and ‘Step 4’ is the reaction of 

hydrogen peroxide with 4-aminoantipyrine and N-ethyl-N-sulfopropyl-m-toluidine, 

catalysed by peroxidase, to produce an quinoneimine dye [78].  Thus, a colorimetric 

creatinine determination can be accomplished as the formation of the dye results in a 

change of absorbance at 548 nm, which is proportional to creatinine concentration [78]. 

Interestingly, Fossati et al. presented a modified version of ‘Step 4’ where 3,5-dichloro-2-

hydroxybenzenesulfonic acid is used in place of N-ethyl-N-sulfopropyl-m-toluidine to 

yield a quinine-monoimine dye [99]. The change in absorbance at 510 nm was studied in 

the Fossati method and the absorbance change was noted to be proportional to creatinine 

concentration [99]. However, HCl was also produced as a by-product in ‘Step 4’ of the 

Fossati method, which might also interfere with the system by decreasing the activity of 
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enzymes. The reaction steps involved in the clinical method of enzymatic determination 

of creatinine are illustrated in Scheme 1.4 [78]. 

 

Scheme 1.4: Enzymatic hydrolysis of creatinine by ‘creatininase’ and the subsequent steps used in clinical 

practises for creatinine determination. 

 

 Many reports have asserted that the enzymatic method is interference-free and 

must be preferred over the Jaffe method. However, some recent studies have revealed 
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contradictions. Although to a lesser extent, as compared to Jaffe, it has been confirmed 

that protein and glucose interfere with the results of the enzymatic method [100]. 

Interference by components like lithium heparin (a common additive in blood collection 

tubes) was also reported [100]. Another general challenge associated with the enzymatic 

processes is maintaining the stability and activity of the enzymes.  

1.3.3 Jaffe v/s Enzymatic: A comparison of the methods  

The choice between applying the Jaffe method or the Enzymatic method is at the 

discretion of the particular laboratory. While some laboratories prefer the Enzymatic 

method for its higher sensitivity and selectivity, some opt for the Jaffe method due to its 

simplicity and cost-effectiveness, compared to the complicated and expensive enzymatic 

method.  

 Küme et al. [78] applied both clinically accepted methods, by using Architect 

c16000 auto-mated analyzer (Abbott Diagnostics Inc, Park City, IL, USA), in a large 

sample of urine and serum specimens. 0.6, 1.6 and 6.0 mg/dL for serum creatinine, and 

30, 60 and 120 mg/dL for urinary creatinine were explored in the study [78]. The analytical 

performances of the methods as determined by Küme et al. [78] are tabulated in Table 1.1. 

It can be known from the comparative analysis of the analytical performances that the limit 

of detection (LOD) and limit of quantification (LOQ) obtained by the Jaffe and the 

Enzymatic method were determined to be equal in serum. However, in urine, the LOD and 

LOQ obtained by the Enzymatic method, were lower than the corresponding values 

obtained by the Jaffe method, implying the Enzymatic method to be more sensitive at 

lower concentrations.  

Table 1.1: Comparison of the analytical performances of the Jaffe method and the Enzymatic method in 

serum and urine. 

 Jaffe method Enzymatic method 

Kit used 
Creatinine (Jaffe), 

catalog no. 7D64- 20 

Multigent Creatinine 

(Enzymatic), catalog no. 

8L24- 31 

Real sample Urine Serum Urine Serum 

LOD in mg/dL 0.25 0.01 0.07 0.01 
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*LOQ in mg/dL 2 0.05 0.5 0.05 

Detection Range 

in mg/dL 
0.21-37.85 0.20-38.70 0.10-40 0.25-40 

* LOQ was calculated as the minimum concentration at which the coefficient of variations is lower 

than 10 % 

 

 On comparing the samples having low creatinine concentrations, it was found that 

the Jaffe method calculates 7 % higher values compared to the Enzymatic method [78]. 

However, in another comparative analysis of the methods applied to the serum samples of 

529 patients, as presented by Schmidt et al. [101], it was found that the Jaffe method has 

higher precision and lower coefficient of variations than the Enzymatic method. So, there 

are statistical differences between both methods but there is no other gold standard to 

compare and claim higher accuracy for one method over the other.  

Thus, it can be stated that although the Jaffe method and the Enzymatic method 

have found prevalence in clinical practices, the methods have limitations and inadequacies. 

Hence, the route stays unlatched for researchers to explore newer ideas and approaches to 

either alter the clinically practised methods for betterment or to develop alternative, 

sensitive, selective and robust creatinine determination methods. 

1.4 Coordination with transition metal ions: the intrinsic property of 

creatinine 

 The compound, creatinine, can act as a ligand with multiple coordinating sites (the 

oxygen atom of the carbonyl group, the endocyclic nitrogen atom at position 1 and the 

exocyclic nitrogen bonded to the carbon atom at position 2) and form complexes with 

transition metal ions. It was during the latter half of the 20th century when the complexation 

of creatinine with transition metal ions was extensively explored [102-110]. Several 

complexes of creatinine with copper [102, 103], cobalt [104], platinum [105, 106], 

palladium [105, 106], nickel [107], zinc [108], cadmium [108], and mercury [108, 109] 

were reported.  The nature of these complexes was studied in different mediums such as 

water, ethanol-water, methanol, methanol-water, alcohol-water-HCL, perchloric acid, 

pyrrole (Py), DMSO, etc.  Interestingly, it was established that the ratio of creatinine-metal 

in the complexes, the presence of other ligands in the coordinating sphere, and the 
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coordinating sites of creatinine depend largely on the solvent system, reflux time and 

temperature (if required), and the pH [110]. As researchers continue to design new methods 

to detect creatinine and determine its level in body fluids, it is noticed that this intrinsic 

property of the compound has often been utilized to play the most significant role and lay 

the foundation of the methods. Thus, due to the importance of creatinine-transition metal 

complexes in creatinine sensor development, a keen interest among researchers is still 

seen, to tune the conditions and synthesise new complexes [111-113]. 

 In the complexes, while the coordination of creatinine via its endocyclic nitrogen 

atom (ortho to the carbonyl group) is most commonly observed, there are some reported 

complexes where along with the endocyclic nitrogen atom, the exocyclic nitrogen atom or 

carbonyl group also participate in coordination. The coordinating sites of creatinine and 

creatinine-metal ratio in some of the reported complexes of creatinine with different 

transition metal ions, and the respective solvent system, are summarised in Table 1.2. 

Table 1.2: Different coordinating sites and creatinine-metal ratios reported for creatinine-transition metal 

complexes in various solvent systems. 

Creatinine 

complex 

with- 

Solvent 

Creatinine-metal 

ratio in the 

obtained complex 

Coordinating 

sites of 

creatinine 

Reference 

Copper Water 2:1 

Endocyclic 

nitrogen and 

carbonyl 

group 

[102] 

Copper 

Methanol 4:1 

Endocyclic 

nitrogen 
[103] 

Acetonitrile 

3:1 (Refluxed at 

50-60 °C under 

constant stirring 

for 1 hour) 
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2:1 (Refluxed at 

50-60 °C under 

constant stirring 

for 6-7 hours) 

Cobalt Water-methanol 2:1 
Endocyclic 

nitrogen 
[104] 

Platinum 

Water 1:2 
Endocyclic 

nitrogen and 

carbonyl 

group 

[105] 
Water (in argon 

environment) 
3:1 

Palladium Water-NaOH 2:1 

Zinc Water-methanol 2:1 

Endocyclic 

nitrogen 
[108] Cadmium Water-methanol 

2:1 (with chloride 

and bromide salts 

of cadmium) 

1:1 (with iodide 

salt of cadmium) 

Mercury Water-methanol 2:1 

Mercury 
Water-ethanol-

HNO3 

1:2 

Endocyclic 

nitrogen and 

exocyclic 

nitrogen 

[109] 

 

 It is also important to note that there are several proposed tautomeric forms of 

creatinine (I-IV), as shown in Figure 1.1. However, it has been observed that most of the 

creatinine-transition metal ion complexes have been reported with the tautomeric forms, I 

and III, of creatinine.  
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Figure 1.1: Tautomeric forms of creatinine. 

 

1.5 Development of new creatinine sensors 

Several new creatine sensors have been reported, especially in the last couple of 

decades, that have enriched the scientific community with exciting findings. Another 

noteworthy aspect regarding the new creatinine sensors is the use of different analytical 

methods as transduction systems. Earlier, only the colorimetric methods were 

predominantly employed to design creatinine determination methods, as was the case of 

the Jaffe method and the Enzymatic method used in the clinical practices too. Eventually, 

other transduction systems, such as fluorescence [114-122], Raman spectroscopy [123-

126], electrophoresis [127-129], chromatography tandem-mass spectroscopy [130-133], 

and electrochemistry [134-157], were also utilized, apart from some new colorimetric 

methods [158-163] being proposed. Amongst these, electrochemical sensors are claimed 

to have several advantages such as lower cost, higher sensitivity and selectivity, portability, 

ease of operation, time-saving and robustness [164]. Although it can be argued that the 

other transduction system might also have several benefits to offer, what gives an edge to 

electrochemical sensors, as rightly pointed out by Baranwal et al. [165], is the variability 

of the output signals in the form of voltage, current, electrochemical impedance, etc. and 

its low theoretical detection limits. 

In a broader sense, based on the mode of action, all creatinine determination 

methods can be classified into two categories: a) Enzymatic process, and b) Non-

enzymatic process. These two terms are readily comprehensible. Although the enzymatic 

processes accelerate the sensing reactions and are likely to offer higher selectivity, 

enzymes are expensive and sensitive to varying physiological conditions (pH and 

temperature) [166]. On the other hand, the non-enzymatic processes are comparatively 



 

 

 

 

 

 
1.19 

 

A general introduction to creatinine, its importance and its detection techniques 

 

 

Chapter-1 

more challenging to design for selective and precise sensing but usually offer long-term 

stability and are mostly cheaper than enzymatic processes. 

 

Figure 1.2: Illustration of the detection principles of different methods for non-enzymatic electrochemical 

determination of creatinine. 

 

As this thesis focuses on developing novel non-enzymatic electrochemical 

creatinine determination methods, understanding the working principles and detection 

techniques of some of the recently reported non-enzymatic electrochemical creatinine 

sensors is required. Prior to that, it is important to note a property of creatinine from the 

electrochemical point of view. It has been widely reported that creatinine is an 
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electrochemically inactive molecule [155, 156], that is, it doesn’t exhibit any peak at any 

potential on the bare electrode surface. Hence, most electrochemical creatinine detection 

methods are based on transforming creatinine into electroactive components by 

coordination with transition metal ions. When the electrode surfaces are deposited with 

metal ions or metal, it offers a platform for the creatinine-transition metal ion 

complexation. Due to this complexation, a shift in the potential and (or) change in the 

amplitude of the native redox peaks of the metal ions are (is) usually observed, as has been 

determined by Raveendran et al. [143] who analyzed the change in voltammogram 

responses of creatinine solution with a copper electrodeposited screen-printed electrode. 

It is found that such differences in the electrochemical response vary quantitatively with 

creatinine concentration and form the base for determining creatine levels in body fluids. 

The detection principle of such methods is illustrated in ‘Process 1’ of Figure 1.2. 

Copper is the most common transition metal with which, the complexation of 

creatinine has been explored for sensor development by several researchers [136-143]. 

Jankhunthod et al. reported a creatinine determination method, validated in synthetic 

urine, by carrying out electrodeposition of copper on the surface of graphite screen-printed 

electrode and establishing the difference between the cyclic voltammogram responses of 

buffer solutions in the absence and presence of creatinine respectively [136]. The physical 

stability of the deposited materials is often enhanced with binders like gelatin, Nafion, etc. 

Sato et al. reported a copper electrodeposited gold electrode, drop-coated with Nafion 

solution as the binder, for the electrochemical determination of creatinine [140]. 

Meanwhile, it has also been established that electrode materials in nano-dimensions 

improve the performance of the creatinine sensors [157]. Based on the same creatinine-

transition metal ion principle, Kumar et al. [138] demonstrated a highly sensitive and 

selective creatinine determination method in human serum, using a screen-printed carbon 

electrode, modified with cuprous oxide nanoparticles functionalized to a zwitterion. 

Furthermore, polymers are often introduced as supporting matrices for the metal ions on 

the sensing platform. Conductive and electroactive carbon-based materials like reduced 

graphene oxide (rGO), polypyrrole (PPy), polyaniline (PANi), carbon black (CB), carbon 

nanotubes (CNTs) etc. or their combinations are also used for amplification of the redox 

peaks, besides being used as support. For example, Gao et al. [142] used the combination 

of copper nanoparticles with rGO and polydopamine for electrode modification to design 
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a creatinine sensor. Apart from copper, iron ions in combination with different materials, 

such as Fe3+/CB [144] and Fe3+/cotton fibre membrane [145] have been another choice as 

electrode materials for the researchers to design creatinine sensors. Researchers also 

suggested a modification in this technique by utilizing the synergistic effect of combining 

two metals (metal ions), such as Ag/Fe [146], Au/Ag [147], and Cu2O/Au [148]. The 

synergistic effect of using two metals is produced in different ways. Mahmoud et al. 

observed two distinct anodic peaks for Ag+/Ag and Fe3+/Fe2+ redox processes respectively 

[146]. With the increase in creatinine concentration, while the intensity of the anodic peak 

for Ag+/Ag (IAg) decreased, the intensity of the anodic peak for Fe3+/Fe2+ (IFe) remains 

almost same, thus, indicating a stronger coordination between creatinine and Ag+. 

Mahmoud et al. reported better performance of the designed sensor, by enabling a 

ratiometric detection (IAg/IFe) of creatinine [146]. Nene et al. [147] reported a creatinine 

sensor, based on the chemisorption of creatinine via its N groups to Au(0) and Ag(0) which 

decreases the intensity of a conditionally produced single oxidation peak observed for both 

metals.  

Notably, electrode modification with metal ions is not necessary to design a 

creatinine sensor based on creatinine-transition metal ion complexation. Kaewket and 

Ngamchuea [137] reported an interesting process to determine creatinine level in synthetic 

urine by adding CuSO4 solution to the sample directly, thus, allowing the creatinine-copper 

complex in the sample itself, and recording the change in the voltammogram responses. 

Measures for prior removal of anions from the synthetic urine sample have to be taken in 

this process, as the metal cation could also form precipitates with phosphate and carbonate 

anions present in the sample [137]. The detection principle of such methods is illustrated 

in ‘Process 2’ of Figure 1.2. 

However, although very rare, the direct oxidation of creatinine on modified 

electrode surfaces has been reported in the literature, which somewhat contradicts the 

popularly accepted electrochemical inactivity of the molecule [134, 135]. While Fekry et 

al. [135] reported the combination of CNT, folic acid and Ag-nanoparticles, Singh et al. 

[135] reported the combination of Fe, Cu and rGO to modify the surface of the respective 

electrodes. The mechanism of direct electrochemical oxidation suggests the oxidation of 

the exocyclic amino group of creatinine to hydroxylamine, as the tautomeric form III of 

creatinine (shown in Figure 1.1) was considered to explain the mechanism. A certain 
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ambiguity does arise, whether the change in the voltammogram responses is truly due to 

the electrochemical oxidation of the molecule or if the metal ions on the electrode surface 

have any role to play. The detection principle of such methods is illustrated in ‘Process 3’ 

of Figure 1.2. 

 While the methods based on the creatinine-transition metal ion complexation have 

been leading in the non-enzymatic electrochemical creatinine determination process, 

another method opted by some researchers which has gained popularity too, is molecular 

imprinted polymer (MIP) based. The steps involved in the MIP-based creatinine 

determination processes can be divided into 3 general steps: a) co-deposition of a polymer 

and the template molecule (creatinine) on the electrode surface, b) fabricating the MIP by 

removing the template molecule from the electrode surface which creates creatinine-

shaped holes on the polymer, and c) recording the voltammogram or impedance of 

creatinine containing samples with the MIP-fabricated working electrode. The detection 

principle is based on the ability of the creatinine-shaped cavities on the polymer matrix to 

act as creatinine recognition centres. So, when the MIP-fabricated working electrode is 

dipped into samples containing creatinine, the molecule fits in the recognition centres, like 

the ‘lock and key’ model of enzyme action. This causes a change in the voltammogram or 

impedimetric response, which is proportional to the creatinine concentration. The 

detection principle of such methods is illustrated in ‘Process 4’ of Figure 1.2. 

 The co-deposition of the polymer and the template molecule on the electrode 

surface can be accomplished in two ways: i) direct electro-polymerization of the monomer 

by taking a solution of the monomer mixed with the template molecule, and ii) drop-

coating a polymeric solution on the electrode surface, after preparing the polymer in an 

ex-situ process in the presence of the template molecule. Both ways can lead to the 

fabrication of the electrode surface with the template-trapped polymer layer. The bonding 

between the monomeric group and the template molecule in the co-deposited polymer-

template layer can be either covalent or non-covalent (via hydrogen bonding, dipole-dipole 

interaction, van der Waals force, etc.) [167]. Sajini and Mathew [167] pointed out that 

while covalent bonding can result in more specific and well-defined recognition centres 

after template removal, non-covalent bonding requires simpler synthetic procedures and 

the template molecule can be extracted easily. Li et al. [149] reported electrode fabrication 

with a creatinine-imprinted polydopamine layer, in combination with graphene 
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nanoplatelets, for the electrochemical determination of creatinine.  Stirring in water and 

HCl was enough to overcome weak intermolecular interactions between creatinine and the 

monomeric groups and remove creatinine to form the MIP in the reported work [149]. On 

the other hand, Prabhu et al. [150] reported a reflux treatment in acetic acid to break the 

comparatively stronger H-bonding between creatinine and the monomeric unit of 

methacrylic acid in their reported MIP-based creatinine determination method. 

 Although the discussion above primarily focussed on non-enzymatic 

electrochemical creatinine sensors, It can be understood that designing new creatinine 

determination methods which can overcome the limitations of the clinically practised 

methods is a prime requisite and indeed a field of great interest for researchers in different 

corners of the world. In fact, creatinine is the most explored biological component after 

glucose in the sensor development area. The underlying mammoth challenge, however, 

can easily be sensed as both Jaffe and Enzymatic methods were developed into practical 

use many decades ago in the 20th century and, despite their limitations, no other proposed 

method could find prominence and wide acceptance yet. For a method to topple the long-

accepted clinically practised methods, it must be of superior quality on all fronts- 

precision, selectivity, LOD, cost, time, etc.  Nevertheless, the endeavour continues with a 

grander perspective now. Today, the task for the researchers is not merely to overcome the 

previous limitations but to develop their creatine sensor into a point-of-care-testing 

(POCT) device.  A POCT device for determining creatinine level can help patients needing 

frequent monitoring of their creatinine level to accurately access their renal function 

without visiting clinics every time.  

1.6 Importance of creatinine sensors in the future: a forecast 

Some recent studies reported that 700 million people in the world suffer from CKD 

and with the inclusion of acute kidney injury (AKI) and renal failure cases, the number 

stands at a staggering 850 million which is more than 10% of the world population [168, 

169]. While, the most common causes of CKD include hypertension, diabetes, genetics, 

obesity, malnutrition, use of tobacco products, exposure to drastic environmental changes, 

etc., a study on the role of lifestyle and economic perspective revealed that CKD has a 

much larger prevalence in low-income countries (LICs) and lower-middle-income 

countries (LMICs) [169]. Globally, there has been a 33% increase in CKD cases between 
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1990-2017, with almost one-third of the patients from India and China alone [169]. It has 

also been projected that by 2040, CKD will globally be the 5th leading cause of years of 

life lost (YLLs) after ischaemic heart diseases (IHD), stroke, lower respiratory infections 

(LRIs) and chronic obstructive pulmonary disease (COPD) [170]. 

If the importance of accurate creatinine sensors in the future has to be forecasted, 

the numbers on which the prediction can be based would be the rising cases of kidney 

diseases.  With creatinine promising to stay the most reliable renal function marker, the 

dependence on creatinine sensors is only likely to increase in the time ahead.  

1.7 Aim and objectives of the work 

Aim: To explore new approaches and develop novel non-enzymatic 

electrochemical methods for accurately determining creatinine levels in human serum and 

urine. 

To meet the aim of this work, the following objectives are fulfilled: 

✓ A urinary creatinine determination protocol is developed by chemical transformation 

of creatinine to an electro-active species in a metal-free condition. 

✓ Coordination of cobalt ion with creatinine and 2-nitrobenzadehyde (2-NBA) is 

established. 

✓ A serum creatinine determination method is developed based on the complexation 

property of creatinine with 2-NBA coordinated cobalt ion. 

✓ A new MIP platform is fabricated for creatinine determination, verified by the 

creatinine-copper interaction. 

✓ Interference studies are carried out for the new creatinine determination methods. 

✓ The methods are validated in real media. 

1.8 Plan of work 

❖ To study the electrochemical response of creatinine and 2-NBA mixture in buffer, in 

the presence of an alkali (NaOH), with bare glassy carbon electrode (GCE). 

❖ To establish the formation of electroactive species in the creatinine-2-NBA-NaOH 

system. 

❖ To identify the creatinine concentration-dependent redox peak in the creatinine-2-

NBA-NaOH system. 
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❖ To optimize the conditions (pH, reaction time and concentration) of the creatinine-2-

NBA-NaOH system for efficiently determining creatinine levels. 

❖ To study the creatinine-2-NBA-NaOH system in the presence of other urinary 

components (glucose, uric acid, ascorbic acid, dopamine and urea). 

❖ To demonstrate the creatinine-2-NBA-NaOH system for accurate electrochemical 

determination of urinary creatinine. 

❖ To propose a plausible mechanistic pathway of the reaction between creatinine and 2-

NBA in the alkaline medium and designate all the redox peaks, supported by 

electrochemical and spectroscopic findings. 

❖ To analyse the alteration in the creatinine-2-NBA reaction by adding cobalt ions to the 

system. 

❖ To optimize the conditions to yield creatinine-cobalt and creatinine-cobalt-2-NBA 

coordination complexes 

❖ To characterize the coordination complexes with microscopic, spectroscopic and 

electrochemical techniques. 

❖ To distinguish the physiochemical differences in the coordination complexes. 

❖ To study the electrochemical response of creatinine, cobalt ion and 2-NBA mixture in 

buffer with bare GCE. 

❖ To identify the change in voltammogram responses, proportional to the creatinine 

concentration, due to coordination in the creatinine-cobalt-2-NBA system. 

❖ To optimize the conditions (pH, reaction time and concentration) of the creatinine-

cobalt-2-NBA system for efficiently determining creatinine levels. 

❖ To study the creatinine-cobalt-2-NBA system in the presence of other serum 

components (uric acid, ascorbic acid, glucose, urea and albumin). 

❖ To carry out deproteinization of serum. 

❖ To demonstrate the creatinine-cobalt-2-NBA system for accurate electrochemical 

determination of serum creatinine. 

❖ To designate all the redox peaks in the creatinine-cobalt-2-NBA system, supported by 

electrochemical and spectroscopic findings. 

❖ To establish the dependence of the voltammogram response of aqueous copper 

sulphate solution on the direction of the potential sweep with bare platinum (Pt) 

electrode. 
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❖ To establish the impedimetric response of copper sulphate solution at different 

potentials. 

❖ To study the creatinine-copper interaction in aqueous medium, from an 

electrochemical and spectroscopic perspective. 

❖ To study the electrochemical response of creatinine with copper-deposited Pt 

electrodes. 

❖ To fabricate a creatinine-imprinted-PPy-deposited Pt electrode and electrochemically 

corroborate the fabrication by recording voltammograms of copper sulphate solution 

and impedimetric responses of different concentrations of creatinine solution with the 

modified electrode. 
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