Table of Contents

		Content	Page No.	
Absti	ract		i-vii	
Decl	aration		viii	
Certi	ficate		ix	
Ackn	owledgeme	ent	x-xi	
Tabl	e of Conter	nts	xii-xviii	
List of Tables				
List of Figures				
Abbr	eviations		xxiv	
Chaj	pter 1		1-12	
Intro	oduction			
1.1	Study co	ntext	1	
1.2	Research	gaps	5	
1.3	Key ques	stions	5	
1.4	Aims and	1 objectives	6	
1.5	Research	plan	6	
1.6	Thesis or	ganization	7	
	Bibliogra	aphy	9	
Chapter 2			13-46	
Revi	ew of Lite	rature		
2.1	Introduct	ion	13	
2.2	Solid wa	ste and vermicomposting	14	
	2.2.1	Recycling of waste through vermicompost	17	
	2.2.2	Earthworm species suitable for vermicomposting	17	
	2.2.3	Conditions required for vermicomposting	19	
	2.2.4	Mechanism of organic waste degradation and caste	19	
		production by Earthworm		
	2.2.5	Suitability of organic waste for vermi remediation	21	
	2.2.6	Significance	23	
2.3	Vermico	mpost – A warehouse of microbial resources	23	
	2.3.1	Microbes for energy	24	

	2.3.2	Microbes for resource recovery	26
2.4		Vermicompost and soil organic C pool – addressing critical	29
		questions	
	2.4.1	Soil organic storage – Can vermicompost help?	31
	2.4.2	How soil microbial community responds to vermicompost	32
		application?	
	2.4.3	Effects on soil biochemical health (enzymes and hormones)	33
	2.4.4	How vermi-technology enhances sustainable agricultural growth?	34
	Bibliogra	aphy	35
Chapter 3			47-53
Metł	nodology:	Planning of the experiment	
3.1	Phase	I: Efficiency evaluation of Eisenia fetida mediated	47
	vermico	mposting system with respect to aerobic composting	
3.2	Phase II	: Isolation and characterization of potent plant growth	48
		ng and biomass degrading microorganisms from earthworm	
	-	vermicompost samples.	
3.3	Phase	III: Formation of microbial consortiums for rapid conversion	49
	of agricu	Iltural field stubbles	
3.4	Quality assurance and quality control49		
	3.4.1	Sample storage and preservation	49
	3.4.2	Purity of chemicals, reagents, lab wares	50
	3.4.3	Calibration procedures	50
	3.4.4	Initial demonstration of performance	50
	3.4.5	Linear calibration range (LCR)	51
	3.4.6	Instruments and equipment's	51
		Bibliography	53
Chaj	pter 4		54-90
Chai	racterizat	ion and LCW mineralization potential of vermitechnology	
using	g selected	earthworm species (Eisenia fetida)	

4.1	Introduction	54
4.2	Materials and methods	56

4.2.1	Experiment-1: Bio-composting experiment and sampling	56
4.2.2	Physicochemical and microbial assessments during	57
	composting and vermicomposting	
4.2.2.1	Physical properties	58
	A. Measurement of Bulk density	58
	B. Measurement of Crystallinity index	59
4.2.2.2	Chemical properties	59
	A. Measurement of samples pH	59
	B. Estimation of Total organic carbon (%)	60
	C. Determination of Total Nitrogen (%)	61
	D Available phosphorus (mg kg ⁻¹) estimation	61
	E. Available potassium (mg kg^{-1}) estimation	63
	F. Estimation of Urease activity	64
	G. Phosphatase activity	64
	H. Compost respiration	65
	I. Humic acid and Fulvic acid	66
4.2.3	SEM	67
4.2.4	Microbial analyses	68
4.2.5.	Next generation sequencing and metagenomic analysis	68
4.2.5.1	Metagenome assembly	69
4.2.5.2	Taxonomic and functional annotation	69
4.2.6.	Experiment-2: Vermicomposting and composting with	70
	lignocellulosic biomass	
4.2.7.	Analysis of physicochemical and microbial properties in	71
	feedstocks	
4.2.8	Waste to wealth conversion efficiency and economic	71
	evaluation	
4.2.9	Statistical analyses	72
Result a	nd discussions	73
4.3.1	Chemical and microbial changes of composting and	73
	vermicomposting beds – determining the source viability for	
	potential ethanol producers	

4.3

	4.3.2	Physical changes in feedstocks under composting and	75
		vermicomposting	
	4.3.3	Changes in the chemical characteristics of different	76
		lignocellulosic feedstocks	
	4.3.4	Dynamics of microbial biomass carbon, microbial	78
		respiration, and bacterial and fungal counts	
	4.3.5	Taxonomic and functional diversity in compost and	80
		vermicompost: Next generation sequencing-based analyses	
	4.3.6	Waste conversion efficacy and economic evaluations	83
4.4	Conclusi	on	84
	Bibliogra	aphy	85
Chapter 5			91-131
Isolation, characterization, and applications of efficient LCW degrading			

Isolation, characterization, and applications of efficient LCW degrading bacterial strains from vermibeds and earthworm intestines as consortium candidates and ethanol production.

5.1	Introducti	on	91
5.2	Materials and methods		94
	5.2.1	Isolation of plant growth promoting bacterial strains from	94
		vermicompost and earthworm intestines	
	5.2.2	Screening of cellulose-degrading and carbohydrate-	94
		utilizing bacterial strains	
	5.2.3	Gas chromatographic estimation of ethanol production	95
		from sugar solution and banana peel	05
	5.2.3.1	Gas-chromatography	95
	5.2.3.2	Quality Assurance and Quality Control (QA) - (QC)	96
	5.2.4	Sedimentation rate, ethanol tolerance, and sugar tolerance	96
		of the microbial cultures	
	5.2.5	Identification of microorganisms through Gram staining	97
		and 16S rRNA sequencing	
	5.2.6	Assessing activity of ethanol-specific enzymes	98
	5.2.6.1	Enzyme assays	99
	5.2.6.1.1	Acetyl-CoA synthetase	99
	5.2.6.1.2	Pyruvate dehydrogenase complex	99

	5.2.6.1.3	Pyruvate kinase	100
	5.2.6.1.4	Alcohol dehydrogenase	100
	5.2.6.1.5	Pyruvate decarboxylase	100
	5.2.7	Flow cytometry and confocal microscopy: cellular function	101
		for sugar tolerance	
	5.2.8	Statistical Analysis	102
5.3	Results a	nd discussions	102
	5.3.1	Stage-1 vermicomposting experiment - Identification and	102
		isolation of bacteria with plant-growth-promoting traits: A	
		metagenome-linked exploration	
	5.3.2	Stage-2 vermicomposting experiment - Screening of	106
		cellulose degrading (Congo red assay) and carbohydrate	
		solubilizing efficiency	
	5.3.3	Ethanol production potential of bacterial strains in different	111
		substrates (5% sugar solution and banana peel) and their	
		molecular characterization	
	5.3.4	Sedimentation rate percentage, ethanol tolerance, sugar	114
		tolerance, and enzyme activation- mechanistic	
		understanding of bacteria-mediated bioethanol generation	
	5.3.5	Membrane integrity and cellular response of yeast and	118
		bacterial to sugar exposure: Understanding the differential	
		defense mechanism using flow cytometry and confocal	
		microscopy	
	5.3.6	Waste conversion efficacy	123
5.4	Conclusion		
	Bibliogra	phy	125
-	Chapter 6 132-1 Bacterial consortiums and lignocellulosic waste degradability: A field-		
based	l assessme	ent with crop refuge	

6.1	Introductio	n	132
6.2	Materials a	and methods	134
	6.2.1	Consortium development	134
	6.2.2	Media development for large scale application	135
	6.2.3	Invitro determination of consortium-mediated	137
		lignocellulosic degradation	
		A. Determination of Total organic carbon (%)	137
		B. Determination of total nitrogen (%)	138
	6.2.4	On field trial: Field stubble degradation study	138
	6.2.4.1	Description of Experimental Site	138
	6.2.4.2	Climatic condition during the experiment	139
	6.2.4.3	Experimental design, treatment used and parameters	140
	6.2.4.4	Collection of experimental soil sample	142
	6.2.5	Physico- chemical analysis of soil samples	143
		A. Measurement of soil pH	143-145
		B. Total nitrogen (%)	
		C. Total organic carbon (%)	
		D. Microbial biomass carbon	
		E. Obstinate C fractions (Humic acid (%) and Fulvic acid	
		(%)	
	6.2.6	Biomass parameters	146
	6.2.6.1	Biomass collection	146
		A. Volume measurement (ft^3)	146
		B. pH of the biomass sample	146
		C. Total nitrogen (%)	146
		D. Total organic carbon (%)	146
		E. Microbial biomass carbon	146
		F. Obstinate C fractions (Humic acid (%) and Fulvic acid	146
		(%))	
	6.2.7	Statistical analysis	147
6.3	Results and	d discussion	147
	6.3.1	Consortium development and Invitro efficacy assessment	147
	6.3.1.1	Antagonism and Synergistic relationship of organism	147

	6.3.2	Criteria for consortium formulations	149
	6.3.3	Invitro assessment of LCW degradation potential	151
	6.3.4	Field trial for assessing the efficacy of the consortiums to decompose field stubbles	153
6.4	Conclusion	1 0	157
	Bibliograph	iy	159
Chap	Chapter 7		162-167
Sumr	nary		
Anne	Annexure A		
Photo	Photographs		172-173
List o	List of Publications		