
2
Theoretical aspects: a mathematical background

This chapter addresses basic mechanisms and mathematical models related to droplet
wetting phenomena and dynamics. It includes discussions on the effects of surface
roughness employing the modified Wenzel and Cassie equations. The phenomena of
electrowetting on dielectric (EWOD) and contact angle saturation (CAS) aspects are
also highlighted.

2.1 Introduction

In this chapter, we delve into the theoretical frameworks from hydrophilicity to su-
perhydrophobicity. Initially, we explore the Young’s model for smooth surface and

further, modified model for textured surfaces, i.e., Wenzel and Cassie models [100].
To elucidate the dynamics of droplet on slanted textured surfaces under gravitational
force, the concept of contact angle hysteresis (CAH) is discussed [101]. The interplay
of surface tension in both static and dynamic droplet behavior has spurred interest
in controlling droplet motion. Numerous methods exist to manipulate droplet move-
ment on solid surfaces, including the application of external forces such as pressure
[102], temperature [103], magnetic fields [104], and electric fields [105, 106]. Among
these methods, electric field-induced droplet manipulation stands out due to its nu-
merous advantages. We will address mathematical models, focusing specifically on
electric field-induced wetting, also known as the electrowetting phenomenon. The
wettability of liquids on surfaces depends on numerous factors corresponding to wet-
ting states. Wetting states are determined by the interfacial surface tension between
two phases, whether they are of different phases (e.g., liquid-solid) or of same phases
(liquid-liquid). Understanding how liquids can wet a solid surface or not is enhanced
by examining the balance of surface tension forces per unit length at the three-phase
contact line between solid, liquid, and gas phases .
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2.2 Spreading and wettability of liquids

2.2.1 Liquid spreading

The spreading of liquid (water) on solid/immiscible liquid surface depends on inter-
facial tension between three pairs of phases: solid, liquid, and air (γSL, γLA, γSA ). In
general, the interfacial tension between two phases can be presented by γij, is the free
energy required to increase per unit contact area of two phases i and j. Suppose a
liquid droplet is placed on a solid surface, the state of wetting of solid can be deter-
mined by spreading parameter, S, which is the difference between surface energy per
unit area of non-wetted to wetted solid surface. Mathematically, it can be stated as
[107, 108];

S = γSA − (γSL + γLA). (2.1)

Clearly, Eq. (2.1) falls in two cases:
• For S > 0, i.e., the liquid will tend to spread out over the solid surface and results
total wetting.
• For S < 0, i.e., the liquid will try to spread on solid surface but at equilibrium, it
will remain as a spherical drop, and results partial wetting.

2.2.2 Contact angle (CA) and Young’s equation (1805)

Wetting equation relates the contact angle (CA) of liquid on solid in air (or a solid
and two immiscible liquid) medium. The Fig. 2.1 depicts the partial wetting liquid
on smooth solid surface. Let us consider the three phases (solid, liquid, and air)
are in contact with surface tensions γSL, γLA, and γSA, respectively. The surface
tension force act at three phase contact line (TCL) where solid, liquid and air (or
immiscible liquid 2) meets Figs 2.1(a) and 2.1(b). The angle formed between solid
-liquid and liquid -air tangents, known as Young’s contact angle. The value of CA
can be determined by mechanical equilibrium of forces per unit length at TCL. At
equilibrium, the horizontal force balance at TCL is given by [109];

γSA = γSL + γLA cos θY , (2.2)

or, cos θY =
γSA − γSL

γLA
. (2.3)

The Eq. (2.3) known as Young–Dupré equation, or Young’s equation. Where θY is
the CA of liquid on solid surface at TCL. Using Eqs. (2.1) and (2.2), re-written
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Figure 2.1: Schematic illustration of wetting of liquid on solid.(a) Air medium. (b) Immiscible
liquid medium.

Eq. (2.3) as [110, 111],

cos θY = 1 +
S

γLA
. (2.4)

The Eq. (2.4) is simply Young’s equation in terms of spreading parameter. Upon
making inspection of Eq. (2.4), we can observe that, if S ≥ 0, cos θY ≥ 1. It implies
that θY will be undefined and total spreading results. Again, if S < 0 then θY un-
dergoes partial wetting state [112]. It should be noted here, the Eq. (2.2) is derived
under partial wetting assumption and therefore, Young’s CA must lie in between 0o

and 180◦ values, i.e., cos θY ∈ (−1, 1).

In other words, If γSG > γSL then θY < π
2
, the liquid will form acute angle

which can be termed as liquiphilic surface. That is, the surface tension force at
interface between solid and liquid laser than liquid -air interface. If γSA < γSL then
θY < π

2
, the liquid will form acute angle which can be termed as liquiphilic surface.

If γSG < γSL, then θY > π
2
, that is the liquid will form an obtuse CA and then a such

surface will be known as liqiphobic. It should be noted that in case of water liquid,
such surfaces are known as, hydrophilic and hydrophobic; respectively. However, for
oil liquids, known as oleophilic and oleophobic surfaces of respective terms.
Important points:
• For a rigid solid surface, the vertical force component is unbalanced, however,
negligible effect can be considered for soft elastic solid/liquid surfaces which deform
under vertical force component (γLA sin θ).
• For any stable CA, Eq. (2.3) must hold the inequality, |γSA − γSL| ≤ γLA.
• The γij must be positive, otherwise the interface of two phases would increase and
will mix, i.e., no longer interface will exist.
• The Eq. (2.3) can also be derived through energy minimization. If a liquid drop is
in an equilibrium state, it is in the minimum surface energy configuration. Suppose
δE is the variation of the surface energy by moving dx amount of TCL along solid
-air interface. From Fig. 2.2(a), the resulting variation of the three-phase interfacial
energy will be given by [32];
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δE = dx(γSL − γSA + γLA cos θY ). (2.5)

At equilibrium, (dδE
dx

= 0), which implies, cos θY = γSA−γSL
γLA

. This is the desired
Young’s equation.
• In a system where all three phases possess elasticity and there are no solid surfaces
present, such as an oil droplet on a water film in an air medium, the interfaces expe-
rience deformation. At the juncture where the three phases intersect, the equilibrium
of the three tangential surface tension forces results in the formation of a triangular
like shape known as the Neumann triangle, which establishes a relationship of charac-
teristic CA’s formed between interfacial surface tension forces of three phases body.
In such case, to determine CA’s, taking the vector sum of all three-surface tension
forces at TCL as shown in Fig. 2.2(b) , is given by [113, 114];

3∑
i,j=1
i ̸=j

γij = 0. (2.6)

Using trigonometric sine rule,

γ12
sin θ1

=
γ23
sin θ2

=
γ13
sin θ3

. (2.7)

Figure 2.2: Schematic represents the wetting state of a liquid (a) on solid surface and (b) on an
immiscible liquid surface.

2.3 Wettability of single level surface texture

2.3.1 The Wenzel model (1936)

Young’s law, originally applicable only to smooth surfaces, falls short in describing the
behavior of liquids on textured solid surfaces, which are abundant in nature. In 1936,
Wenzel proposed a straightforward model to examine the wetting characteristics of
such textured surfaces, revealing differences in CA’s compared to smooth surfaces.
Consequently, roughening solid surfaces emerges as a viable method to modulate their
hydrophobic or hydrophilic properties. Suppose a perfectly smooth solid surface with
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Figure 2.3: Schematic illustration of wetting state of liquid on solid. (a) On smooth surface. (b)
Rough surface.

CA = θY , then the change in CA due to surface roughness is given by [115, 116];

cos θW = rϕ cos θY , (2.8)

here, rϕ is the dimensionless roughness factor introduced by Wenzel, defined as the
ratio of the actual wetted area to the projected area, which is always greater than 1
[117].

From Eq. (2.8), The dependence of the CA on the surface roughness compared
to smooth one is depicted in Figs. 2.3(a) and 2.3(b). The Wenzel model estimate
the enhanced CA due to surface texture. In general, for a hydrophobic solid surface,
roughness induces more hydrophobicity, while a hydrophilic solid surface becomes
more hydrophilic, i.e., for surfaces, if θY > 90◦ then, θW > θY ; θY < 90◦ implies
θW < θY . In the Wenzel wetting state, the pores are completely filled with liquid,
leaving no air pockets at the solid-liquid interface. This state is often referred to as
the collapsed wetting state.

2.3.2 The Cassie -Baxter model (1944)

The Wenze model describes the equilibrium CA on a rough solid surface, but the
Wenzel equation becomes insufficient when addressing solid surfaces with intricate
characteristics, like porosity or diverse chemical compositions. It is limited in explain-
ing liquid-filled rough surfaces [118]. However, numerous textured surfaces in nature
show extraordinary water contact angles (WCA). Such surfaces possess air-filled pores
that resist water filling the texture, resulting in minimal liquid-solid contact area.

In 1944, Cassie proposed a model by considering surface chemical heterogeneity
and introducing a parameter called, solid-liquid fraction and thereby offering a more
inclusive framework. Suppose a surface is composed of two different chemically solids,
say solid 1 and solid 2. The fractional area of solids is f1 and f2 such that f1+f2 = 1

with CA’s θ1 and θ2 respectively, as shown in Fig. 2.4(a). The apparent contact angle
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Figure 2.4: Schematic illustration of wetting state of liquid on solids. (a) Two chemically different
solids. (b) Rough surface with air pockets.

(θCB) is given by the Cassie-Baxter equation [119–121];

cos θCB = f1 cos θ1 + f2 cos θ2. (2.9)

In general, we can write solid surfaces with n chemical compositions [122],

cos θCB =
n∑

i=1

fi cos θi, (2.10)

where θi is the CA associated with the solid surface of ith chemical composition. The
solid-liquid fraction f1 + f2 + f3 + . . .+ fn = 1. If the solid surface is composed of a
single material but contains air pockets, as shown in Fig. 2.4(b), suppose f1 for the
solid surface and f2 for the air pocket fractions, respectively. The CA on the solid
surface is θ1 = θY and for air θ2 = 180◦ . Using Eq. (2.9),

cos θCB = f1 cos θY − f2, (2.11)

or cos θCB = f1(1 + cos θY )− 1. (2.12)

Where, θY is the Young’s contact angle on a smooth solid surface. The solid-liquid
and liquid-air fractions are f1 = l1

l1+l2
and f2 = l2

l1+l2
, respectively. If the liquid-

trapped air length l2 becomes zero, i.e., f1 = 1, f2 = 0, from Eqs. (2.11) and (2.12),
the apparent contact angle θCB will become Young’s contact angle, θY .
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2.4 Wettability of dual (micro-nano) surface
texture

2.4.1 Composite/mixed wetting states

Natural and artificial surfaces featuring dual roughnesses maintain high CAs for ex-
tended periods compared to those possessing single level of roughness. The phe-
nomenon of mixed state is particularly evident when the solid surface exhibits micro-
nano structures across two distinct roughness scales. By employing the Wenzel and
Cassie models, one can assess the interface configurations associated with various pos-
sible wetting states. Consider a scenario where the microstructure is adorned with
nano-scale roughness [123, 124]. By analysing the sustainability of Laplace pressure
across the confined pore air-liquid (water) interface, one can discern four poten-
tial wetting states contingent upon the optimized density of surface texture. The
theoretical basic combination of Wenzel and Cassie wetting states, Wenzel-Wenzel
state, Cassie-Wenzel state, Wenzel-Cassie state, and Cassie-Cassie state were de-
picted schematically in Fig. 2.5. The relationship for Wenzel and Cassie wetting
states are described through Figs. 2.5(a) and 2.5(b), Eqs. (2.8) and (2.12). Suppose
fM , fN , and rM , rN are micro, nano solid-liquid fraction and ratio of actual to pro-
jected area, respectively. When a liquid droplet is placed on micro texture covered
with nano texture then distinctly different composite states emerge. Let us consider a
scenario where micro and nano pores are filled by liquid droplet, i.e., Wenzel-Wenzel
wetting state, shown in Fig. 2.5(c). In this case, the variation of the surface free
energy due to displacement dx amount of TCL, is given by he change in energy dE

[27]:
dE = γLA cos θWW dx+ (rM + rN − 1)(γSL − γSA) dx. (2.13)

At equilibrium, dE
dx

= 0, and using Eq. (2.3), the apparent contact angle θWW is given
by:

cos θWW = (rM + rN − 1) cos θY . (2.14)

Similarly, using surface free energy minimization of the system, we get the following
relationships [27], as shown in Figs. 2.5(d-f).
• Cassie-Wenzel state:

cos θCW = fM(rN cos θY + 1)− 1. (2.15)

To illustrate composite wettability, let us assume that fM , fN , are micro, nano solid-
liquid fractions, 0 < f < 1 and rM , rN are Wenzel roughness (rϕ>1) for micro, nano
textures, respectively.
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Figure 2.5: Illustrations of liquid droplet configurations in collapsed or suspended wetting states
on micro/nano posts are shown. (a) Cassie state. (b) Wenzel state. (c) Wenzel-Wenzel state. (d)
Cassie-Wenzel state. (e) Wenzel-Cassie state. (f) Cassie-Cassie state.

• Wenzel-Cassie state:

cos θWC = (fN + rM − 1) cos θY + fN − 1, (2.16)

or cos θWC = cos θNc + (rM − 1) cos θY , (2.17)

here, θNc is the Cassie contact angle of nano-texture part.
• Cassie-Cassie state:

cos θCC = fNfM(cos θY + 1)− 1. (2.18)

2.4.2 Dynamic CA measurements and contact angle
hysteresis (CAH)

As previously noted, the Young’s relation does not incorporate the volume depen-
dence of CA at equilibrium for liquid droplets. It has been observed that when
a droplet attains equilibrium on a solid surface and its size subsequently decreases
or increases, this leads to specific changes in dynamic CA, results the advancing
or receding CAs as shown in Fig. 2.6(a). From these correlations, we deduce that
advancing CA serves as a metric for surface dewetting (repellency) while receding
CA indicates surface wetting (adhesion) features [23]. The CAH is defined as the
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Figure 2.6: (a) Schematics for advancing (θa) and receding (θr) contact angles corresponding to
the increasing and decreasing droplet size. (b) Droplet equilibrium dynamics with tilt angle (α) of
the substrate. Here mg being droplet’s weight and Vdrop is the droplet volume.

difference between advancing (θa) and receding (θr) contact angles, and is given by
[23];

∆θCAH = θa − θr. (2.19)

In equilibrium, the CA of a liquid droplet on a solid surface (θY ) can vary be-
tween (θa) and (θr). Hysteresis is often linked to surface chemical or structural het-
erogeneities of solid surface, although there exists some debate regarding the precise
connection and consensus that hysteresis arises from pinning at the TCL. Further, if
the liquid droplet-substrate system is slanted from 0◦ − 90◦, the droplet will pin the
surface before reaching the roll-off angle. The difference between maximum θa and
corresponding minimum θr will give CAH, as shown in Fig. 2.6(b).

2.5 Droplet rolling and bouncing mechanism

2.5.1 Sessile droplet on inclined plane

As illustrated in Fig. 2.6(b), Furmidge’s equation can be used to describe the relation-
ship between the rolling droplet and the tilting angle, excluding the effect of droplet
depinning [125]. However, Brown et al. explained the depinning of a static water
droplet with respect to the tilting angle. The tangential force due to gravity along
the inclined surface, known as the pinning force on the droplet, can be expressed as
follows [126]:

Fp = mg sinα. (2.20)
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In this context, mg represents the weight of the liquid droplet, while α denotes the
surface tilting angle. When the droplet is in equilibrium on an inclined surface, the
force acting on it is balanced by the surface tension along the TCL [127]. This line
marks the intersection of the liquid-air interface with the solid surface, thus resulting
in a pinning force, which can be expressed as:

Fp = DTCLγLA(cos θr − cos θa). (2.21)

The angles θr and θa characterize receding and advancing WCAs with tilting angle,
α. On combining Eqs. (2.20) and (2.21), one would obtain a requisite criterion for
the droplet roll-off with tilting angle . It should be noted here, the DTCL is contact
line length normal to the direction of droplet motion of TCL. Therefore [128];

sinα =
2DTCLγLA(cos θr − cos θa)

πmg
. (2.22)

Here, the coefficient 2
π

originates from the shape of the droplet. As the inclination
angle increases, it may eventually reach a critical point where the surface tension
force can no longer support the droplet’s weight. At the TCL, static equilibrium
is lost, prompting the droplet to roll down the inclined surface. This specific angle
where it starts rolling is referred as the roll-off angle.

2.5.2 Droplet impact on solid surface

The dynamics of droplet impact rely on numerous variables. Therefore, before delving
into bouncing behavior, it’s essential to establish the fundamental definitions of some
basic parameters. Suppose a liquid droplet characterized by characteristic length l,
density ρ, dynamic viscosity µ = ρν, and surface tension γ, falls under gravitational
acceleration g with velocity u. This scenario involves six physical variables: l, ρ, ν,
γ, g, and u, which can be described using three fundamental units: mass, length, and
time. According to Buckingham’s Theorem, any system with M physical variables
(here, l, ρ, ν, γ, g, and u) expressed in N fundamental units (mass, length, time)
will have M − N dimensionless groups that describe the system. In this case, 6 - 3
= 3. Therefore, the theorem suggests that the system can be uniquely characterized
by three different dimensionless parameters, defined as follows [129]:

Reynolds number (Re) =
ul

ν
=

Inertia
Viscosity . (2.23)

Froude number (Fr) =
u2

gl
=

Inertia
Gravity . (2.24)
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Bond number (Bo) =
ρgl2

γ
=

Gravity
Curvature . (2.25)

Using Eqs. (2.23), (2.24), and (2.25), one can derive important dimensionless pa-
rameters as follows [129]:

Weber number (We) =
ρu2l

γ
. (2.26)

Capillary number (Ca) =
ρνu

γ
. (2.27)

Moreover, the energy dissipation factor holds significance in understanding the
rebound characteristics of a liquid droplet. This factor is quantified by the restitu-
tion coefficient, denoted as e = ur

ui
, where ur and ui represent the velocities of the

reflected and impacting droplets on the solid surface, respectively [130]. Upon impact
with a solid surface as illustrated in schematic Fig. 2.7, a droplet initially undergoes
spreading, assuming a pancake-like shape. Subsequently, it may retract or remain
in place, contingent upon the nature of the solid surface. The droplet’s potential
energy is converted into kinetic energy, with significant energy dissipation attributed
to liquid viscosity [131]. The Reynolds number (Eq. (2.23)) delineates the dissipation
of energy due to viscosity and its storage in surface tension. Additionally, the CAH
(Eq. (2.19)) represents another parameter linked to chemical and structural hetero-
geneity, serving as a source of energy dissipation. Essentially, whether the droplet
fully or partially rebounds depends on its physical properties, the surface construct
of the solid base, impact velocity, and other contributing factors.

Figure 2.7: Schematics illustrate the impact of a droplet on a solid surface.
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Figure 2.8: The schematics illustrate the EWOD configuration used to manipulate droplets with
electric fields.

2.6 Electrowetting and magnetowetting

2.6.1 Electrowetting on dielectric (EWOD)

Suppose a conducting (ionic) liquid drop is at equilibrium on conductive electrode
coated with a thin dielectric layer. Now if a voltage, Vapp is applied across electrodes
(Fig. 2.8), the change in the effective solid-liquid interfacial surface tension is given
by [132–135];

γeff
SL(Vapp) = γSL −

∫ Vapp

0

σSL dV, (2.28)

or, γeff
SL(Vapp) = γSL −

∫ Vapp

0

CV dV, (2.29)

or, γeff
SL(Vapp) = γSL − 1

2
CV 2

app. (2.30)

Where, σSL is the surface charge density at interface, C = ε0εr
2d

is the capacitance, ε0
is the permittivity of vacuum ∼8.854×10−12 F/m, and εr is the relative permittivity
of the dielectric layer of thickness d. Using Eq. (2.30), the Young’s Eq. (2.3) can be
given by [32, 74],

cos θ(Vapp) =
γSA − γeff

SL(Vapp)

γLA
, (2.31)

or, cos θ(Vapp) = cos θY +
ε0εr
2γLAd

V 2
app, (2.32)

or, cos θ(Vapp) = cos θY + η. (2.33)

Here, θ(Vapp) is the CA after applied voltage Vapp, and that η = ε0εr
2γLAd

V 2
app is the

electrowetting number. It should be noted that we have assumed that is no potential
at zero charge. The Eq. (2.33) known as Lippmann-Young’s law.
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2.6.1.1 Contact angle saturation (CAS)

According to Eq. (2.33), the CA must vanish at certain applied voltage, i.e., θ = 0,
at Vapp = Vcri (critical applied voltage). It has been observed that the Lippmann-
Young’s equation is limited to explain CA with high applied voltage region [136]. If
the applied voltage increases, the decrease in CA will stop at certain applied voltage,
i.e., θ = θsat at Vapp = Vsat, here θsat is the saturation CA at applied saturation
voltage (Vsat), Fig. 2.9. Currently, various theories have been suggested to account
for the saturation limit. However, there are limited known facts regarding the real
phenomena underlying the CA saturation, and the debate is still open [137]. Various
models have been proposed to elucidate the phenomenon CAS, including hypotheses
involving, the zero solid surface-liquid interface energy [138], charge trapping within
dielectrics [134, 139], electrical resistance within the conducting liquid [140], the fringe
effect of electric fields [141], and other experimental frameworks [142]. Here, we will
discuss the zero solid surface-liquid energy limit to explain the CAS. For a zero
voltage, the force balance is that defined by the classical Young’s law, Eq. (2.3). As
the applied voltage increases, the effective solid-liquid surface tension (γeff

SL) decreases,
and the CA decreases according to Eq. (2.33). As we have mentioned earlier, the
lower limit for the surface tension is zero. Suppose at the applied voltage, Vapp =
Vsat, the effective solid-liquid surface tension become zero, i.e., using Eq. (2.30) [138],

γeff
SL(Vapp)

∣∣∣∣
Vapp=Vsat

= 0. According to Eq. (2.31), at saturation [113],

cos θsat

∣∣∣∣
Vapp=Vsat

=
γSA

γLA
. (2.34)

θsat = arccos

(
γSA

γLA

)
. (2.35)

The Eq. (2.35) require the information of the solid surface tension, however it is
rather difficult to determine, to predict the CAS.

Figure 2.9: The schematic illustrates CAS for applied voltages in the EWOD system, showing how
high voltage affect droplet CA behavior.
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2.6.2 Magnetowetting

When a magnetic nanofluid, ferrofluid droplet forms a stable cap shape upon contact
with a solid surface, its wettability can be controlled by applying a magnetic field.
In the presence of this field, the droplet can deform, split, or move, a phenomenon
known as magnetowetting [143, 144].

2.7 Conclusion
In conclusion, this chapter has presented a comprehensive overview of the fundamen-
tal principles of wettability and its governing mechanisms. Key insights include:

• Fundamental concepts and definitions of wettability are introduced, providing
a basis for comprehending surface-liquid interactions.

• The impact of surface roughness on wetting behavior is explained, incorporating
the Wenzel and Cassie models to describe transitions between wetting regimes.

• Mathematical frameworks for droplet bouncing, electrowetting on dielectric
(EWOD) systems, and the phenomenon of contact angle saturation (CAS) are
highlighted.
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