Dedicate this thesis to my beloved parents and inspiration

Abbajan & Ammajan

I hereby declare that the thesis entitled "Investigations on certain electrode materials for electrochemical capacitors", being submitted to Department of Physics, Tezpur University, Tezpur, Assam in partial fulfilment for the award of the degree of Doctor of Philosophy in physics and it has not been previously considered for the award of any degree, diploma, associateship, fellowship or any other similar title or recognition from any University, Institute or other organizations.

Date: 23-04-2025

Place: Tezpur

Howar Rahman

A[']towar Rahman

Enrollment No: PHP19107

Registration No:TZ203797 of 2021

TEZPUR UNIVERSITY (A Central University established by an Act of Parliament) Napaam, Tezpur-784028 DISTRICT: SONITPUR, ASSAM, INDIA

Dr. Shyamal Kumar Das Assistant Professor Department of Physics School of Sciences, Tezpur University Phone: 03712-275586 Email: skdas@tezu.ernet.in

CERTIFICATE OF THE SUPERVISOR

This is to certify that the thesis entitled **"Investigations on certain electrode materials for electrochemical capacitors"**, submitted to the school of sciences, Tezpur University in requirement of partial fulfilment for the award of the degree of Doctor of Philosophy in physics is a record of research work carried out by Mr. Atowar Rahman under my supervision and guidance.

All help received by him from various sources have been duly acknowledged. No part of this thesis has been submitted elsewhere for award of any degree.

Styand & Dm

(Shyamal Kumar Das)

Date: 23-04-2025

Place: Tezpur

Principal Supervisor

ACKNOWLEDGEMENT

At first, I thank the Almighty for sending me in the Earth, opportunities in my life, blessings me throughout this challenging Ph.D. journey, keeping me safe, happy, and constantly moving forward.

I am deeply honored and filled with immense joy as I express my heartfelt gratitude to my former esteemed supervisor, late Prof. Ashok Kumar, Professor in the Department of Physics at Tezpur University, whose guidance was pivotal in the initial stage of my PhD. His inspirations, constructive discussions and encouragements highly motivated me in the research work.

It is with great pleasure that I extend my profound thanks to my current supervisor, Dr. Shyamal Kumar Das, for his dynamic leadership and meticulous supervision. His unwavering support, encouragement, and insightful guidance were crucial to the success of this work. I am fortunate to have benefitted from his invaluable wisdom and dedicated involvement throughout my doctoral journey. I will forever cherish the mentorship and training he has provided me.

I would also like to express my sincere gratitude to my doctoral committee members, Dr. Rajib Biswas from the department of Physics and Prof. Kusum K. Bania from the Department of Chemistry at Tezpur University, Assam, for their insightful advice and guidance throughout my research.

I am deeply thankful to the former Vice Chancellor, Prof. V. K. Jain, and the current Vice-Chancellor, Prof. Shambhu Nath Singh of Tezpur University, for providing the necessary facilities and academic environment that supported my Ph.D. studies.

I also wish to express my gratitude to Prof. Pabitra Nath, Head of the Department of Physics, for offering essential research resources and his continuous support.

I would like to thank Council of Scientific and Industrial Research (CSIR), New Delhi, for the NET-JRF. I also extend my sincere gratitude to DST-SERB for the AUTOLAB 302N Modular Potentiostat Galvanostat, Netherlands (instrument) where I performed all the important measurements of my thesis. I would like express my sincere appreciation to SAIC, Tezpur University for providing access to advanced instrumentation for material characterization, NECBH at IITG for facility.

I am grateful to Tezpur University for providing me with this invaluable opportunity. The university's exceptional facilities and work-oriented environment have significantly contributed to my academic and personal growth.

I extend my sincere thanks to all the teachers in the Department of Physics, Tezpur University for their unwavering support and encouragement throughout my research.

I appreciate the help of all the staff members in the Department of Physics. Special thanks to Narayan da and Patir da, for their timely assistance and support.

I would also like to thank the past and present members of the Material Research Laboratory and Energy Storage Laboratory, Department of Physics, Tezpur University, with whom I had the privilege to work. Special mentions include Rituraj Da, Bhagyalakhi, Ba, Devalina Ba, Kashmiri, Ankush, Kakoli, Sushmita, Sunny, Ritupurna and Konica. My gratitude extends to all the research scholars, Department of Physics, for their assistance and insightful discussions.

Words cannot express my gratitude for the unwavering love, support and blessings I have received from my "Abbajan and Ammajan." You both mean the world to me, and I am deeply thankful for everything.

I also owe a debt of gratitude to my sisters (Lotifa and Moriom) for their unconditional love.

A special mention goes to my wife (Dr. Sultana Parven) for being there for me during the highs and lows of my Ph.D. journey.

I would like to thank my in laws for their encouragement and supports during the phase of my Ph.D.

I would like to thank all those who have supported me in various ways but whose names I could not mention here. I am forever grateful to you all.

Howeve Kahman (Atowar Rahman)

Date: 23-04-2025

LIST OF	TABLES
---------	--------

<u>Table No.</u>	Table caption	Page No.
	CHAPTER 1	
Table 1.1	Comparison of abundance, ionic radius and	9
	volumetric capacities of some selective metal ions	
	CHAPTER 2	
Table 2.	Specific capacitance of MoO ₃ //MoO ₃ and	50
	rGO/MoO ₃ //rGO/MoO ₃ cells in aqueous and gel	
	electrolytes at different current densities	
Table 2.2	Comparison of energy and power density of our	53-54
	present work with literature.	
	CHAPTER 3	
Table 3.1	Comparison of the difference of specific capacitance	73
	between 5 th and 45 th cycle for the potential windows	
	of (0-1.5) V, (0-1.7) V and (0-2) V at current density	
	of 0.5 Ag ⁻¹	
	CHAPTER 4	
Table 4.1	Comparison of stable specific capacitances at different	94
	electrolytes	
Table 4.2	Specific capacitance of VA // VA cells at different	98
	Current densities in aqueous and gel electrolytes	

LIST OF FIGURES

Figure No.	Figure caption	Page No.
	CHAPTER 1	
Figure 1.1	Ragone plot of different electrochemical devices	2
Figure 1.2	Block diagram of different classes of supercapacitors	5
Figure 1.3	Mechanism of EDLC type electrochemical capacitors	6
	(supercapacitors)	
Figure 1.4	Three different pseudocapacitors: (a) Intrinsic	8
	pseudocapacitor, (b) Intercalation pseudocapacitor	
	and (c) Extrinsic pseudocapacitor	
	CHAPTER 2	
Figure 2.1	Schematic diagram of electrospinning setup	36
Figure 2.2	Digital photographs of (a) 1 M AlCl ₃ aqueous electrolyte	38
	and (b) 1 M AlCl ₃ -PVA gel electrolyte	
Figure 2.3	XRD patterns of PVA/ammonium molybdate composite	39
	nanofibers, MoO3 and rGO/MoO3 nanorods	
Figure 2.4	(a) Thermogravimetric analysis (TGA) curve of	39
	PVA/ammonium molybdate composite nanofibers and	
	rGO/PVA/ammonium molybdate composite nanofibers	
	and (b) XRD patterns of graphene oxide (GO) and	
	reduced graphene oxide (rGO)	
Figure 2.5	Raman spectra of MoO_3 and rGO/MoO_3 nanorods with	40
	inset views in the range of 1500 cm^{-1} to 1800 cm^{-1} to	
	show the G band	
Figure 2.6	SEM images of (a) PVA/ammonium molybdate	40
	composite nanofibers, (b) MoO ₃ nanorod after	
	calcination, (c) rGO/PVA/ammonium molybdate	
	composite nanofibers and (d) rGO/MoO3 nanorod	
	after calcination	
Figure 2.7	CV curves of (a) MoO_3 nanorod and (b) rGO/MoO_3	42
	nanorod in 1 M AlCl ₃ aqueous electrolyte, (c) rGO/MoO_3	
	in gel electrolyte (1 M AlCl ₃ -PVA)	
Figure 2.8	CV curves of MoO ₃ //MoO ₃ symmetric cell in 1 M AlCl ₃	43

	aqueous electrolyte in the potential window of (a) (0-1.3) V	
	and (b) (0-1.5) V, (c) (0-1.7) V and (d) (0-1.9) V	
Figure 2.9	CV curves of $MoO_3//MoO_3$ and $rGO/MoO_3//rGO/MoO_3$	43
	in the potential range of $(0-1.5)$ V at scan rates of (a) 2 mVs ⁻¹ ,	
	(b) 3 mVs ⁻¹ , (c) 100 mVs ⁻¹ in 1 M AlCl ₃ aqueous electrolyte	
Figure 2.10	CV curves of rGO/MoO ₃ //rGO/MoO ₃ symmetric cell in gel	44
	electrolyte (1 M AlCl ₃ -PVA) in the potential window of	
	(a) (0-1.5) V, (b) (0-2) V, (c) (0-2.2) V and (d) (0-2.4) V. The	
	scan rate is 2 mVs ⁻¹	
Figure 2.11	CV curves of $MoO_3//MoO_3$ cell in the potential range of	45
	(0-1.5) V at scan rate of (a) 3 mVs^{-1} , (b) 5 mVs^{-1} , (c) 7 mVs^{-1} ,	
	10 mVs^{-1} , (e) 50 mVs^{-1} , and (f) 100 mVs^{-1} in aqueous	
	electrolyte (1 M AlCl ₃)	
Figure 2.12	CV curves of $rGO/MoO_3//rGO/MoO_3$ cell in the potential	45
	range of (0-1.5) V at scan rate of (a) 3 mVs^{-1} , (b) 5 mVs^{-1} ,	
	(c)7 mVs ⁻¹ , (d) 10 mVs ⁻¹ , (e) 50 mVs ⁻¹ , and (f) 100 mVs ⁻¹	
	in aqueous electrolyte (1 M AlCl ₃)	
Figure 2.13	CV curves of rGO/MoO ₃ //rGO/MoO ₃ cell in the potential	46
	range of (0-2) V at scan rate of (a) 3 mVs^{-1} , (b) 5 mVs^{-1} ,	
	(c) 7 mVs ⁻¹ , (d) 10 mVs ⁻¹ , (e) 50 mVs ⁻¹ and (f) 100 mVs ⁻¹	
	in gel electrolyte (1 M AlCl ₃ -PVA)	
Figure 2.14	Electrolyte stability test. CV curves obtained from a Ti-Ti	47
	cell in 1 M AlCl ₃ aqueous electrolyte at scan rate of 2 mVs^{-1}	
	in the voltage range of (a) (0-1.3) V, (b) (0-1.5) V, (c) (0-1.7)	
	V, (d) (0-2.2) V. (e) comparison of all the CV profiles	
Figure 2.15	Electrolyte stability test. CV curves of (a) Ti-Ti cell and	48
	MoO ₃ //MoO ₃ cell in 1 M AlCl ₃ aqueous electrolyte at scan	
	rate of 2 mVs ^{-1} , the magnified version of (a) is shown in (b).	
	CV curves of (c) Ti-Ti cell and rGO/MoO ₃ //rGO/MoO ₃ cell	
	in gel electrolyte (1 M AlCl ₃ -PVA), the magnified version	
	of (c) is shown in (d).	
Figure 2.16	Electrolyte stability test. CV curves obtained from a Ti-Ti	49
	cell in gel electrolyte (1 M AlCl ₃ -PVA) at scan rate of 2 mVs ⁻¹	
	in the voltage range of (a) $(0-2)$ V and (b) $(0-2.4)$ V. (c)	

comparison of all the CV profiles

Figure 2.17	Galvanostatic charge/discharge curves of (a) MoO ₃ //MoO ₃	50
	cell in 1 M AlCl ₃ aqueous electrolyte, (b) rGO/MoO ₃ //rGO/	
	MoO ₃ cell in 1 M AlCl ₃ aqueous electrolyte and (c) rGO/MoO ₃	
	//rGO/MoO ₃ in gel electrolyte (1 M AlCl ₃ -PVA)	
Figure 2.18	Rate performances of MoO ₃ //MoO ₃ and rGO/MoO ₃ //rGO/MoO ₃	52
	cells in aqueous and gel electrolyte	
Figure 2.19	(a) Long-term cycle performance at current density of 1 Ag ⁻¹	52
	up to 1000 cycles and (b) plot of energy density vs power	
	density at different current densities	
Figure 2.20	self-discharge curves in aqueous and gel electrolytes	54
	CHAPTER 3	
Figure 3.1	Schematic diagram of synthesis of polyaniline	61
Figure 3.2	Schematic diagram of synthesis of vanadium oxy-acetylacetonate	61
Figure 3.3	XRD pattern and FESEM image of (a, b) VOA and (c, d) PANI	63
	Respectively	
Figure 3.4	(a) Raman and (b) FTIR spectra of PANI	63
Figure 3.5	CV profiles of VOA in (a) 1 M AlCl ₃ , (b) 0.5 M Al ₂ (SO ₄) ₃ and	
	(c) 1 M Al(NO ₃) ₃ aqueous electrolytes	
Figure 3.6	Discharge-charge profile of (a) VOA and (b) capacity versus	65
	cycle number of VOA in 1 M AlCl ₃ aqueous electrolyte	
Figure 3.7	(a) CV profiles (b) Discharge-charge profile and (a) Capacity	65
	versus cycle number of PANI in 1 M AlCl3 aqueous electrolyte	
Figure 3.8	CV profiles of PANI for the aqueous electrolytes	66
	(a) 0.5 M Al ₂ (SO ₄) ₃ and (b) 1 M Al(NO ₃) ₃ , Charge-discharge	
	profiles of PANI for the aqueous electrolytes (c) $0.5 \text{ M Al}_2(SO_4)_3$	
	and (d) 1 M Al(NO ₃) ₃ and (e) Comparison of long cycling stability	,
	of PANI for all the aqueous electrolytes	
Figure 3.9	CV profiles of (a) PANI and (c) VOA at different scan rates.	67
	Plot of log (peak current) vs log (scan rate) for (b) PANI	
	and (d) VOA	
Figure 3.10	CV profiles of VOA in 1 M AlCl3 aqueous electrolyte at	68
	different scan rates. [NOTE: it was difficult to identify the	
	cathodic peak in the	

	case of VOA at higher scan rates. Therefore, to calculate the	
	b value, the most distinct anodic peak (labeled as peak	
	C) is considered.]	
Figure 3.11	CV profiles of PANI in 1 M AlCl ₃ aqueous electrolyte at	68
	different scan rates	
Figure 3.12	CV profiles of VOA in (a) 1 M HCl and (b) 0.5 M H ₂ SO ₄ ,	69
	CV profiles of PANI in (c) 1 M HCl and (d) $0.5 \text{ M H}_2\text{SO}_4$	
Figure 3.13	Schematic diagram of VOA/PANI cell	70
Figure 3.14	CV profiles of VOA/PANI asymmetric supercapacitor in	70
	different potential windows	
Figure 3.15	Charge-discharge profiles of VOA/PANI in the potential	71
	windows of (a) (0-1.5) V, (b) (0-1.7) V, (c) (0-2) V at current	
	density of 0.5 Ag ⁻¹	
Figure 3.16	Rate capability of VOA/PANI in the potential windows of	71
	(a) (0-1.5) V, (b) (0-1.7) V, (c) (0-2) V	
Figure 3.17	(a) Energy density vs power density plot and (b) Long term	72
	stability curve in the potential window (0-2) V	
Figure 3.18	Snapshot of the demonstration of the VOA/PANI cell to light	73
	up a LED light	
	CHAPTER 4	
Figure 4.1	Schematic diagram of synthesis of vanadyl acetate	76
Figure 4.2	Digital photographs of (a) 0.5 M Na ₂ SO ₄ /Gum (gel) and	78
	(b) 0.5 M Na ₂ SO ₄ /Silica (gel) electrolytes	
Figure 4.3	(a) XRD pattern, (b) Raman spectrum, (c) TGA and (d) FESEM	79
	image of VA	
Figure 4.4	CV profiles of VA in (a) 0.5 M $Al_2(SO_4)_3$ and (b) 1 M $AlCl_3$	79
	at a scan rate of 2 mVs ⁻¹	
Figure 4.5	CV profiles of VA in (a) 1 M NaCl and (b) 1 M LiCl aqueous	80
	electrolytes	
Figure 4.6	CV profiles of VA in (a) 1 M HCl and (b) 1 M H_2SO_4 aqueous	80
	electrolytes and (c) DI water	
Figure 4.7	Discharge- charge profiles of VA in (a) $0.5 \text{ M Al}_2(SO_4)_3$ and (a)	81
	1 M AlCl ₃ aqueous electrolytes	
Figure 4.8	Comparison of long cycle stability of VA in 0.5 M $Al_2(SO_4)_3$	82

Figure 4.9	and 1 M AlCl ₃ aqueous electrolytes at current density of 1 Ag ⁻¹ CV profiles of VA (a) 1 M AlCl ₃ /NH ₄ OH (aq, pH=3.6) and (b) 1 M AlCl ₃ /NH ₄ OH/PVA (gel, pH=3.4) electrolytes, Discharge-charge profiles of VA in (c) 1 M AlCl ₃ /NH ₄ OH (aq, pH=3.6) and (d) 1 M AlCl ₃ /NH ₄ OH/PVA (gel, pH=3.4) electrolytes and (e) Comparison of cycle stabilities	83
Figure 4.10	(a) XRD and (b) Raman spectrum of VA, rGO/VA and	84
	CNT/VA	
Figure 4.11	FESEM images of (a) rGO, (b) CNT, (c) rGO/VA and (d) CNT/VA	85
Figure 4.12	CV profiles of (a) rGO/VA and (b) CNT/VA at scan rate of	86
	2 mVs ⁻¹ in 1 M AlCl ₃ , charge- discharge profiles of (c) rGO/VA	
	and (d) CNT/VA, (e) Comparison of cycle stability at current	
	density of 1 Ag ⁻¹ in 1 M AlCl ₃ aqueous electrolyte	
Figure 4.13	Ex-situ XRD of pristine VA electrode and after first charge	87
	and first discharge states	
Figure 4.14	Ex-situ FESEM of (a) pristine VA electrode and (b) after first	87
	charge state	
Figure 4.15	Ex-situ Raman of (a) pristine VA electrode and after 1 st & 20 th	88
	discharge states, enlarged view corresponding to (b) yellow,	
	(c) pink and (d) green portions	
Figure 4.16	CV profiles of (a) VA in 1 M MgSO ₄ and (b) 1 M MgCl ₂	89
	electrolytes at scan rate of 2 mVs ⁻¹ , Charge-discharge profiles	
	of VA in (c) in 1 M MgSO ₄ and (d) 1 M MgCl ₂ electrolytes at	
	current density of 1 Ag^{-1} and (e) Comparison of cycle stability	
	at current density of 1 Ag ⁻¹ over 100 cycles	00
Figure 4.17	CV profiles of (a) VA in 0.5 M Na ₂ SO ₄ and (b) 1 M NaCl	90
	electrolytes at scan rate of 2 mVs ⁻¹ , Charge -discharge profiles of VA in (a) in 0.5 M Nz SO, and (d) 1 M Nz Chalastar lates at	
	of VA in (c) in 0.5 M Na ₂ SO ₄ and (d) 1 M NaCl electrolytes at current density of 1 Ag ⁻¹ and (e) Comparison of cycle stability	
	at current density of 1 Ag^{-1} over 100 cycles	
Figure 4.18	EDS spectra of VA after 1 st discharge state and the	91
1 iguit 4.10	corresponding atomic percentages of the elements (inset table)	71
Figure 4.19	Elemental mappings of VA electrode material after 1 st discharge	91

state

	Suite	
Figure 4.20	(a) Ex-situ Raman spectra of VA after 1^{st} and 20^{th} discharge	92
	states, (b-c) enlarged view of the peaks at 161 cm ⁻¹ , 263 cm ⁻¹ ,	
	$510 \text{ cm}^{-1} \text{ and } 695 \text{ cm}^{-1}$	
Figure 4.21	(a) Ex-situ XRD patterns of pristine VA, 1 st discharged and	93
	1 st charged state electrodes, FESEM images of (b) pristine	
	VA electrode, (c) 1 st discharged state and (d) 1 st charged	
	state electrodes in 0.5 M Na ₂ SO ₄ electrolyte	
Figure 4.22	Comparison of cycling stability at current density of 1 Ag ⁻¹	93
	over 100 cycles in (a) 0.5 M Al ₂ (SO ₄) ₃ , 1 M MgSO ₄ ,	
	0.5 M Na ₂ SO ₄ and (b) 1 M AlCl ₃ , 1 M MgCl ₂ , 1 M NaCl	
	electrolytes over 100 cycles	
Figure 4.23	Digital Photographs of electrolytes (a) 0.5 M Al ₂ (SO ₄) ₃ ,	94
	(b) 1 M MgSO ₄ and (c) 0.5 M Na ₂ SO ₄ after 100 cycles	
Figure 4.24	CV curves of VA // VA symmetric supercapacitor at scan	95
	rate of 2 mVs ⁻¹ in 0.5 M Na ₂ SO ₄ (aq) electrolyte for the	
	potential window (a) (0-1.4) V, (b) (0-1.6) V, (c) (0-1.8) V,	
	(d) (0-2) V and (e) (0-2.2) V	
Figure 4.25	CV profile of Bare graphite // Bare graphite cell in 0.5	95
	M Na ₂ SO ₄ (aq) electrolyte	
Figure 4.26	CV profiles of VA // VA cell in the potential window (a)	96
	(0-1.6) V, (b) (0-1.8) V, (c) (0-2) V, (d) (0-2.2) V	
	in 0.5 M Na ₂ SO ₄ /Gum (gel) electrolyte	
Figure 4.27	CV profiles of VA // VA cell in the potential window (a)	96
	(0-1.6) V, (b) (0-1.8) V, (c) (0-2) V, (d) (0-2.2) V	
	in 0.5 M Na ₂ SO ₄ /Silica (gel) electrolyte	
Figure 4.28	GDC profiles of VA // VA symmetric supercapacitor at current	97
	density of 0.1 Ag ⁻¹ in (a) 0.5 M Na ₂ SO ₄ (aq), (b) 0.5 M Na ₂ SO ₄ /	
	Gum (gel) and (c) 0.5 M Na ₂ SO ₄ /Silica (gel) electrolytes	
Figure 4.29	Rate capabilities of VA // VA symmetric supercapacitor in	98
	aqueous and gel electrolytes	
Figure 4.30	Comparisons of (a) energy densities vs power densities and	99
	(b) long term cycling stabilities (at higher current density	
	2 Ag ⁻¹ up to 2000 cycles) of VA // VA symmetric supercapacitor	

	in aqueous as well as gel electrolytes	
	CHAPTER 5	
Figure 5.1	(a) XRD pattern, (b) Raman -spectrum and (c) FTIR	104
	spectrum of VOH	
Figure 5.2	(a-b) FESEM images of VOH	105
Figure 5.3	CV profiles of VOH in (a) 0.25 M AlCl ₃ , (b) 0.5 M AlCl ₃	106
	and (c) 1 M AlCl ₃ aqueous electrolytes and (d) the	
	comparison of area under the curves	
Figure 5.4	CV profiles of VOH in (a) 0.5 M $Al_2(SO_4)_3$ and	107
	(b) 1 M Al(NO ₃) ₃ aqueous electrolytes	
Figure 5.5	CV profile of VOH in 1 M AlCl ₃ /PEO (gel) electrolyte	107
Figure 5.6	CV profiles of VOH in (a) 1 M LiCl and (b) 1 M NaCl	108
	aqueous electrolytes	
Figure 5.7	CV profiles of VOH in (a) 1 M HCl and (b) $0.5 \text{ M H}_2\text{SO}_4$	108
	aqueous electrolytes	
Figure 5.8	GCD profiles of VOH in (a) 0.25 M AlCl ₃ (b) 0.5 M AlCl ₃ ,	109
	(c) 1 M AlCl ₃ aqueous electrolytes and (d) 1 M AlCl ₃ /PEO	
	(gel) electrolytes	
Figure 5.9	Specific capacitance versus cycle number at current	110
	density of 1 Ag ⁻¹ over 100 cycles for all the	
	aqueous and gel electrolytes	
Figure 5.10		110
	1 M AlCl ₃ /PEO gel electrolytes with the equivalent circuit	
	diagram	
Figure 5.11	GCD profiles of VOH in (a) 0.5 M AlCl ₃ , (b) 1 M Al(NO ₃) ₃	111
	at current density of 1 Ag ⁻¹ and (c) Specific capacitance versus	
	cycle number	
Figure 5.12	(a) CV profiles of VOH at scan rate from 3 mVs ⁻¹ to	112
	10 mVs ⁻¹ in 1 M AlCl ₃ aqueous electrolyte, (b) log	
	(scan rate) vs log (peak current) plot and (c)	
-	charge storage contribution plot	
Figure 5.13	(a) XRD pattern, (b) Raman and (c) FTIR of AlVOH	113
Figure 5.14	(a-b) FESEM images of AlVOH	113

Figure 5.15	CV profiles of AlVOH in (a) 1 M AlCl ₃ , (b)	114
	0.5 M Al ₂ (SO ₄) ₃ and (c) 1 M Al(NO ₃) ₃ aqueous electrolytes	
Figure 5.16	GCD profiles of AlVOH in (a) 1 M AlCl ₃ , (b)	115
	$0.5 \text{ M Al}_2(SO_4)_3$ and (c) $1 \text{ M Al}(NO_3)_3$ aqueous electrolytes	
Figure 5.17	Comparison of cycling stability up to 100 cycles at current	115
	density of 1 Ag ⁻¹	
Figure 5.18	(a) CV profiles and (b) GCD profiles of AlVOH in	116
	1 M AlCl ₃ /PEO gel electrolyte and (c) the comparison	
	of cycling stability up to 100 cycles	

ABBREVIATIONS

Abbreviations/Symbols

<u>Name</u>

MoO ₃	Molybdenum trioxide
GO	Graphene oxide
rGO	Reduced graphene oxide
CNT	Carbon nanotube
PVA	Polyvinyl alcohol
XRD	X-ray diffraction
TGA	Thermogravimetric analysis
FESEM	Field Emission Scanning Electron Microscope
SEM	Scanning Electron Microscope
FTIR	Fourier-transform infrared spectroscopy
NMP	N-Methyl-2-pyrrolidone
PVDF	Polyvinylidene fluoride
EDLC	Electric double layer capacitor
Fg ⁻¹	Farrad per gram
Ag ⁻¹	Ampere per gram
mVs ⁻¹	Millivolt per second
CV	Cyclic voltammetry
GCD	Galvanostatic charge discharge
Al ³⁺ ion	Aluminium ion
mL	Milliliter
g	Gram
mg	Milligram
М	Molar
%	Percent
h	hour
mA	Mili ampere
А	Ampere
S	Second
V	Volt
cm ⁻¹	Per centimeter

Degree Celsius
Joint Committee on Powder Diffraction Standards
Aluminium chloride
Aluminium sulfate
Aluminium nitrate
Watt-hour
Kilogram
Watt
Weight
Sodium ion
Magnesium ion
Polyaniline
Vanadium oxy-acetylacetonate
Vanadyl acetate
Hydrated vanadate
Aluminium
Electrochemical impedance spectroscopy
Megahertz
Hertz
With respect to
Magnesium chloride
Magnesium sulfate
Sodium chloride
Sodium sulfate