
Appendix

Appendix I

Isotropic and anisotropic wettability

Figure A.1: Wetting states of a water droplet on solid surface: (a) Isotropic wetting. (b)
Anisotropic wetting.

SEM image analysis using Diameter-J of Ziziphus leaf and
biomimicked surface

We have used SEM images given in Figs. 3.5(b), 3.5(e), and 3.5(h) for segmentation in
ImageJ analysis. The image segmentation was completed with eight different meth-
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ods and was found 24 segmented images for each leaf state. The best three segmented
images were chosen via visual comparing with original SEM images for further anal-
ysis. Figs. A.2(1-3) show three different segmented images and Figs. A.2(4-6) show
their voids of Fig. 3.5(b) respectively for tender state leaf. Similarly, Figs. A.2(7-9),
A.2(10-12) and A.2(13-15), A.2(16-18) show segmented images and void regions of
Figs. 3.5(e) and 3.5(h) for mature and senescent state leaf respectively. The seg-
mentation and porosity analysis were completed with same conditions for all three
states of leaf surface. We found the porosity index ∼49-55%, 42-49%, and 45-48%
for tender, mature and senescent state leaf. The estimated porosity provides good
agreement with WCAs difference among three states.

Figure A.2: Diameter-J analysis of Ziziphus leaf surface, Fig. (1-6) shows tender state leaf surface,
(7-12) mature state leaf, and (13-18) senescent leaf state with different segmentation and void area;
respectively.
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Surface free energy calculation

According to the Kaelble-Uy model, the aforementioned theory is given by:

α1x+ β1y = c1 (i)

α2x+ β2y = c2; where x, y ≥ 0 (ii)

Where x ≡
√

γd
s and y ≡

√
γp
s , α1 =

√
γd
L1A

and α2 =
√

γd
L2A

, β1 =
√
γp
L1A

and

β2 =
√
γp
L2A

. The constants c1 and c2 are given by:

c1 =
γtotal
L1

(1 + cos θL1)

2
, c2 =

γtotal
L2

(1 + cos θL2)

2

, respectively. The total surface energy γtotal
Li

is given by:

γtotal
Li

= γd
LiA

+ γp
LiA

, i = 1, 2.

For water:

γd
L1A

= 22.1 mJ/m2, γp
L1A

= 50.7 mJ/m2, γtotal
L1A

= 72.8 mJ/m2

For ethylene glycol:

γd
L2A

= 29.4 mJ/m2, γp
L2A

= 18.3 mJ/m2, γtotal
L2A

= 47.7 mJ/m2

Using the given values, solving Eqs. (i) and (ii), one can find out the SFE of the leaf
surface (Table T.1).

Table T.1: Surface free energy (SFE) calculations based on contact angle (CA) of water and
ethylene glycol for different leaf states.

Sample Water CA (θ◦) Ethylene glycol CA (θ◦) γd
s (mJ/m2) γp

s (mJ/m2) γtotal
s (mJ/m2)

Tender state 151.1 141.8 0.842091 0.000948 0.843039
Mature state 147.1 138.5 0.911417 0.035944 0.947361
Senescent state 143.7 133.6 1.478212 0.035879 1.514091

PVDF microfiber optimization for biommimicking of Ziziphus
leaf surface

To optimize the fabrication of PVDF microfibers for biomimicking the matted surface
structure of the Ziziphus leaf, two major challenges are primarily involved: (i) the
preparation of bead-free fibers, and (ii) the production of nonwoven fibers with the
desired diameter. To address these challenges, various electrospinning process pa-
rameters, including solution concentration, working voltage, solution flow rate, and
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the distances between the needle tip and the collector, were varied across three lev-
els. For optimization, at least ten experiments were conducted, with key parameters
adjusted simultaneously to cast bead-free microfibers on the collector (Al-substrate).
(i) Solution concentration:
Electrospinning was performed using PVDF solutions with concentrations of 10 wt.%,
15 wt.%, and 20 wt.% in solvent mixtures of dimethylformamide (DMF, analytical
standard, 98% pure) and acetone (analytical standard, 98% pure) at volume ratios
of 1:3, 1:2, and 1:1, respectively. Beaded fibers were observed across all these combi-
nations. Notably, partially beaded fibers were obtained at 20 wt.% PVDF with a 1:1
DMF to acetone ratio. To produce bead-free microfibers, a higher concentration of
21 wt.% PVDF was employed, which resulted in uniform, nonwoven fibers without
any beads.
(ii) Working voltage:
A high voltage was applied between the conductive needle tip (∼0.55 mm) of the
syringe and the collector (aluminium foil). The applied voltage was varied from 5 kV
to 25 kV. At voltages below 10 kV, the resulting fibers were accompanied by beads.
In contrast, at voltages above 15 kV, the fiber diameter decreased excessively, which
was not desirable. An optimal voltage range of approximately 10–15 kV was identi-
fied for producing bead-free fibers with the desired diameter.
(iii) Solution flow rate:
The solution flow rate plays a critical role in the successful collection of electrospun
fibers. Initially, flow rates of 1 mL h−1, 3 mL h−1, and 5 mL h−1 were tested, along
with variations in the distance between the needle tip and the collector (∼10–15 cm).
Beaded fibers were consistently observed at lower flow rates (1–3 mL h−1). However,
at a specific tip-to-collector distance, bead-free fibers were obtained when the flow
rate was increased to 6 mL h−1.
(iv) Collector type:
After obtaining bead-free PVDF fibers with the desired diameter using a rotating
cylindrical collector (wrapped with Al- foil), the spinning speed of the collector was
systematically varied in the range of approximately 200 to 800 rpm. Despite the suc-
cessful fabrication of straight, uniform fibers, the resulting structures did not exhibit
the intended surface morphology required for biomimicking the matted texture of
the Ziziphus leaf. In attempt to replicate Ziziphus leaf matted-alike nonwoven fiber
arrangements, a static plate collector (wrapped with Al- foil) was employed instead,
which produced the desired fiber morphology.

By following the above steps (i) to (iv), an optimized bead-free, nonwoven micro-
fibrous surface texture mimicking the natural structure was effectively achieved.
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Dynamic water droplet states with tilting base of abaxial Zizi-
phus leaf surface

(i) Tender state leaf surface

Figure A.3: Optical snaps of water droplet on abaxial surface of tender state leaf surface with
tilting angles. (a) Roll off angle ∼21◦. (b) Roll off angle ∼33◦.

(ii) Mature state leaf surface

Figure A.4: Water droplet on of mature state abaxial leaf surface with tilting angle from ∼0◦ to
∼90◦.

(iii) Senescent state leaf surface

Figure A.5: Water droplet on senescent state abaxial leaf surface with tilting angle from ∼0◦ to
∼90◦.

113



(iv) Fabricated PVDF microfibers surface

Figure A.6: Water droplet on PVDF fibrous matted surface with tilting angle varied in the range,
∼0◦ to ∼90◦.

114



Appendix II

Surface roughness profile

(a) Along parallel direction

Figure A.7: Surface roughness profile of leaf specimen along parallel direction.

(b) Along perpendicular direction

Figure A.8: Surface roughness profile of leaf specimen along perpendicular direction.

Table T.2: Roughness parameters (Along parallel direction).

Roughness Parameter L1 L2 L3
Rq 1.95 2.29 2.48
Ra 1.57 1.83 2.05
Rz 10.1 11.2 11.9

Table T.3: Roughness parameters (Along perpendicular direction).

Roughness Parameter L1 L2 L3
Rq 15.6 15.1 16.6
Ra 12.6 11.7 13.4
Rz 60.4 58.6 65.6

Roughness parameter estimation at different locations (L1, L2, L3) of the leaf spec-
imen along parallel and perpendicular directions. The parameters Rq (Root-Mean-
Square Deviation of the roughness), Ra (Arithmetic Mean Deviation of the roughness
profile), and Rz (Maximum Height of roughness profile) values provided in tables T.2
and T.3.
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Optimization steps of soft lithography for biomimeticking of
sword lily leaf surface

The soft lithography techniques—based on previous studies—were introduced to fab-
ricate biomimetic textured surfaces. During the biomimicking process, achieving
specific surface textures required optimization of several parameters: the choice of
material for the negative replica, the solvent used, the polymer concentration (wt.%),
and careful handling of the natural leaf template. The key optimization steps are out-
lined below:
Preparation of negative replica
(a) Negative replica material:
In soft lithography, a negative replica is formed by molding a suitable polymer mate-
rial. For artificial templates, various solvent–polymer systems can be used to create
the negative replica. However, since our aim was to replicate the structure of a nat-
ural leaf, it was critical to select a polymer that dissolves in a solvent which does not
chemically react with the leaf’s surface, particularly its waxy outer layer. For this
reason, we selected polyvinyl alcohol (PVA), a water-soluble polymer, as it preserves
the integrity of the natural template.
(b) Polymer solution concentration:
PVA solutions were prepared at concentrations of 10 wt.%, 20 wt.%, and 30 wt.%. As
the concentration increased, the viscosity also increased, which hindered the solution’s
ability to completely fill the fine features of the leaf texture. This led to incomplete
or partial replication. The 10 wt.% PVA solution yielded the most promising results,
producing a clear and complete negative replica. Thus, optimizing the polymer con-
centration is essential for successful texture replication.
(c) Leaf template, molding, and drying process:
The leaf template was placed face-up at the bottom of a glass container. The 10 wt.%
PVA solution was gently poured over the leaf to ensure full coverage. To eliminate
trapped air bubbles within the solution and the leaf surface texture, the setup was
placed in a vacuum desiccator (∼600 mm Hg) for 24 hours. After degassing, the PVA
film was dried naturally at room temperature for approximately 48 hours. (Note: Ac-
celerated drying at high temperatures was avoided to prevent damage to the natural
leaf template.) Once fully dried and the water had completely evaporated, the PVA
layer was carefully peeled off, resulting in a high-fidelity bio-mimicked PVA negative
replica. By following steps (a–c), an optimized biomimetic surface texture can be
achieved. For fabricating a positive replica, any hydrophobic polymer can be used; in
this case, polystyrene (PS) was selected. The positive PS replica was prepared using
the same procedure as for the negative replica. Biomimicking the sword lily leaf sur-
face, following steps (a–c), the resulting PS replica showed a promising micro-scale
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texture resembling natural specimens. However, the replica lacked the nano-scale
texture present in the natural specimen, which impacted its wetting characteristics.

To address the lack of nanoscale features, future work may consider surface treat-
ment using hydrophobic nanoparticles such as ZnO or TiO2. These nanoparticles
can be deposited onto the microtextured replica to introduce hierarchical rough-
ness, closely resembling the micro-nanoscale architecture found in natural leaf sur-
faces. Such an approach is expected to enhance the wetting properties and overall
biomimetic performance of the fabricated surfaces.

Lotus leaf surface microscopic image

The optical image of lotus leaf shown in Fig. A.9(a). The Figs. A.9(b-d) illustrate field
emission scanning electron microscopy (FE-SEM) images of the lotus leaf surface with
different magnifications. The surface micrographs reveal hierarchical micro-papillae,
which are tiny protrusions covered with waxy nanostructures. These intricate features
contribute to superhydrophobicity and self-cleaning of lotus leaf surface.

Figure A.9: (a) The optical image of natural lotus (Nelumbo nucifera) plant leaves. The inset
show magnified top view of leaf surface containing tiny water droplets. (b) The FE-SEM images of
lotus leaf surface. (c), and (d) the micro-protrusion which is covered with waxy nanostructures.

Unidirectional self-cleaning mechanism

When droplets roll in a low adhesion path that is led by a specific arrangement of
micro-nano texture, this is known as directional rolling, or a directional self-cleaning
process. The Fig. A.10 illustrates the self-cleaning mechanism known as the “lotus ef-
fect ”, characterized by superhydrophobicity and low adhesion, where droplets gather
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Figure A.10: The schematic depicts the low adhesion superhydrophobic unidirectional self-cleaning
mechanism. The droplet would collect contaminant/particles as rolling takes places from state (1)
to state (2) on a slanted stage.

and remove contaminant particles.

Micro texture Cassie- Baxter liquid-solid contact fraction

From the micrograph of the lily leaf surface, assuming a group of four micro protru-
sions distributed over the surface. Fig. A.11(a) shows an FE-SEM image snapshot
of the lily leaf surface. The schematic in Figure Fig. A.11(b) represents the ar-
rangements of the micro protrusions. For simplicity, we assume the wetted elliptical
contact area with a and b as the minor and major axis lengths from the top view
of the micro-protrusions, separated by distances c and d along the parallel and per-
pendicular directions, respectively. Fig. A.11(c) indicates the wetted area under the
dotted shape (red color) and the rest of the vacant (air) regions. Therefore, from
geometry:

fmicro =
Liquid-solid contact area

Projected area (iii)

or

fmicro =
πab

(2b+ d)(2a+ c)
. (iv)
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Figure A.11: The micro-protrusions geometry is assumed periodic. (a) Snapshot of FE-SEM
image of natural lily leaf surface. (b) The schematic depicts the arrangements of micro-protrusions
along parallel and perpendicular directions, respectively. (c) The scheme shows top view of micro-
protrusions -water contact surface area under dotted region.
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Appendix III

Leaf traits of selected plant species

Plant Name Family Characteristics Leaf Shape & Edges

Kalanchoe
fedtschenkoi Crassulaceae

Succulent indoor
house/garden plant; thrives
in partial dry, low-intensity
light areas; stores water.

Obovate shape, crenate
edges; edges turn red un-
der sunlight.

Ziziphus mauri-
tiana Rhamnaceae

Fruit plant; features thorny
shrubs; survives extreme
temperatures.

Oval or elliptic shape,
smooth edges.

Mesua ferrea Calophyllaceae

Found in tropical wet cli-
mates; tender leaves change
from red/semi-transparent
green to dark green.

Linear shape, smooth
edges.

Litchi Sapindaceae
Fruit-bearing plant; leaves
are dark green on top,
whitish-green below.

Lanceolate shape,
smooth edges.

Table T.4: Leaf characteristics and features of selected plants

Surface morphology of plant’s leaf specimens

Figure A.12: SEM imaging with different magnifications of four distinct plant species (Scale:
50 µm, 10 µm, 5 µm, 1 µm). (a1 – a4) Kalanchoe, (b1 – b4) Ziziphus, (c1 – c4) Mesua, and (d1 –
d4) Litchi leaf surfaces. Note the zoomed-in images from top to bottom in each column.
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Fragmentation and jetting of impacting droplets

Figure A.13: Droplet fragmentation during the rebound process on hairy Ziziphus leaf surface. (a)
and (b) show the droplet behavior before and after breakup at We ∼ 14.4, respectively. Similarly,
(c) and (d) illustrate the fragmentation process at We ∼ 25.8.

Figure A.14: High-speed imaging captures (200 fps, 0.5 ms) the droplet jet formation for higher
Weber numbers (We ∼14.4 and 25.8) on impact for all leaf surfaces. The dashed curved red (blue)
color lines (top of jet) represent jet formation on the kalanchoe leaf surface and the reference line
for other leaf surfaces (for We ∼14.4 (∼25.8)). The solid curved lines represent individual leaves’
height of the jet.
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Figure A.15: High-speed imaging of satellite droplet breakup (We ∼ 25.8). The Kalanchoe and
Litchi leaf surfaces have not shown satellite droplet breakup (the occurrence of this effect may be
observed for increased values of We > 25.8). Ziziphus and Mesua leaf surfaces possess complete
satellite droplet breakup (solid red circle). The solid blue circle indicates partial detachment of the
satellite droplet.

Figure A.16: The schematic illustrates droplet spreading and retraction time during bouncing
experiment.
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Appendix IV

Comparative analysis of surfaces

S. No. Material Technique Contact Angle (°) Notes Reference
1 Teflon Plasma 168 [266]
2 PDMS Laser treatment 166 [267]
3 PS–PDMS block copolymer Electrospinning > 150 [268]
4 PS, PMMA Evaporation > 150 [269]
5 PS nanofiber Nanoimprint 156 [270]
6 Si Casting 158 Lotus leaf replica [86]
7 Silica Sol–gel 150 [271]
8 Epoxy resin + synthetic/plant waxes Replication and self-assembly 173 Hierarchical [272]
9 Nano-silica spheres Dip coating 105 [273]
10 Au clusters Electrochemical deposition > 150 [274]
11 Carbon nanotubes Replication and spray coating 170 Hierarchical [275]
12 ZnO, TiO� nanorods Sol–gel > 150 Reversible (UV irradiation) [276]
13 PVDF Electrospinning 145 Fibrous Ziziphus leaf replica Our work
14 PS Soft lithography θ∥ ∼ 130− 139, θ⊥ ∼ 142− 145 Sword lily leaf replica (Hierarchical) Our work

Table T.5: Typical materials and techniques for achieving micro-nano roughness.

Comparative analysis of biomimicked surfaces compared to
natural templates

Surface charac-
teristics

Ziziphus leaf Biomimicked Zizi-
phus leaf surface

Sword lily leaf Biomimicked
sword lily leaf
surface

Material Natural wax PVDF Natural wax PS
Morphology Nonwoven fibrous

texture (avg. di-
ameter ∼5.6–7.1
µm)

Nonwoven fibrous
texture (avg. diame-
ter ∼4.38 µm)

Striated three-
level texture

Striated three-level
texture

Texture scale Microtexture Microtexture Micro-nano tex-
ture

Micro-nano texture
(lacking nano tex-
ture)

Average rough-
ness (Rq)

– – ∼3–15 µm (paral-
lel), ∼10–17 µm
(perpendicular)

–

Porosity index ∼42–55% ∼49% – –
WCAs ∼143°–151° ∼145° θ∥ ∼143°–147°,

θ⊥ ∼156°–169°
θ∥ ∼130°–139°,
θ⊥ ∼142°–145°

Roll-off angles ∼21°–33°
(tender), no
roll-off (ma-
ture/senescent)

No roll-off (up to
∼90°)

α∥ ∼8°–23°,
α⊥ ∼16°–41°

α∥ ∼21°–49°,
α⊥ ∼40°–55°

Contact angle
hysteresis

∼30°–46° ∼49° – –

Critical pinning
forces

– – ∼40 µN ∼58 µN

Adhesion High adhesion High adhesion – –

Table T.6: Comparison of surface characteristics between natural and biomimicked leaf surfaces.
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