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Introduction 

Energy serves as a fundamental input in numerous manufacturing and 

consumption activities, making it a key driver for economic growth. It is one of the 

most critical components of economic development. Energy is vital for the operation 

of any modern economy, fueling industrial development and enhancing productivity. 

It is argued that, increases in energy consumption are directly linked to rises in gross 

domestic product (GDP) [1]. The energy crises of the 1970s and soaring energy costs 

significantly impeded economic progress [2]. Since the late 1970s, there had been 

considerable research in finding the relationship between energy consumption and 

economic growth [1, 2, 3]. Energy systems play a pivotal role in collecting energy 

from various sources and converting it into the forms necessary for diverse industries 

and sectors, including transportation, manufacturing, construction, and utilities. Fossil 

fuels and other energy sources can be readily stored to meet consumer demand when 

needed. In contrast, energy derived from renewable sources including wind and solar 

requires captures during peak availability and storage for subsequent use. Thus, 

energy storage systems are essential for functions including load leveling, power 

quality and reliability [1-3]. 

1.1 Importance of energy storage 

Storing energy for future use is the most basic form of energy storage. This 

capability reduces the need for fuel dependent backup power sources like generators. 

In recent times, there has been a constant demand for sustainable, economical, and 

efficient energy sources to meet the world's rising energy needs as technology 

advances. The new energy economy is redefining the need for a global shift in energy 

dependence from conventional fossil fuel based resources to renewable sources [5]. 

As a result, renewable energy sources are being prioritized to provide clean energy. 

Many initiatives are being made to harness energy for renewable clean energy 

sources, such as solar, wind, and tidal energy which can reduces reliance on fossil 

fuels and enable zero carbon emissions in the environment [6, 7]. In general, multiple 

kinds of energy storage systems exhibited, which fall into different categories. Among 

these, electrochemical energy storage technologies, like rechargeable batteries and 

supercapacitors stand out as highly efficient and promising because of their 

impressive energy and power density, durability, small size as well as simple 
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assembly process. [6-8]. Electrochemical energy storage devices have revolutionized 

the world of portable electronics, and are also used in electric vehicles. A "Ragone 

plot" [8, 9] is frequently used to display the relationship between specific energy as 

well as specific power storage characteristics of various electrochemical energy 

storage types (Figure 1.1). This plot highlights the advantages and disadvantages of 

each storage type for applications requiring different energy storage capacities and on 

demand energy extraction rates. Additionally, it helps to determine which energy 

storage option is best suited for a given application or set of requirements. Here, 

specific power density or power density is defined as the rate of energy transfer per 

unit volume or mass, and specific energy or energy density is defined as the amount 

of energy accumulated per unit volume or mass [8]. As a result, a device that offers 

high energy and power density is always preferable. 

                     

Figure 1.1: Ragone plot of various electrochemical devices. 

1.2 Electrochemical ways to store energy 

1.2.1 Battery 

Batteries are the form of energy storage device that can be broadly classified 

into two categories viz primary batteries and secondary batteries. The redox reactions 

that occur in primary batteries are irreversible, meaning they cannot be electrically 

recharged. Secondary batteries, on the other hand, undergo reversible Faradic redox 
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processes. Rechargeable batteries are another common name for secondary batteries. 

Batteries have comparatively high energy storage capacity than electrochemical 

capacitors. The outcome of a battery is a lower power density but higher energy 

density. Therefore, the development of electrode as well as electrolyte materials that 

can provide high energy and power density at a reasonable cost is one of the main 

goals in rechargeable battery research [10]. Over the past thirty years, research on 

rechargeable batteries such as lithium ion (LIBs) and lead acid batteries (LEAs) has 

received the highest priority in electrochemical energy storage technologies [5-7]. 

Despite the fact that, lead acid batteries have been available for a while, the invention 

of rechargeable Li-ion batteries, which debuted in 1991, significantly altered 

humankind's modern way of life. LiCoO2 was used as the cathode and graphitic 

carbon as anode in the first Li-ion battery [11, 12]. Most portable electronic devices, 

including laptops and cell phones, are powered by Li ion batteries. However, due to 

the scarcity and rising expense of Li resources, there are now rising doubts about the 

sustainability of Li based batteries [13]. Therefore, cost effective and sustainable 

electrochemical energy storage technologies must be developed using resources that 

are mostly found on the Earth’s crust and, if possible, locally accessible over a wide 

range of geographic locations. As a result, there has been a surge in research on 

battery chemistries that utilize ions other than Li ion, like Na+, Mg2+, K+, Zn2+, and 

Al3+ ions etc. 

1.2.2 Electrochemical capacitor/Supercapacitor  

Energy storage technologies, such as lead acid and metal ion batteries, deliver 

high energy densities but are hindered by their poor power densities and short 

operational life time. A conventional capacitor works as an energy storage device by 

isolating the opposite charges through the application of electric field. The energy 

stored is released as electrical power. Yet, the specific capacitance of a conventional 

capacitor is restricted to the microfarad range as only the electrode’s surface area is 

used for charge storage. To address this limitation, supercapacitors (or 

ultracapacitors/electrochemical capacitors) have been developed because of their high 

power density [14]. Similar to conventional capacitor, supercapacitors also composed 

of two electrodes having electroactive materials of high surface area. The electrodes 

are called cathode and anode, and they are separated by an electrolyte. The last twenty 
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years have seen a great deal of research on supercapacitors because of their capacity 

to withstand millions of rapid charge/discharge cycles and instantaneous power 

supply [14-18]. Supercapacitors employ a range of electrolytes and high surface area 

electrodes to achieve optimal electrochemical performances [19]. Typically, the 

maximum voltage that a supercapacitor can withstand with water based electrolytes is 

approximately 1.23 V. However, with non aqueous electrolytes such as organic or 

ionic liquid electrolytes, the voltage can surpass 3 V [20-22]. Depending on charge 

storage processes, supercapacitors are classified as either electrochemical double layer 

capacitors (EDLCs) or pseudocapacitors [23, 24]. In EDLC, charges are accumulated 

at the electrode-electrolyte interface through the formation of electrochemical double 

layers. In contrast, in pseudocapacitors, rapid redox reactions occur in the electrodes 

[24, 25]. Additionally, there is a type of supercapacitor known as hybrid 

supercapacitor. It is the improved version of EDLC and pseudocapacitors designed to 

address the shortcomings of their individual charge storage mechanisms. It stores 

charges using a combination of chemical and physical processes [14]. The 

electrochemical performance of supercapacitors is significantly enhanced by the 

developments in nanoscience and nanotechnology. This is because extremely high 

surface electrode materials could be achieved in nanostructured materials and the 

electrolyte can access more area in these materials resulting in higher ion flux. The 

electrodes used in EDLCs are typically carbon nanomaterials like graphene and 

carbon nanotubes [26]. Pseudocapacitor electrodes can be made from various 

materials such as transition metal hydroxides and oxides, electrically conducting 

polymers, MXenes, transition metal dichalcogenides (TMDs) and metal-organic 

frameworks [27-33]. 

Supercapacitors are also categorized as symmetric, asymmetric, or battery 

type depending on the arrangement of the electrodes within the cell [14]. Symmetric 

supercapacitor uses two similar electrodes, whereas asymmetric supercapacitors 

employ two different electrode materials. Since the supercapacitor electrode do not 

have higher energy density than the battery electrodes, therefore, a third form of 

supercapacitor known as battery type hybrid supercapacitor exists where one of the 

electrodes is battery type [14]. Metal ions, such sodium and lithium ions, are 

incorporated into the electrode nanostructure for charge storage, which results in the 
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high energy density [34]. A block diagram classifying the supercapacitors is shown in 

figure 1.2. 

 

Figure 1.2: Block diagram of different classes of supercapacitors 

1.2.2.1 Electric double layer capacitor (EDLC) 

Becker was the first person who introduced the idea of EDL capacitance in 

1957 using an aqueous electrolyte and a porous carbon substance [35]. Later, 

Helmholtz proposed the double layer charge storage process [36]. It states that, 

depending on the size of the ions in the electrolyte, oppositely charged ions are 

adsorbed at the electrode/electrolyte interfaces. Through Coulombic contact, the ions 

with opposite charges form in the electrolyte near the electrode, keeping the system’s 

charge neutrality intact. Figure 1.3 shows the EDL formation between the electrode 

and electrolyte. The double layer formation is somewhat close to that of a traditional 

capacitor, where the double layer capacitance can be derived as: 

C =
𝜀𝐴

𝑑
  …………………..(1.1) 

where “C” represents the capacitance, “𝜀” represents the permittivity of dielectric 

medium, “A” represents the surface area of the electrode and “d” represents the 

distance between the electrode and electrolytic ions [37]. This kind of charge storage 

is generally found in carbon-based materials such as graphene, carbon nanofibers, 

graphene derived carbons, carbon nanotubes [38-40]. 
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Figure 1.3: Mechanism of EDLC type electrochemical capacitors (supercapacitors)  

Additionally, EDLC stores charges electrostatically, therefore, any changes in 

potential cause them to react instantly. Moreover since, there is no faradic reaction, 

they have a high power density but a low energy density. Because the physical 

adsorption of electrolytic ions inhibits their energy density, which creates a barrier to 

their practical applicability [41, 42]. Gouy and Chapman, proposed a different model 

for double layer formation, who took into account the thermal motion of ions and 

treated them as point charges. This concept states that the solution's temperature 

fluctuation causes the "diffuse layers" of oppositely polarized ions to balance the 

electrode's surface charge. By taking into account the ions' finite size, Stern [43-44] 

altered Gouy and Chapman's model where the overall capacitance of the double layer 

was estimated by considering both the Helmholtz/diffusion layers. Then, Grahame 

improved Stern's model by taking into account the fact that anions and cations have 

various sizes, as a result, the anions and cations have varying distances from the 

electrode [43-44]. Several factors affect the EDLC component of the double layer, 

including the solvent for the electrolyte, the size and concentration of ions, their 

specific absorption, and the interaction between the ions and solvent. The electrodes 

in EDLC systems, composed of thin EDL and porous carbon material with an 

extremely high specific surface area (approximately 2000 m2g-1), result in high 

capacitance value [45]. Besides, the pores in the carbon materials also significantly 

impact the dynamics of electrolytic ions and, hence, the specific capacitance value. If 

the two electrode surfaces are denoted by ES(1) and ES(2), the cations and anions are 
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represented by C+ and A−, respectively, and the EDL is represented by //. Thus the 

reversible charging-discharging process of EDLC may be stated as follows: 

Anodic reaction: ES(1)+A- ⇆ ES(1)+//A- +e- 

Cathodic reaction: ES(2)+e- +C+⇆ ES(2)-//C+ 

As charging occurs, the cations in the electrolyte are attracted to the cathode 

and the anions travel towards the anode under the influence of an external power 

supply. While preventing short circuit between the cathode and anode, the membrane 

selectively permits the passage of electrolyte ions from one side to the other. As a 

result, the device stores the energy. This stored energy is used when electrons move 

from cathode to anode during discharge. However, electrodes do not alter their 

structure and, hence, the electrodes have an exceptionally long cycle life (~105 cycles) 

[46]. Therefore, due to the quick reversible charge storage and release at the electrode 

and electrolyte interfaces, supercapacitors utilizing the EDLC process exhibit high 

power density (greater than 500 W kg−1) [46]. But while comparing to battery energy 

densities, EDLC supercapacitors have a lower energy density since these physical 

charge transfer phenomena are limited to the electrode’s surface. This disadvantage 

can be improved by employing pseudocapacitive mechanism. 

1.2.2.2 Pseudocapacitor 

In 1997, Conway described that pseudocapacitors have comparable 

electrochemical properties to EDLCs, but their charge storage process differs greatly 

from that of typical EDLCs because extremely reversible faradic redox processes 

occur at the surface and subsurface regions of the electrode materials [47, 48]. The 

pseudocapacitors are divided in three different subcategories according to the charge 

storage mechanism: (i) surface redox reaction or intrinsic pseudocapacitors (ii) 

intercalation type reaction or intercalation pseudocapacitors and (iii) battery type 

faradic reaction or extrinsic pseudocapacitors (Figure 1.4). 
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Figure 1.4: Three different pseudocapacitors: (a) Intrinsic pseudocapacitor, (b) 

Intercalation pseudocapacitor and (c) Extrinsic pseudocapacitor. 

Typically, the specific capacitance of pseudocapacitors is 10-102 times higher 

than EDLC [49]. However, their cyclic stability is generally lower due to the 

degradation of the electrode materials from the electrolyte ions penetration and redox 

reactions within the electrode [49]. Thus, higher specific capacitance is achieved by 

pseudocapacitors at the expense of cycle life. The main challenge facing the field of 

supercapacitors is extending the cycle life of pseudocapacitive materials. 

1.2.2.3 Hybrid Supercapacitor 

A hybrid supercapacitor is special type of electrochemical capacitor that integrates 

multiple energy storage mechanisms to enhance the performance. Supercapacitors 

based on EDLC have long cycle life and high power densities, but poor energy 

density remains a barrier for long term use. Conversely, pseudocapacitors are better 

because of their high energy densities, but they are not very good at producing high 

power and have a short cycle life. Therefore, a method for creating a hybrid 

supercapacitor that combines a battery type electrode and a supercapacitor (EDLC) 

electrode may be able to address the energy and power issues related to each of its 

separate counterparts. As a result, a single device can achieve great energy and power 

densities [14]. Depending on the electrode configurations, hybrid capacitor can be in 

three different forms: first one is composite hybrid supercapacitor. It combines the 

properties of both carbon and metal oxides in a single electrode. It exhibits synergistic 

advantages such as improved specific capacitance, better cycling stability and 

superior conductivity. Second one is asymmetric hybrid supercapacitors, which uses 

two different electrodes. One electrode is made of carbon based materials that act 

capacitively and are usually cathode, whereas the other electrode is composed of 

metal or metal oxides or conducting polymers, which operate via Faradic reactions 
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and are typically anode. Through this arrangement, a hybrid capacitor can achieve 

both high energy as well as power density simultaneously. Thirdly, the hybrid 

capacitor is battery type hybrid capacitor. It again consists of two completely different 

electrodes (battery electrode and supercapacitor electrode), thereby having two 

different storage mechanisms in the same device. The energy density and power 

density can be improved by either increasing the power density of the battery 

electrode or energy density of the supercapacitor electrode [50]. 

1.3 Importance of aluminum-ion based energy storage devices 

Aluminum (Al) ion batteries have garnered lot of interest lately. There are 

tremendous advantages such as high abundance in the Earth’s crust (~8 %) and small 

ionic radius (0.54 Å) [51] Moreover, Al has the highest volumetric capacity (8046 

mAhcm-3) compared to Na (1050 mAhcm-3), Mg (3868 mAhcm-3), K (609 mAhcm-3), 

Zn (5857 mAhcm-3), and Ca (2061 mAhcm-3). The large volumetric capacity of 

aluminum indicates that the energy storage per unit volume is also higher which 

subsequently aids in the batteries total size reduction. Additionally, metallic Al is easy 

to handle at ambient atmosphere, resources for Al are less expensive, and its three 

electron electrochemistry is an attractive trait. A comparison of the volumetric 

capacities, ionic radius, and abundance of some selected ions is provided in below 

(Table 1.1) [51]. 

Table 1.1: Comparison of abundance, ionic radius and volumetric capacities of 

some selective metal ions 

Ion Ionic radius 

(Å) 

Volumetric 

capacity (mAhcm-3) 

Abundance 

(wt %) 

E Vs SHE 

Lithium (Li+) 0.76 2042 0.002 -3.04 

Zinc (Zn2+) 0.74 5857 0.007 -0.76 

Magnesium(Mg2+) 0.72 3868 2.33 -2.37 

Calcium (Ca2+) 1 2061 4.15 -2.87 

Aluminum (Al3+) 0.54 8046 8.23 -1.66 
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 There are substantial studies on Al ion chemistry. For example, Holleck et al. 

explored  an  Al-ion  battery  using  a  vitreous  carbon  based  electrodes  with  an  AlCl3- 

KCl-NaCl molten salt as non-aqueous electrolyte [52, 53]. Archer et al. studied an Al- 

ion  battery  incorporating  V2O5 nanowires  using  AlCl3 and  1-methyl-3- 

ethylimidazolium  chloride  (MEICl)  ionic  liquid  as  the  electrolyte,  which  exhibits 

discharge capacity around 273 mAhg-1 after 20 discharge cycles [54]. Similarly, Lin. 

et  al. investigated an  Al-ion  chemistry through pyrolytic  graphite/porous  graphitic 

foam  cathode,  utilizing  AlCl3 and  1-ethyl-3-methylimidazolium  chloride  ionic  liquid 

as the electrolyte [55]. This Al/graphite cell demonstrated high power density of about 

3000 W kg-1 and operated for 7500 cycles without capacity loss. Xu et al. reported Al 

ion battery with Aluminium as anode and graphite as cathode in AlCl3 and 1-ethyl-3- 

methylimidazolium  chloride  based  ionic  liquid,  which  delivered  a  cathodic  capacity 

112 mAhg-1 and high capacity retention (97.3 %) after 30,000 discharge cycles [56]. 

1.4 Al-ion supercapacitor 

 Recently,  the  concept  of  electrochemical  capacitors  focused  solely  on  Al³⁺  ion 

storage  has  garnered  significant  attention  [57].  There  are  several  studies  explored  in 

the area of Al-ion supercapacitors. For examples, Thalji et al. studied the performance 

of  an  asymmetric  supercapacitor  utilizing  W18O49 nanowires  and  reduced  graphene 

oxide  for  Al3+ ion  storage,  achieving  specific  capacitance  about  350  Fg-1 at  current 

density of  1  Ag-1 up  to  12,000  cycles  [58].  Likewise,  Li  et  al.  investigated  an 

asymmetric capacitor with W18O49/SCNT and polyaniline/SCNT electrodes, exhibited 

energy density about 19 mWh cm-3 at power density around 295 mWcm-3 [59]. Ma et 

al.  described  an  Al3+ ion  capacitor  employing  graphene  and  MXene  as  electrode 

materials in  the  operating  potential  up  to  2  V,  delivering  a  high  energy  density  112 

Wh L-1 and  power  density  about  30000  W L-1,  and  long  lifespan  over  10000  cycles 

[60]. Tian  et  al.  presented  an  Al3+  ion  symmetric  capacitor  based  on  a  V2O5 

mesoporous  carbon  composite  electrode,  which  delivered  an  energy  density  18  Wh- 

kg-1 and  power  density  147  W kg-1 over  10,000  discharge  cycles  [61].  Ai  et  al. 

illustrated  the  Al3+  ion  storage  capabilities  of  PEDOT conducting  polymer,  showing 

that an asymmetric electrochemical capacitor based on PEDOT and activated carbon 

could  achieve  energy  and  power  densities  about 41  Wh kg-1 and  0.24  kW kg-1, 

respectively [62]. However, significant challenges remain in the intercalation of Al3+ 

ion due  to  the  strong  electrostatic  repulsion  between  the  cations  and  intercalation 
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framework. Additionally, there a lack of suitable materials with advanced 

nanostructures that would facilitate the efficient insertion and extraction of Al3+ ions 

[59]. 

1.5 Aqueous electrolytes 

Although, the non aqueous (organic solvent) Li-ion batteries are available in 

the market but there are many safety risks such as flammable, harmful leakage, toxic, 

and low ionic conductivity, and high costs due to the low abundance of lithium. 

Therefore, non volatile aqueous electrolyte based batteries are gaining interest which 

can mitigate the risk of thermal runway and minimize the costs by using low cost salt 

in the electrolyte [63]. It has also some other advantages such as environmentally 

friendly and high ionic conductivity (10-1 S cm-1) compared to organic electrolytes 

(10-3-10-2 S cm-1), polymer electrolytes (10-7-10-3 S cm-1) and inorganic solid 

electrolytes (10-7-10-2 S cm-1) [63]. These properties enhance the power density as 

well as the rate capability, and easy to assemble in an ambient atmosphere. Dahn et al. 

were the first in 1994, reported the Li-ion cell (LiMn2O4 as cathode and VO2 as 

anode) with 5 M LiNO3 and 1 M LiOH aqueous electrolytes which exhibited the 

potential window about 1.5 V and energy density of 175 Wh kg-1, which is larger than 

lead acid batteries [64, 65]. But its cycle life was limited to only 25 cycles. There are 

some other reports where Li-ion based aqueous electrolytes were utilized in LiFePO4 

LiMnPO4 and LiNiPO4 cathode materials [66-69]. Liu and coworker investigated the 

Al ion behavior in anatase TiO2 using Al2(SO4)3 aqueous electrolyte [70]. Lahan et al. 

studied Al3+ ion intercalation and deintercalation in MoO3 using various Al-based 

aqueous electrolytes like 1 M AlCl3, 0.5 M Al2(SO4)3 and 1 M Al(NO3)3, where they 

observed that  MoO3 exhibited better stability as well as storage performance in 1 M 

AlCl3 as compared with other two electrolytes [71]. Kumar and his coworkers 

demonstrated the Al-ion storage performance in FeVO4 (about 350 mAhg-1) using 

aqueous electrolyte [72] 

Additionally, potential window of different electrolytes plays an important 

role in case of electrochemical capacitor. In general, energy density as well as power 

density  are  proportional  to  the  square  of  the potential window. Therefore, wider 

potential window is always beneficial for electrochemical capacitors. Theoretically, 

aqueous electrolyte provides a narrow potential of 1.2 V [73-76]. However, there are 
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examples of aqueous electrochemical capacitors working beyond 2 V with the 

strategy of water in-salt concept [77, 78]. But again, the high concentration of salts 

can limit the use to a large scale. Moreover, self discharge is a frequent issue 

encountered in aqueous batteries. This phenomenon involves the gradual depletion of 

battery’s charge, even when it’s idle, due to internal chemical processes [63]. 

Therefore, it is a challenge to increase the stable potential window in low cost as well 

as to obstruct the high self discharge rate. 

1.6 Gel electrolytes 

Although aqueous electrolytes are being used in electrochemical energy 

storage because of their high ionic conductivity (~10-1 S cm-1) but there are certain 

issues such as electrolyte leakage, instability in the internal interfaces and 

functionality of the separator [79]. Therefore, gel polymer electrolytes (GPEs) are 

gaining attention. These are mainly a viscous solution in which a host polymer matrix 

is mixed with an electrolytic salt and solvent. GPEs are also called to as hydrogel, 

when aqueous solvent is used. In general, the polymer matrices in gel are linked by 

either physical forces, such as electrostatic interactions, hydrogen bonding, chain 

entanglements, or chemically via covalent bonds, making them thermoset and 

irreversible [80]. The polymers in gel electrolyte, encapsulate the liquid to prevent its 

escape. GPEs can be used both as electrolyte and as separator [79, 81-83]. Due to the 

workable property of polymers, GPEs can be arranged in different shapes with high 

flexibility [84-86]. Moreover, flexibility or the elasticity in GPEs are favorable with 

the volume change of the active electrode materials during charge and discharge 

process [87-92]. In case the Li ion battery, gel electrolyte help prevent dendrite 

growth on anode as well as minimize the reactivity between anode and liquid 

electrolyte, and hence can improve the safety and manufacturing integrity [92]. To 

achieve a high performance GPE, there are several criteria for choosing the host 

polymer such as speedy segmental mobility of the polymer chain, special groups for 

the easy dissolution of salts, relatively low glass transition temperature, high 

molecular weight, wide electrochemical window and enhanced degradation 

temperature [93-94]. Polyvinyl alcohol (PVA) is the most commonly used host 

polymer for forming GPE. It has many advantages including low cost, easy 

processing, easy film formation [64, 95]. In 1988, Petty et al. reported the 
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development  of  polyvinyl  alcohol based  proton  conductive  (PVA/H3PO4) gel 

electrolyte with high ionic conductivity [96]. Later, Karthika et al. fabricated a flexible 

paper-based supercapacitor  using  carbon  nanotube covered electrodes  and 

PVA/H2SO4 gel electrolyte, which exhibited a remarkable specific capacitance of 270 

Fg-1 and  energy  density  of  37  Wh  kg-1 [97].  There  are  many  reports,  where, 

researchers  focused  on  various  gel  electrolytes,  such  as:  PVA/H2SO4 [97-104], 

PVA/KOH  [98-106],  PVA/LiOH  [107],  PVA/Na2SO4 [108],  PVA/KNO3 [109], 

PVA/KCl [110], PVA/LiCl [111, 112]. Yu et al. demonstrated a Et3/NH4Cl based gel 

polymer electrolyte in a wider potential window (~0-2.96 V) for a quasi state Al ion 

battery  [113]. Ge  et  al.  highlighted  the  reduction  of  self  discharge  voltage  in  solid 

state supercapacitor using PVA [114]. Lu et al. introduced silica in 2 M Li2SO4 and 1 

M ZnSO4 and prepared gel electrolyte which could increase the rate capability  (~10- 

12 %) and decrease the self discharge voltage (up to 15 % after 24 hours) compared to 

aqueous electrolyte [115]. Poly(ethylene oxide) (PEO) based gel electrolytes are also 

getting  interest  because  of their  higher  ionic  conductivity (~10-3 S  cm-1) [116]. Li  et 

al. studied the Li-ion storage capacity in LiFePO4 using PEO based gel electrolyte and 

found  81  %  retention  after  500  cycles [116]. Xantham  gum  or  polysaccharide, 

frequently used as food additives has recently been incorporated in liquid electrolyte 

to form gel electrolyte by Yu groups, as it is non toxic and low cost. They assembled 

a symmetric supercapacitor based on MnO2/CNT as electrodes  and Na2SO4/xantham 

gum gel electrolyte, which exhibited a specific capacitance of 347 Fg-1 with a capacity 

retention of 82 % over 5000 cycles [117]. 

1.7 Molybdenum Oxide 

 Electrodes  play  a  crucial role  in  the  high  performance  of  electrochemical 

capacitors.  Among  various types  of  materials,  transition  metal  oxides  (TMDs)  are 

very  promising  electrode  materials  due  to their  multiple  oxidation  states  which  is 

responsible  for  high  pseudocapacitance  contribution. MoO3 is  one  of  the  most 

commonly used transition metal oxides, utilized in different fields including catalysts, 

gas  sensors,  batteries,  supercapacitors  and  lubricants [118]. It  is  a  n-type 

semiconductor having band gap of ~3.2 eV [118, 119]. Besides, it is non toxic, eco- 

friendly  and  has  the  valance  states  (-2  to  +6),  enabling  high  electrochemical  activity 

for  pseudocapacitance through  the  facilitation  of  Faradic  redox  reaction  in  between 

the layers or tunnels [119, 120]. Notably, MoO3 is highly stable thermally as well as 
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chemically, provides high carrier mobility. Moreover, MoO3 can be nanostructured in 

different  morphologies  such  as  nanorods,  nanofibers,  nanosheets,  nanotubes, 

nanoflakes,  nanobelts,  nanoplates,  nanospheres  etc. [120]. It  has  three  different 

phases:  𝛼 − MoO3 (thermodynamically  stable),  𝛽 − MoO3 (metastable) and  ℎ − 

MoO3 [119].  One  of  the  great  advantages  of  MoO3 is  that  it  can  be  synthesized via 

different  easy  procedures  such  as  thermal  evaporation  method,  sputtering  process, 

hydrothermal  synthesis,  chemical  vapour  deposition  and  electrospinning [121-124]. 

N.  G.  Prakash  et  al.  fabricated  𝛼 − MoO3 by  solution  combustion  method  and 

measured  its  Na+ ion  storage  capacity  (176  Fg-1 at  current  density  of  1  mAg-1)  with 

good  cycling  stability [125]. Elkholy  et  al.  prepared  𝛼 − MoO3 by  electrochemical 

deposition  method  and  used  as  an  electrode  for  electrochemical  capacitor,  achieving 

energy  density  of  22  Wh kg-1 at  power  density  of  301  W kg-1 in  a  1  M  Na2SO4 

aqueous electrolyte, over a wide potential window 0-2.2 V [126]. Cui et al. prepared 

𝛼 − MoO3 using facile hydrothermal method in different morphologies (microsphere, 

nanobelt  and  nanorod)  and  evaluated  their  pseudocapacitive  charge  storage.  They 

demonstrated  that nanorod  morphology  of  𝛼 − MoO3 exhibited  the  highest  charge 

storage capacity [127]. In another study, Noby et al. fabricated 𝛼 − MoO3 and treated 

under different  atmospheric conditions (vacuum,  H2 and N2). They observed that  the 

vacuum treated 𝛼 − MoO3 electrode delivered the highest specific capacitance of ~39 

mF  cm-1, with  a  capacity  retention  of  ~76 %  after  10,000  cycles [119]. Kundu  et  al. 

compared the electrochemical performance of both 𝛼 − MoO3 and ℎ − MoO3, finding 

that 𝛼 − MoO3 delivered greater specific capacitance of 829 Fg-1 compared to 452 Fg-1 

for ℎ − MoO3. They also assembled a solid state asymmetric supercapacitor, which 

exhibited an energy density of 36.3 Wh kg-1 at power density of 50 W kg-1 [128].

1.8 Conducting polymers 

From 1960s, as a promising supercapacitor electrode material, conducting 

polymers are widely used due to their impressive storage capacity, excellent 

conductivity, large potential window, high energy density (compared to metal oxides), 

and environmentally friendly nature [129]. These polymers are also cost effective and 

can be easily synthesized. Additionally, they exhibit fast doping and de-doping 

behavior during the Faradic charge transfer process, with oxidation and reduction 

reactions of the polymer backbone resulting in the formation of delocalized 𝜋 
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electrons [130,  131]. Numerous  studies  have  reported  the  use  of  various  conducting 

polymers including polyaniline, polypyrrole, polythiophene etc. in the energy storage 

application  [129,  132,  133].  Among  these,  polyaniline  (PANI)  stands  out  as  a 

commonly used conducting polymer for supercapacitor electrodes because of its high 

electrochemical  performances (due  to  multi  redox  reactions) in  acidic  environments, 

high  electrochemical  durability,  exceptional  wave  absorption  distinctive  doping 

mechanism  and  strongly  conducting  matrix [132,  134]. It  also  exhibits  excellent 

electronic properties upon protonation and superior thermal stability as compared with 

other  conducting  polymers  [132].  At  the  very  beginning,  it  was  known  as  “aniline 

black”,  with  further  research  but  it was  reclassified  as  a  conducting  polymer  [130]. 

PANI  has  a  theoretical specific  capacitance  of ~1200  Fg-1 and its  performance  can 

vary  depending  on  the  synthesis  method which  influences  its  morphology  (such  as 

nanotubes, nanofibers, nanorods, nanospheres, nanoflowers) and film thickness [134, 

135-139]. Electrochemically  deposited  PANI  generally  exhibits  better  specific 

capacitance compared to chemically generated PANI due to more uniform dispersion 

during  polymerization. PANI  exits  in three  different  states: leucoemeraldine  base, 

pernigraniline  base,  and  emeraldine  base depending  on  the  degree  of  doping  in  the 

molecular  chain [135-139]. Luo.  et  al.  reported the  use  of  PANI  in  lithium  ion 

batteries, lithium  sulfur  batteries  as well  as  in  supercapacitors  [140]. Liu  et al. 

reported that PANI exhibited a specific capacitance of 243 Fg-1 at a current density of 

0.3  Ag-1 in  2  M  H2SO4 aqueous  electrolyte  [141]. Vujkovic  et al.  studied  the  Al3+ 

storage  capacity of  PANI in  Al(NO3)3 solution,  achieving specific  capacitance  of 

about  269  Fg-1 at  high  current  density (=10  Ag-1) [142]. Additionally,  numerous 

studies  have  explored PANI  based  composites  supercapacitor application. For 

examples,  Zhao  et  al.  demonstrated  a  PANI/CNT  symmetric  supercapacitor  in  1  M 

H2SO4, which exhibited a high specific capacitance of 455 Fg-1 at a current density of 

10  Ag-1 [143].  Chang  et  al.  studied PANI/GO  composite  in 6  M  KOH,  obtaining  a 

specific capacitance of 475 Fg-1 with 90 % capacity after 2000 cycles [144].
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1.9 Graphene  

Graphene is a sp2 hybridized monolayer of graphite, known for it excellent 

electrical conductivity, mechanical strength, making it a widely used in supercapacitor 

application. It has high surface area (≈ 2675 m2g-1), and is light weight [145, 146]. 

Ruoff et al. modified graphene chemically and demonstrated as a supercapacitor that 

achieving a specific capacitance 135 Fg1 in aqueous electrolyte and 99 Fg-1 in non 

aqueous electrolytes [147]. Liu et al. reported graphene’s performance in 

electrochemical capacitors, showing an energy density of 85.6 Wh kg-1 at room 

temperature and 136 Wh kg-1 at 80o C [148].  

 Graphene  can  be  used  as  conducting  network  in  composite  materials  with 

transition  metal  oxides  and  sulfides  to  increase the  electrochemical  performance  by 

increasing  the  surface  area  as  well  as  the  electrical  conductivity  of  the composites

[146]. Yan  et  al.  synthesized  MnO2/Graphene  composite  using  KMnO4 which 

achieved a specific capacitance of 310 Fg-1 with ~95 % capacity retention after 15,000 

cycles  in  1  M  Na2SO4 aqueous  electrolyte [149]. Zhang  et  al.  fabricated 

graphene/Mn3O4 composite  for  supercapacitors obtaining a specific  capacitance  of 

326.9  Fg-1 with  94.6  %  capacity  retention  over  1000  cycles  [150]. Graphene  can  be 

functionalized  with  various  groups  such  as  epoxy,  hydroxyl  and  carboxyl,  to  form 

graphene oxide (GO) [151]. Down and his colleagues fabricated GO and assembled it 

into  symmetric  supercapacitor,  which  delivered an  energy  density  ~ 11.6 Wh kg-1 at 

power  density  ~ 13.9  kW kg-1 [152]. GO is  highly  hydrophilic,  making  it  easily 

dispersible  in  water  and  other  solvents.  By  reducing  the  functional  groups  GO, 

reduced  graphene  oxide  (rGO) can  be  obtained, which  has  an  excellent  electrical 

conductivity and  easily  dispersible in solvents [153, 154]. Zhang et al. used rGO as 

supercapacitor and obtained a specific capacitance of 194 Fg-1 at current density 1 Ag-1

[155]. Mishra  et  al.  demonstrated  a  symmetric  supercapacitor  using  rGO  and 

nitrogen  doped  rGO  in  the  potential  window  0-2.2  V  and  achieved  high  energy 

density  ~106.3  Wh kg-1 and  power  density  around  15184  W kg-1, with  95.5  % 

retention  after  10000  discharge  cycles  [156]. Pandey  et  al.  prepared  hybrids  of 

rGO/V2O5 and demonstrated as an electrochemical capacitor exhibiting high specific 

capacitance about 466 Fg-1 [157].
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1.10 Vanadium based materials 

 Vanadium  based  materials  are  also  important  in  energy  storage  due  to  their 

wide  range  of valence  states  (from  +2  to  +5),  enabling  them  to  transfer  multiple 

electrons and  offer  high  theoretical  capacity. Additionally,  these  materials  are 

naturally  abundant  in  the  earth’s  crust,  making  them  cost effective  [158-160]. For 

instance, as a lithium battery cathode, V2O5 can accommodate two Li
+ 

ions proving a 

high  specific  capacity 294 mAhg
-1

, and  a  specific  capacity  ~  437  mAhg
-1

,  when 

accommodate  three  Li
+ 

ions  [161,  162]. Recently, De  et  al.  studied  Al
3+ 

chemistry 

with V2O5, exhibiting a specific capacity  about 140 mAhg
-1

with remarkable capacity 

retention ~ 96 % after 5000 cycles  [160]. Similarly, V2O5   has been  explored as an 

electrode  material  for  supercapacitor,  delivering  an  impressive  areal  specific 

capacitance of ~417 mFcm
-2 

along with excellent  rate capability  and cycling stability 

[162]. VO2 has been investigated both as battery and supercapacitor electrode material

[162]. Feng  et  al.  exfoliated  bulk  VS2  into  VS2 nanosheets and  demonstrated its 

potential as  a  supercapacitor, achieving a  high  specific  capacitance  of  4760  Fcm
-1 

with outstanding capacity retention [163]. Wang et al. reported organic vanadium oxy 

acetylacetonate as an anode material for Li-ion batteries and obtained specific capacity 

of  620  mAhg
-1 

at current  density  (=100  mAg
-1

) with  excellent  coulombic  efficiency. 

Their  cells also exhibited  a  ultralong  cycling  stability  of  about  508.5  mAhg
-1 

over 

1000  cycles  [164]. Wein  et  al.were  the  first  to  study the  Li-ion  insertion  in  vanadyl 

acetate which exhibited highly reversible specific capacity of 1065 mAhg
-1 

at current 

density  of  200  mAg
-1

. They also  achieved an  attractive  rate  capability  about  1012 

mAhg
-1

after reverting  current density to 200 mAg
-1 

[165]. Later, they extended their 

research to Zn ion batteries, where vanadyl acetate demonstrated a reversible specific 

capacity  about  239  mAhg
-1 

at  current  density  of  500  mAg
-1

with  only  0.027  % 

capacity  fading  after  1000  cycles  [166]. In  current  research,  a  promising  strategy to 

improve cycling stability involves incorporating water molecules between the layers of 

vanadium oxides. These water molecule act as  a pillar, improving structural stability 

by  expanding  the  layers  of  vanadium  oxides. Additionally,  the  water  reduces  the 

interaction  between  the  cations  and  makes  the  ions  to  move  through  it. Again,  to 

further  improve  the  performances  of  hydrated  vanadate  various  cations  are  inserted 

between  the  layers  to  expand the  interlayer  spacing.  Larger  cations  in  particular, 

expand the energy band gap, which accelerate the ion movements [166, 167]. Liu et al. 
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1.11 Objectives of the thesis 

The main objectives of the thesis are as follows: 

 1) To  explore  and  identify  high  performance  electrode  materials  for  Al
3+ 

ion 

 storage in aqueous and gel based electrolytes for electrochemical capacitor. 
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