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Chapter-2 

SHEATH PLASMA RESONANCE IN INVERTED FIREBALLS 

 

Abstract: The sheath plasma resonance (SPR) in an inverted fireball (IFB) system is semi-

analytically investigated in the framework of a generalized hydrodynamic (electron-ion 

bifluidic) isothermal model formalism. It incorporates the constitutive ionic fluid viscosity, 

inter-species collisions, and geometric curvature effects. The SPR stability is studied for an 

anodic (hollow, meshed) IFB for the first time against the traditional cathode-plasma 

arrangements of regular electrode (solid, smooth) fireballs. The SPR develops in the 

vicinity of a spherical electrode enclosed by a plasma sheath amid a given electric 

potential. A generalized linear quartic dispersion relation (DR) with diverse plasma multi-

parametric dispersion coefficients is methodically derived using a standard spherical 

normal mode analysis. The mathematical construct of the DR roots confirms that there 

exists only one feasible nonzero frequency mode (emerging in the IFB). This DR root is 

studied both analytically and numericallyϯ. This consequent SPR creates trapped acoustic 

fluctuations in the IFB plasmas because of the internal reflections at the sheath plasma 

boundary. Also, sensible parametric changes in the SPR features, with both plasma density 

and viscosity, are seen. A local condition for the SPR excitation and its subsequent 

transition to collective standing wave-like patterns in the IFBs is illustratively analyzed. A 

fair corroboration of our investigated results with the earlier SPR experimental 

observations of standing wave-like eigenmode patterns (evanescent) validates the practical 

reliability of this theoretical study. 

 

2.1 INTRODUCTION 

Any electrode with adequately raised electrostatic potential (relative to the ionization and 

plasma potentials) in a surrounding plasma can create a plasma fireball (FB) on its surface 

or within it, if a solid or hollow meshed anode is used, respectively [1, 2]. These two distinct 

types of laboratory FBs based on their different anode morphology are characterized as 

regular fireball (RFB) and inverted fireball (IFB), respectively. Due to the greater 

electrostatic potential, the drifting electrons acquire velocities fast enough to excite or even 

ionize the neutrals through inelastic collisions. Thus, they form the plasma FB glow inside 

the sheath region around the anode [3]. 
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The spatial dimension of the laboratory plasma FBs is determined by the electron-

ion flux balance (floating condition) through the plasma boundary [1]. It is noteworthy to 

add here that a highly nonlinear double layer (DL) forms around a FB. This DL gathers 

charges from the ambient plasma and accelerates them subsequently. It also detaches the 

sheath region from the ambient plasma [3]. It is pertinent to note that any imbalance of the 

particle flux across DL may instigate various instabilities, which are, in fact, of great 

interest for both fundamental as well as applied research [4]. 

One of such instabilities is the sheath plasma resonance (SPR) instability discussed 

in this chapter. The sheath formed in an FB is spatiotemporally dynamic in nature. The 

circumventing sheath and the plasma inside an IFB undergo oscillations. It may so happen 

that the oscillating plasma sheath may start resonating with the trapped plasma inside the 

IFB under some circumstances. This may lead to an instability termed as the SPR instability 

[5, 6]. It has a number of applications in both fundamental and applied fields of great value. 

A few of such applications are enumerated at the end of this chapter summarily. 

 

2.2 MODEL EQUATIONS 

We consider a simpler, magnetic field free IFB system (of spherical geometry) as shown in 

Fig. 1.1(b). The considered spherical symmetry of the IFB reduces the analysis into a one-

dimensional (radial) problem. The individual dynamics of the two fluids (electrons-ions) 

fulfil the plasma conditions ((𝑟,𝑡)≫ (𝜆𝐷,𝜔𝑝
−1)). The local imbalance of charges within the 

DL surrounding the IFB induces a non-neutral local charge number density (𝑛𝑒 ≠ 𝑛𝑖). The 

constitutive number density fields in the electrical Poisson equation develop the 

corresponding potential dispersal as a useful closure property. The DR is finally obtained 

by decoupling the continuity and momentum equations amid the Poisson equation. The DR 

is solved both analytically (with a few reasonable approximations) and numerically 

(without any approximation). It turns out that in many cases the analytical approximation 

is sufficient to describe the IFB system very well. The unique analytical solution of the DR 

describes the angular frequency (and its harmonics) generated in the system. In the 

numerical solution, only one out of the four roots yield feasible plots without any 

singularity and discontinuity. This single root generates 2-D and 4-D profiles that are in 

good agreement with the ones analytically developed for similar plasma parameters. The 

two sets of equivalent results along with the various comparable 2-D and 4-D profiles 

finally describe the SPR behavior of the system. 
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The SPR dynamics is analyzed with local linear perturbation theory. The 

corresponding sets of governing equations are given as follows 

The continuity equation for electrons (ions) 

 

𝜕𝑡𝑛𝑒(𝑖) + ∇⃗⃗ . (𝑛𝑒(𝑖)𝑣 𝑒(𝑖)) = 0.             (2.1) 

 

The total number of particles in a definite volume varies only upon changes in the particle 

flux across the surfaces enclosing the volume [7]. 

 

The momentum equation for electrons (ions) is given by 

 

𝑚𝑒(𝑖)𝑛𝑒(𝑖)[𝜕𝑡𝑣 𝑒(𝑖) + (𝑣 𝑒(𝑖). ∇⃗⃗ )𝑣 𝑒(𝑖)] = −∇⃗⃗ P ∓ 𝑒𝑛𝑒(𝑖)𝐸⃗  + 𝜂(∇2𝑣 𝑒(𝑖))  

                                          +(𝜁 +
𝜂

3
) ∇⃗⃗ (∇⃗⃗ . 𝑣 𝑒(𝑖)) + 𝑝 𝑒𝑖(𝑖𝑒).  (2.2)  

 

The net force exerted on the charges is expressed in terms of the individual parametric 

forces exerted on them, i.e., due to the pressure gradient (∇⃗⃗ 𝑃), electric field (𝐸⃗ ), spatial 

velocity variation (∇2𝑣 𝑒(𝑖)), and momentum gain of electronic fluid due to collision with 

ions (𝑝 𝑒𝑖(𝑖𝑒)), and vice versa [7, 8]. Poisson equation yields the electrostatic potential 

distribution in terms of the charge density in the generic notations [9] reads as 

 

∇2𝜙 = 4𝜋𝑒(𝑛𝑒 − 𝑛𝑖).                          (2.3) 

 

Here, 𝑛𝑒(𝑖), 𝑣 𝑒(𝑖), 𝑚𝑒(𝑖), 𝑃, 𝑒, 𝐸⃗ , 𝜁, 𝜂, and 𝑝 𝑒𝑖(𝑖𝑒) denote the charge number density, velocity, 

mass of electrons (ions), thermal pressure, electronic charge, local electric field, bulk 

viscosity, shear viscosity in the medium, and momentum gain due to plasma constituent 

collisions in the medium, respectively. 

It may be highlighted that an electron-depleted sheath and a field-free cold plasma 

in a plasma system behave as a capacitor and inductor, respectively. A small-scale 

perturbation can instigate unstable oscillations in the peripheral sheath and in the plasma 

region within the field free IFB. The SPR can yield plasma oscillations resonating with the 

sheath [5]. This resonance occurs when the electron transit time across the sheath is 
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equivalent to the inverse of electron plasma frequency (𝜔𝑝𝑒). Therefore, the electron transit 

time helps to anticipate the SPR frequency in an IFB system discussed herein [6]. 

In this work, we emphasize the SPR-induced oscillations in an IFB system under 

laboratory conditions. The SPR is also linked to the sheath plasma instability (SPI) 

discussed herein and in reference [5, 6]. This work uses a linear perturbation formalism of 

the governing equations of an IFB system that finally leads to a quartic equation for the 

angular instability frequency 𝜔. 

It is noteworthy that the SPR instabilities have so far been reported only in 

connection with classical RFB like arrangements [5, 6]. Studies in IFB systems haven’t 

been conducted yet as far as noticed. Thus, the main motivation of this chapter is to study 

such resonance instability phenomena within the IFBs. Besides, a bifluidic ansatz is used 

in this work for the first time to describe the IFBs with variations in density, viscosity, and 

linear small-scale perturbation of the involved parameters. This theoretical model recreates 

a few of the experimental outcomes on the IFBs reported previously in the literature. 

 

2.3 STABILITY ANALYSIS 

The local stability analysis of the considered sheath plasma system is performed with the 

standard technique of linear normal mode analysis in spherically symmetric geometry. 

Accordingly, the relevant physical variables (𝐹) are linearly perturbed (𝐹1) with respect to 

their corresponding hydrostatic homogenous equilibrium values (𝐹𝑜), presented 

symbolically [10] as 

 

𝐹(𝑟, 𝑡) = 𝐹𝑜 + 𝐹1(𝑟, 𝑡) = 𝐹𝑜 + 𝐹10 (
1

𝑟
) exp[−𝑖(𝜔𝑡 − 𝑘𝑟)],                               (2.4) 

𝐹 = [𝑛   𝑣   𝜙]𝑇,              (2.5) 

𝐹𝑜 = [𝑛𝑜   0   0]
𝑇,                                                                     (2.6) 

𝐹1 = [𝑛1   𝑣1   𝜙1]
𝑇.                                     (2.7) 

 

Inside the IFB the charged particle velocity is usually constant, and the electric field is zero. 

However, there can be sudden changes due to electron or ion bunching or their transit 

through the IFB leading to a locally nonzero electric field, especially on the edges. The 

1/𝑟-factor originates as an outcome of spherical symmetry in the perturbations of the 

relevant plasma fluid parameters (𝑣𝑒(𝑖) and 𝑛𝑒(𝑖)), as clearly shown in Eq. (2.4). The 1/𝑟-

dependency drops out for any planar geometry and the perturbation acquires the usual 
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plane-wave form, given as 𝐹10 exp[−𝑖(𝜔𝑡 − 𝑘𝑟)] [11, 12]. It enables us to transform our 

physical model from the defined spherical coordination space (𝑟, 𝑡) to the Fourier wave 

space (𝑘, 𝜔) with the linear differential operator equivalence relationships, defined as 𝜕𝑡(≡

−𝑖𝜔), ∇ (= ∇𝑟≡ (𝑖𝑘 − 1/𝑟)), ∇2(= ∇𝑟
2≡ (𝑟−2)𝜕𝑟(𝑟

2𝜕𝑟) = 𝜕𝑟
2 + (2𝑟−1)𝜕𝑟 ≡ (2𝑟−2 −

𝑘2 − 2𝑖𝑘𝑟−1) + (2𝑖𝑘𝑟−1 − 2𝑟−2) = −𝑘2), and so forth [10]. The terms 𝑘 and 𝜔 are 

wavenumber and angular frequency of the perturbation, respectively. Thus, the exponent 

quantity, [−𝑖(𝜔𝑡 − 𝑘𝑟)], represents the argument of the homologous considered 

fluctuations. It hereby yields the fluctuation phase velocity as 𝑣𝑝 = 𝜔/𝑘 and group velocity 

as 𝑣𝑔 = 𝑐𝑠
2/𝑣𝑝 = 𝑘𝑐𝑠

2/𝜔, 𝑐𝑠 = √𝑘𝐵𝑇𝑒/𝑚𝑖, being the ion acoustic phase velocity. 

We use a standard linear perturbation formalism, as constructed in Eqs. (2.4)-(2.7), 

over Eqs. (2.1)-(2.3) for the electron (ion) dynamics. The equilibrium number density, 

𝑛𝑒(𝑖)𝑜 = 𝑛𝑐 exp(−𝛾𝑟2) = 𝑛𝑜, is applied here in accordance with the previously reported 

experimental data [13]. The symbol, 𝑛𝑐, denotes the constant electron (ion) number density 

inside the IFB center. This internal density distribution usually follows a Gaussian (normal) 

shape with 𝛾 = 1/2𝜎2; where, 𝜎 denotes the standard deviation (dispersion) from the 

central maximum in the symmetrical bell-shaped profile [13]. Accordingly, Eq. (2.1) is 

employed to describe the perturbed electronic (ionic) dynamics in usual notations [9] as 

 

−𝑖𝜔𝑛𝑒(𝑖)1 + 𝑛𝑒(𝑖)𝑜 (𝑖𝑘 +
1

𝑟
) 𝑣𝑒(𝑖)1 − 2𝛾[𝑟𝑛𝑐 exp (−𝛾𝑟2)]𝑣𝑒(𝑖)1 = 0.            (2.8)     

 

We simplify Eq. (2.8) in terms of 𝑛𝑒(𝑖)1 and 𝑣𝑒(𝑖)1, as written below 

 

𝑛𝑒(𝑖)1 = (
1

𝑖𝜔
) (𝑖𝑘 +

1

𝑟
− 2𝛾𝑟)𝑛𝑜𝑣𝑒(𝑖)1.                              (2.9) 

 

We apply the same formalism in Eq. (2.2) for the electron (ion) dynamics in the plasma 

governed by the isothermal classical equation of state. The expressions for the thermal 

pressure, 𝑃 = 𝑛𝑜𝑘𝐵𝑇𝑒, and for the linear momentum gain due to the interparticle 

(ambipolar) collisional dynamics, 𝑝𝑒𝑖(𝑖𝑒) = [𝜋(𝑒𝑛𝑒(𝑖)𝑜)
2
𝑚𝑒

1/2
/(4𝜋𝜖𝑜)

2(𝑘𝐵𝑇𝑒)
3/2] 𝑣𝑒(𝑖)1, 

are adopted from the literature [7]. Further, 𝑝𝑒𝑖(𝑖𝑒) is used as 𝑝𝑜𝑛𝑜
2𝑣𝑒(𝑖) for the sake of 

brevity. Accordingly, Eq. (2.2) with these substitutions reads as 
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−𝑖𝜔𝑚𝑒(𝑖)𝑛𝑒(𝑖)𝑜𝑣𝑒(𝑖)1 = −(𝑖𝑘 −
1

𝑟
) 𝑘𝐵𝑇𝑒𝑛𝑒(𝑖)1 ∓ (𝑖𝑘 −

1

𝑟
) 𝑒𝑛𝑒(𝑖)𝑜𝜙1 − (𝜁 +

𝜂

3
) (𝑘2 +

2

𝑟2) − 𝜂𝑘2𝑣𝑒(𝑖)1 + 𝑝𝑜𝑛𝑜
2𝑣𝑒(𝑖)1.          (2.10)                                                                           

 

We simplify Eq. (2.10) in terms of 𝑣𝑒(𝑖)1, 𝑛𝑒(𝑖)1, and 𝜙1 as follows 

 

𝑣𝑒(𝑖)1 =
𝑘𝐵𝑇𝑒(𝑖𝑘−

1

𝑟
)𝑛𝑒(𝑖)1±𝑒𝑛𝑜(𝑖𝑘−

1

𝑟
)𝜙1

𝑖𝜔𝑚𝑒(𝑖)𝑛𝑜−[(𝜁+
4𝜂

3
)𝑘2+(𝜁+

𝜂

3
)

2

𝑟2]+𝑝𝑜𝑛𝑜
2
.         (2.11) 

 

Using the coefficients of viscosity terms, 𝜉 = (𝜁 + 4𝜂/3) and 𝛽 =(𝜁 + 𝜂/3) as the 

effective generalized fluid viscosity and compound fluid viscosity, respectively, the Eq. 

(2.11) is modified as 

 

𝑣𝑒(𝑖)1 =
𝑘𝐵𝑇𝑒(𝑖𝑘−

1

𝑟
)𝑛𝑒(𝑖)1±𝑒𝑛𝑜(𝑖𝑘−

1

𝑟
)𝜙1

𝑖𝜔𝑚𝑒(𝑖)𝑛𝑜−(𝜉𝑘2+
2𝛽

𝑟2)+𝑝𝑜𝑛𝑜
2

.          (2.12) 

 

Further, substituting Eq. (2.12) in Eq. (2.9) for 𝑣𝑒(𝑖)1 and after rearrangements, we have 

 

𝑛𝑒(𝑖)1 =
±𝑒𝑛𝑜

2(𝑖𝑘−
1

𝑟
)(𝑖𝑘−2𝛾𝑟+

1

𝑟
)𝜙1

[𝑖𝜔{𝑖𝜔𝑚𝑒(𝑖)𝑛𝑜−(𝜉𝑘2+
2𝛽

𝑟2)+𝑝𝑜𝑛𝑜
2}−𝑛𝑜𝑘𝐵𝑇𝑒(𝑖𝑘−

1

𝑟
)(𝑖𝑘−2𝛾𝑟+

1

𝑟
)]

.               (2.13) 

 

We finally apply the same perturbation scheme (Eqs. (2.4)-(2.7)) for 𝜙1 in Eq. (2.3) with 

the application of the Laplacian operator in spherical coordinates and arrive at the 

following equation 

 

−𝑘2𝜙1 = 4𝜋𝑒(𝑛𝑒1 − 𝑛𝑖1).          (2.14) 

 

The substitution of 𝑛𝑒1 and 𝑛𝑖1 from Eq. (2.13) in Eq. (2.14) results in 

 

−𝑘2𝜙1 = 4𝜋𝑒2𝑛𝑜
2 [

1

𝑖𝜔{𝑖𝜔𝑚𝑒𝑛𝑜−(𝜉𝑘2+
2𝛽

𝑟2)+𝑝𝑜𝑛𝑜
2}−𝑛𝑜𝑘𝐵𝑇𝑒(𝑖𝑘−

1

𝑟
)(𝑖𝑘−2𝛾𝑟+

1

𝑟
)
−

1

𝑖𝜔{𝑖𝜔𝑚𝑖𝑛𝑜−(𝜉𝑘2+
2𝛽

𝑟2)+𝑝𝑜𝑛𝑜
2}−𝑛𝑜𝑘𝐵𝑇𝑒(𝑖𝑘−

1

𝑟
)(𝑖𝑘−2𝛾𝑟+

1

𝑟
)
] (𝑖𝑘 −

1

𝑟
) (𝑖𝑘 − 2𝛾𝑟 +

1

𝑟
).                    (2.15) 
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We simplify Eq. (2.15) for the non-trivial condition 𝜙1 ≠ 0 to yield the following 

generalized quartic linear dispersion relation (DR) 

 

𝐴𝜔4 + 𝐵𝜔3 + 𝐶𝜔2 + 𝐷𝜔 + 𝐸 = 0.         (2.16) 

 

Clearly, Eq. (2.16) has a unique set of multi-parametric dispersion coefficients cast 

respectively as 

 

𝐴 = 1,             (2.17) 

𝐵 = 𝑖 {(
1

𝑚𝑒𝑛𝑜
) (𝜉𝑘2 +

2𝛽

𝑟2) − (
𝑚𝑖𝑝𝑜𝑛𝑜

𝑚𝑒
)},        (2.18) 

𝐶 = {(
𝑘𝐵𝑇𝑒

𝑚𝑒
) (𝑖𝑘 −

1

𝑟
) (𝑖𝑘 − 2𝛾𝑟 +

1

𝑟
) − (

1

𝑚𝑒𝑚𝑖𝑛𝑜
2) (𝜉𝑘2 +

2𝛽

𝑟2)
2

+ (
2𝑝𝑜

𝑚𝑒𝑚𝑖
) (𝜉𝑘2 +

2𝛽

𝑟2) −

(
𝑝𝑜𝑛𝑜

2

𝑚𝑒𝑚𝑖
) − (

4𝜋𝑒2𝑛𝑜

𝑚𝑒
) (𝑖𝑘 −

1

𝑟
) (𝑖𝑘 − 2𝛾𝑟 +

1

𝑟
)

1

𝑘2},      (2.19) 

𝐷 = 𝑖 {(
2𝑘𝐵𝑇𝑒

𝑚𝑒𝑚𝑖𝑛𝑜
) (𝜉𝑘2 +

2𝛽

𝑟2) (𝑖𝑘 −
1

𝑟
) (𝑖𝑘 − 2𝛾𝑟 +

1

𝑟
) − (

2𝑝𝑜𝑛𝑜𝑘𝐵𝑇𝑒

𝑚𝑒𝑚𝑖
) (𝑖𝑘 −

1

𝑟
) (𝑖𝑘 −

2𝛾𝑟 +
1

𝑟
)},                                     (2.20) 

𝐸 = (
(𝑘𝐵𝑇𝑒)

2

𝑚𝑒𝑚𝑖
) (𝑖𝑘 −

1

𝑟
)
2

(𝑖𝑘 − 2𝛾𝑟 +
1

𝑟
)
2

.                   (2.21) 

 

To feed the magnitudes of the involved parameters for numerical analysis of Eq. (2.16), we 

correlate it with an experimentally reported hydrogen plasma system [5]. This experimental 

work fairly offers the relevant IFB parametric magnitudes in this context. This is how it 

helps in anticipating the practical magnitudes of the diverse 𝜔-coefficients for our DR 

analysis to proceed. Accordingly, the considered typical experimental values below, 

suitably taken from the literature [5], enables us to solve the DR analytically. The relevant 

parametric values are [5]: 𝑚𝑒 = 9.1 × 10−31 kg, 𝑚𝑖 = 1.67 × 10−27 kg, 𝑒 = 1.6 ×

10−19 C, 𝑛𝑐 = 1014 − 1017 m−3, 𝑛𝑜 = 𝑛𝑐 exp(−𝛾𝑟2), 𝑘𝐵𝑇𝑒 = 3.2 × 10−19 J, 𝜉 ≈ 𝛽 =

10−5 N s m−2, 𝛾 = 510 m−2, and 𝑝𝑜 = 2.42 × 10−42 kg m3 C−2 s−1. Besides, since 

𝑚𝑖 ≫ 𝑚𝑒 (𝑚𝑒/𝑚𝑖 = 5.45 × 10−4), we take 𝑚𝑖 ± 𝑚𝑒 ≈ 𝑚𝑖. 

 

Application of the above parametric inputs in Eqs. (2.18)-(2.21) presents 

 

𝐵 = 1.18𝑖 × 1010 (𝑘2 +
2

𝑟2) exp(𝛾𝑟2),        (2.22) 
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𝐶 = −3 × 1016 (𝑘2 +
2

𝑟2
) exp(2𝛾𝑟2),                   (2.23) 

𝐷 = 2.27𝑖 × 1018 (𝑘2 +
2

𝑟2) (𝑖𝑘 −
1

𝑟
) (𝑖𝑘 − 2𝛾𝑟 +

1

𝑟
) exp(𝛾𝑟2),     (2.24) 

𝐸 = 1.68 × 1019 (𝑖𝑘 −
1

𝑟
)
2

(𝑖𝑘 − 2𝛾𝑟 +
1

𝑟
)
2

.         (2.25) 

 

The SPR frequency is expected to be of the order of the electron plasma frequency 

(~1011 − 1012 Hz) [5, 6]. Assuming an 𝜔-value on this magnitude order, the first three 

terms 𝐴𝜔4, 𝐵𝜔3,  and 𝐶𝜔2 from Eq. (2.16) are found to possess equivalent magnitudes 

(~1040 − 1044). The approximate magnitudes of the 𝐷𝜔1- and 𝐸𝜔0-terms in Eq. (2.16) 

are 1028 and 1019, respectively. These are far smaller than the first three terms. Hence, we 

ignore these two lower-order terms and move forward with the first three higher-order terms 

in Eq. (2.16) justifiably. The reduced form of Eq. (2.16) is cast as 

 

(𝐴𝜔2 + 𝐵𝜔1 + 𝐶)𝜔2 = 0.          (2.26) 

 

Using the dispersion coefficients 𝐴 from Eq. (2.17), 𝐵 from Eq. (2.22), and 𝐶 from Eq. 

(2.23) in Eq. (2.26), we evaluate the dispersion roots as 

 

𝜔1 = 0,             (2.27) 

 

𝜔2 = 0,                                   (2.28) 

 

𝜔3 = 0,                                                (2.29) 

 

𝜔4 = −1.18𝑖 × 1010 (𝑘2 +
2

𝑟2
) exp(𝛾𝑟2).        (2.30) 

 

It may be noticed that the expression in Eq. (2.30) is the first coefficient of 𝜔3 in the DR 

(Eq. (2.16)). The expression is independent of ion mass, which is a possible variable to 

different background plasmas. So, Eq. (2.30) can be used (extrapolated) to find out the 

general solution for SPR dynamics in any laboratory plasmas. Therefore, the general 

solution for the SPR in the IFB system is given as 
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𝜔4 = −𝑖 (
1

𝑚𝑒𝑛𝑐
) (𝜉𝑘2 +

2𝛽

𝑟2
) exp(𝛾𝑟2).                                    (2.31) 

 

The absence of any real component in 𝜔 = 𝜔4 in Eq. (2.31) indicates that this SPI branch 

is not propagatory. The negative imaginary feature of 𝜔4 points at the stable (with certain 

conditions) and standing wave-like nature of the SPR. It means that the instability gets 

reflected from the sheath region. So, the electron plasma frequency in the sheath (𝜔𝑠𝑝𝑒) 

must be higher than the instability frequency (𝜔4), else it will leak through the IFB anode. 

Consequently, the IFB does not act as a cavity resonator. In addition, the DR (Eq. (2.16)) 

is also solved numerically with the same set of parametric values. The detailed analytic 

calculations leading to the derived numerical solutions are skipped for spatiotemporal 

limitations. Here, the analytical and numerical DR roots are conjointly illustrated for a 

common multi-parametric comparison graphically. It is observed through comparison that 

both analytical and numerical figures are in good agreement with each other. It ensures the 

reliability of the analytical solution, Eq. (2.31), with some reasonable approximations. 

 

5.4 RESULTS AND DISCUSSIONS 

The dynamics of the excited SPR inside an IFB is studied with a linear perturbation 

formalism in laboratory spatiotemporal scales in spherical geometry. This linear formalism 

is applicable under the assumption of small amplitude perturbations [14]. The assumed 

spherical symmetry makes the polar and azimuthal coordinates within the IFB redundant 

in the SPR description. This symmetry simplifies the linear analysis by reducing the IFB 

dynamics into a one-dimensional (radial) problem. 

The linear first-order perturbation analysis transforms the IFB model into a 

generalized linear quartic DR (Eq. (2.16)) with multiparametric coefficients (Eqs. (2.17)-

(2.21)). To evaluate the contribution of each of the terms along with their coefficients, the 

values of all the involved constants, such as 𝑒, 𝑚𝑒(𝑖), 𝑝, 𝑛𝑜, and 𝑘𝐵𝑇𝑒 are applied from 

experimentally reported hydrogen plasma IFB system [5]. 

It may be noted that the terms, such as 𝑟2, 𝑘2, and 𝑛𝑜 = 𝑛𝑐 exp(−𝛾𝑟2) do not vary 

with the background plasma but vary with the IFB plasma parameters. During the SPR, the 

two parameters 𝑘 and 𝑟 are mathematically linked through the ‘resonance condition’ 𝑟𝑘 =

(4𝜋)−1. The viscosity coefficients, 𝜉 and 𝛽 are specific to the host plasma used for exciting 

the SPR phenomena. Therefore, it may be inferred, from Eq. (2.30), that the common mode 

of the SPR in any IFB plasma system is given as 𝜔 = −𝑖(1/𝑚𝑒𝑛𝑐)(𝜉𝑘
2 +
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2𝛽/𝑟2) exp(𝛾𝑟2). Applying the experimentally reported values of the various relevant 

parameters, the SPR mode can be evaluated for that specific IFB plasma system. 

The colormap of the SPR dynamics (via Eq. (2.16)) reveals diverse multi-

parametric properties. These analyses comprise of results obtained from the analytical 

solution (only 𝜔𝑖) as well as the numerical solution (both 𝜔𝑟 and 𝜔𝑖). It is important to add 

that 𝜔𝑟 > 0 and 𝜔𝑟 < 0 denote the propagating and evanescent nature of the perturbations 

[15], respectively. Whereas 𝜔𝑖 > 0 and 𝜔𝑖 < 0, on the other hand, denote the growth and 

decay of the perturbations [15]. In the case of 𝜔𝑟 = 0, the SPR is a pure standing wave 

(non-propagatory), i.e., the nodes and antinodes of the wave formed within the IFB remain 

spatially invariant over time. For a direct comparison of the results from two different 

methods (analytical and numerical), the plots are arranged correspondingly. The various 2-

D plots (Figs. 2.1-2.5, Figs. 2.9-2.12) demonstrate the 𝜔𝑖(𝑟)-variation with respect to 𝑟 or 

𝑘 for different 𝜉(≈ 𝛽), 𝑛𝑐, and 𝛾-values. Similarly, the 4-D colormaps (Figs. 2.6-2.8, Figs. 

2.13-2.14) show the variation of 𝜔𝑖(𝑟) with respect to 𝑛𝑜(𝑟), 𝜒 (= 𝜉𝑘2 + 2𝛽/𝑟2), 𝑟 or 𝑘 at 

the common resonance condition [𝑟𝑘 = (4𝜋)−1]. 

 

       

Figure 2.1: Profile of the spatial variation of the imaginary frequency part (𝜔𝑖) of the DR 

obtained for different displayed 𝜉-values (a) analytically and (b) numerically. 

 

The distinct lines in Fig. 2.1 link to ξ(≈ β)= 10−5 N s m-2 (black dotted line), 

1.5 × 10−5 N s m-2 (blue dashed line), 3 × 10−5 N s m-2 (red solid line), respectively. The 

two external parallel green dotted lines denote the IFB sheath regions in both the subplots. 

The highest SPI growth amplitude (∝ 𝜔𝑖) occurs close to the sheath region inside 

the IFB, where the plasma density, and hence, the plasma viscosity (𝜒 ∝ 𝑛𝑒(𝑖)/𝑣𝑒(𝑖) [16]) 

are at their lowest magnitudes. The condition, 𝜔𝑖 ≈ 0, indicates the inability of the IFB 

system to damp the applied perturbation in that sheath vicinity region. The spatial variation 



Chapter-2: Sheath plasma resonance in inverted fireballs 

25 
 

of 𝜔𝑖 = 𝑓(𝑟) (Figs. 2.1-2.2) across the IFB implies a variable response of the IFB plasma 

towards the SPI. The peripheral IFB sheath region is favorable to the SPI (with higher 𝜔𝑖-

value), whereas the central denser region shows a rapid decrease in the 𝜔𝑖-value. It 

replicates an evanescent wave with gradually decaying amplitude, 𝐹10 exp(𝜔𝑖𝑡), towards 

the center of the IFB system. Since the plasma number density [𝑛𝑜 = 𝑛𝑐 exp(−𝛾𝑟2)] has 

its maximum (𝑛𝑐) at the IFB center (𝑟 = 0), it clearly proves that 𝑛𝑜 damps the SPI. 

There exists a minor difference in the radial 𝜔𝑖-profiles (obtained from Eq. (2.16)) 

relative to the IFB center constructed analytically (Fig. 2.1(a)) and numerically (Fig. 

2.1(b)). This disparity is clearly attributable to the approximate calculations carried out in 

the former and exact calculations in the latter. Consequently, the curves in analytical plots 

start growing a bit closer to the IFB center because the electron population density increases 

in that region. Since all the involved terms are considered in numerical analysis without 

any approximation, these terms make some small (nonzero) contributions to the effective 

plasma density. Thus, this instability grows a bit further radially away from the center in 

the numerical counterpart (Fig. 2.1(b)) against the analytical one (Fig. 2.1(a)). Besides, 

three different values of the viscosities (𝜉 and 𝛽) are considered herein for a broader 

representation of the instability results in a wider viscosity horizon of real importance. 

The physics behind the SPR excitation may be explained with the inductor (L) and 

capacitor (C)-like behavior of the field free IFB plasma and the sheath, respectively. As the 

interior of the IFB is field free and consists mainly of cold electrons, it behaves inductively 

and can become resonant to its surrounding sheath, which essentially acts as a capacitor [5, 

6]. As discussed in [5], this LC resonant circuit exhibits an unstable antiresonance, that 

depends only weakly on the IFB electrode bias. Instability occurs due to negative RF sheath 

resistance during the SPR, when the electrons also start to behave inertially along with the 

ions. The SPR occurs most efficiently in the ideal case, when 𝜔/𝜔𝑝 ≈ 1. Furthermore, the 

instability is strongly damped at the plasma potential. 

The electron density increases towards the center of the IFB and so does the plasma 

frequency. Hence, it approaches the limit 𝜔/𝜔𝑝 → 0. In this extreme case, the resonant part 

of the wave is extinguished, while the antiresonance that drives the SPI is strongly damped, 

a result that also corroborates the experimental findings [5]. The results of our model, which 

indicate this behavior, are also graphically described as follows. 
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Figure 2.2: Profile of the spatial variation of the imaginary frequency part (𝜔𝑖) of the DR 

obtained for different displayed 𝑛𝑐-values (a) analytically and (b) numerically. 

 

The distinct lines in Fig. 2.2 link to nc= 0.88 × 1017 m−3 (black dotted line), 

1.88 × 1017 m−3 (blue dashed line), 2.88 × 1017 m−3 (red solid line), respectively. The 

two external parallel green dotted lines denote the IFB sheath regions in both the subplots. 

It may be concluded from Fig. 2.2 that the IFB center is most stable against any 

introduced SPR perturbation. The SPR, which originates in the sheath region, is also 

strongest there and dies out while approaching the center. The wavelength of the acoustic 

wave produced due to SPR is equivalent to the diameter of the IFB anode. This indicates 

that the IFB can act as a cavity resonator holding an SPR induced standing wave. It may 

also be pointed out that there is no qualitative variation in 𝜔𝑖 noticed against the central 

density (𝑛𝑐) apart from the meagre change in 𝜔𝑖-magnitude. 

 

      

Figure 2.3: Profile of the imaginary frequency part (𝜔𝑖) variation of the DR obtained for 

different 𝜉-values with respect to 𝑘 (a) analytically and (b) numerically. 

 

Applying the IFB resonance condition of 𝑟𝑘 = (4𝜋)−1, the final solution of the DR 

(Eq. (2.30)) is expressed in terms of wave number 𝑘 through both the analytical (Fig. 2.3(a)) 

and numerical (Fig. 2.3(b)) profiles. The modified form which reads 𝜔𝑖 = −316.51𝑘2(1/

𝑚𝑒𝑛𝑐)exp (𝛾/16𝜋2𝑘2), is plotted for various values of 𝜉(≈ 𝛽) = 10−5 N s m−2 (black 



Chapter-2: Sheath plasma resonance in inverted fireballs 

27 
 

dotted line), 1.5 × 10−5 N s m−2 (blue dashed line), and 3 × 10−5 N s m−2 (red solid 

line)). The different 𝜉(≈ 𝛽)-values are used herein to study variations of the SPR properties 

for different viscosities. The SPI shows a sudden rise with respect to 𝑘 with subsequent fall 

at higher 𝑘-values. The 𝜔𝑖-variation in the 𝑘-space corresponds to Fig. 2.1 for 𝑟. 

The 𝜔𝑖-variation in the 𝑘-space represents a growth (or decay) rate of the SPI for 

different wavelengths or frequencies of the applied perturbation. It also means that effective 

plasma behavior differs for different wavelengths of perturbation. It is seen quite often that 

the growth (or decay) rate of the instability does not have a linear correlation with 𝑘. The 

𝑘-value corresponding to the maxima of 𝜔𝑖-variation may be depicted as the resonance 

point where the perturbation grows most rapidly. 

Moreover, when looking at the instability frequency in the 𝑘-space (Fig. 2.3), one 

sees a distinctive maximum in 𝜔𝑖 in this domain. The reason for this becomes evident from 

a closer inspection of the DR solution, Eq. (2.31). Keeping in mind that the wavenumber 𝑘 

is proportional to 𝑟−1, one can see that in the case of small 𝑘 (or large 𝑟) the exponential 

term in Eq. (2.31) becomes dominant while the prefactor vanishes. However, the 

exponential term goes to 1 for 𝑟 → 1, which leads to a peak in the 𝜔𝑖(𝑘)-function close to 

the IFB center. 

 

       

Figure 2.4: Profile of the imaginary frequency part (𝜔𝑖) variation of the DR obtained for 

different 𝑛𝑐-values with respect to 𝑘 (a) analytically and (b) numerically. 

 

It is noteworthy that a good agreement between the analytical and numerical results 

proves the semi-analytic accuracy and reliability of the proposed SPR calculation scheme. 

It is quite apparent that 𝑛𝑐 does not have any qualitative influence on 𝜔𝑖, as also observed 

earlier. However, the exponential drop in the plasma density towards the edge of the IFB 

influences oscillations considerably. The corresponding 𝜔𝑖 curves for three different 𝑛𝑐-

magnitudes at smaller 𝑘-values are indistinctly merged. The different 𝑛𝑐-magnitudes are 
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used herein to examine variations of the SPR properties for different densities. The basic 

physics behind such 𝜔𝑖-variations remains the same as already explained before in Fig. 2.3. 

The observed 𝜔𝑖-maxima occurs at 𝑘 ≈ 1.4 rad m−1 to 1.6 rad m−1, which corresponds 

to, from 𝑟 = 5.6 × 10−2 m to 4.9 × 10−2 m, perfectly covering the sheath region (𝑟 ≈

5 × 10−2 m or 5 cm) with the resonance condition [𝑟𝑘 = (4𝜋)−1]. The oscillation 

amplitude is maximum beside the sheath region due to the SPR, like an antinode in a 

standing wave. Therefore, the specific 𝑟 corresponding to the 𝑘 where the 𝜔𝑖-maxima 

occurs, holds the antinode forming due to the SPR excited inside the IFB. 

 

       

Figure 2.5: Profile of the imaginary frequency part (𝜔𝑖) variation of the DR obtained for 

different 𝛾-values with respect to 𝑘 (a) analytically and (b) numerically. The different lines 

link to 𝛾 = 450 𝑚−2 (black dotted line), 𝛾 = 550 𝑚−2 (blue dashed line), 𝛾 = 600 𝑚−2 

(red solid line), respectively. 

 

Fig. 2.5 shows the 𝜔𝑖-variation against 𝑘 for different values of 𝛾. The analytical 

(Fig. 2.5(a)) and numerical (Fig. 2.5(b)) plots are in good agreement for all values of 𝑘. 

Whereas, for larger values of 𝑘 the plots are congruent with slight variation in magnitudes. 

The experimentally reported value of 𝛾 for hydrogen plasma is nearly 510 m−2 [17]. The 

𝜔𝑖-magnitude, while lower than 𝜔𝑠𝑝𝑒 for 𝛾 ≈ 510 m-2, shows that the SPR remains trapped 

inside the IFB. This occurs due to its internal reflection from the inside of the sheath 

forming a standing acoustic wave like structure. 

It may be highlighted that greater 𝛾-value makes the density variation [𝑛𝑜 =

𝑛𝑐exp (𝛾𝑟2)] more pronounced within the IFB. This means that higher 𝛾-values indicate a 

higher accumulation of charges in the IFB center, whereas the outer peripheries contain less 

charges. As a result, the SPI is more attenuated around the IFB center than anywhere else. 

Therefore, it may be inferred from the plots (Fig. 2.5) that 𝛾 is an SPI stabilizing parameter. 
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Figure 2.6: Colormap profile depicting the (a) analytical and (b) numerical 𝜔𝑖-variation 

with 𝑟 and 𝑛𝑜 [= 𝑛𝑐𝑒𝑥𝑝 (−𝛾𝑟2)]. 

 

Fig. 2.6 shows the collective variation of 𝜔𝑖 with respect to 𝑟 and 𝑛𝑜. There may be 

minor discrepancies in the ordinate scaling (1012 in Fig. 2.6(a) (analytical) and 1011 in Fig. 

2.6(b) (numerical)). It results in axis-parametric deviations originating from the two lowest-

order terms expediently ignored in simplifying Eq. (2.16).  It is noticed that 𝜔𝑖 increases 

with the increase in 𝑛𝑜, but the negative growth indicates the damping of the SPR. The 

large negative 𝜔𝑖-magnitude at largest 𝑟 and smallest 𝑛𝑜-values replicates that of 2-D 

profiles (Fig. 2.2) and proves that the SPR oscillation is internally reflected by the IFB 

sheath boundary. The larger 𝜔𝑠𝑝𝑒-value does not allow the instability to leak through the 

IFB boundary. Physics for the colormap (Fig. 2.6) is same as that explained in Fig. 2.2 

which deals with both the density and radial distance variations. 

 

           

Figure 2.7: Colormap depicting the (a) analytical and (b) numerical 𝜔𝑖-variation 

conjointly with 𝑘 and 𝑛𝑜 [= 𝑛𝑐𝑒𝑥𝑝 (−𝛾𝑟2)]. 

 

For the SPR, both 𝑟 and 𝑘 are related by the expression 𝑟𝑘 = (4𝜋)−1. Hence, the 

modified SPR mode can be expressed in terms of 𝑘 as 𝜔𝑖 = −316.51𝑖𝑘2(1/𝑚𝑒𝑛𝑐)exp (𝛾/

16𝜋2𝑘2). When 𝑘 increases, the 𝑛𝑜 also increases, and the 𝜔𝑖-magnitude decreases. This 
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behavior is opposite compared to the variation in 𝜔𝑖 with respect to 𝑟 as shown in Fig. 2.7, 

since 𝑟 ∝ 𝑘−1. Concisely, 𝜔𝑖 and 𝑘 are directly proportional to each other up to a certain 

extent, beyond which they become inversely proportional. The same behavior is also 

noticed for 𝜔𝑖 varying with respect to 𝑛𝑜. The discrepancies in the graphical ordinate-

scaling in Fig. 2.7(a) as 1012 (analytical) and in Fig. 2.7(b) as 1011 (numerical) with 

different multipliers, their quantitative graphical deviations, are the same as discussed 

before for Figs. 2.6(a-b). No such discrepancies are observed in the 2-D plots due to only 

one independent variable against two variables in the 4-D colormaps. 

 

        

Figure 2.8: Colormap profile depicting the (a) analytical and (b) numerical resonance 𝜔𝑖-

variation conjointly with 𝑘 = (4𝜋𝑟)−1 and 𝜒 (= 𝜉𝑘2 + 2𝛽/𝑟2). 

 

As in Fig. 2.4, SPR damping is noticed with the increase in 𝑘. It should be recalled 

that there is a variation of fluid viscosity with 𝑘. Therefore, any coordinate on the colormap 

is a triangulated outcome of all the three parameters, 𝜔𝑖, (𝜉𝑘
2 + 2𝛽/𝑟2), and 𝑘. Here, 𝑘 is 

the only independent parameter and the rest are dependent singly on 𝑘. The SPI mode 

remains trapped inside the IFB and forms a standing wave. It resembles the previously 

reported experimental data [5, 6], thereby corroborating the proposed bifluidic plasma 

fireball model approach. 

After a series of comparisons between the analytical and numerical graphical results 

for 𝜔𝑖-parameter, the numerically obtained nonzero 𝜔𝑟-parameter is discussed hereafter. It 

may be reminded that the 𝜔𝑟 is found to be zero in magnitude in the analytical solution due 

to its small order of magnitude. Hence, the discussed 𝜔𝑟-parameter afterwards is purely a 

yield of the numerical solution of the DR (Eq. (2.16)). 
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Figure 2.9: Variation of 𝜔𝑟 for various (a) viscosity (𝜒 ∝ 𝜉, 𝛽) and (b) central density (𝑛𝑐) 

values with 𝑟 at the resonance condition [𝑘 = (4𝜋𝑟)−1]. 

 

The distinct lines in Fig. 2.9 link to different ξ (≈ β) and nc values indicated as (a) 

ξ (≈ β) = 10−5 N s m−2 (black dotted line), 1.5 × 10−5 N s m−2 (blue dashed line), 

3 × 10−5 N s m−2 (red solid line), and (b) nc = 0.88 × 1017 m−3 (black dotted line), 

1.88 × 1017 m−3 (blue dashed line), 2.88 × 1017 m−3 (red solid line). 

The observed characteristics of subplots in Fig. 2.9 are exactly opposite to those 

observed in Figs. 2.1-2.2 for the 𝜔𝑖-parameter. In contrast to Figs. 2.1-2.2, larger 𝑛𝑐- and 

smaller 𝜉(≈ 𝛽)-values are found to yield higher 𝜔𝑟-values (Fig. 2.9). Physics for this 

variation may again be attributed to the rising number density, thus plasma frequency 

towards the center, which strongly damps the instability. 

 

          

Figure 2.10: Variation of 𝜔𝑟 for various (a) viscosity (𝜒 ∝ 𝜉, 𝛽) and (b) central density 

(𝑛𝑐) values with 𝑘 at the resonance condition [𝑘 = (4𝜋𝑟)−1]. 

 

It is seen that Fig. 2.10 is comparable with Figs. 2.3-2.4. The corresponding maxima 

and minima of 𝜔𝑖 and 𝜔𝑟 for two different parameters [𝜉(≈ 𝛽), and 𝑛𝑐] form at common 

𝑘-values. 
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Figure 2.11: Comparative profiles of 𝜔𝑖 and 𝜔𝑟 with respect to 𝑟 for different (a) 𝜉(≈ 𝛽) 

and (b) 𝑛𝑐-values. 

 

The spatial correlation of 𝜔𝑖 and 𝜔𝑟 for different parameters [𝜉(= 𝛽), and 𝑛𝑐] 

proves that the SPI (𝜔𝑖 > 0) and the evanescent wave formation (𝜔𝑟 < 0) occur 

simultaneously, and the latter is ubiquitous in the SPR. 

 

          

Figure 2.12: Comparative profiles of 𝜔𝑖 and 𝜔𝑟 with respect to 𝑘 for different (a) 𝜉(≈ 𝛽) 

and (b) 𝑛𝑐-values. 

 

Fig. 2.12 compares the magnitudes of 𝜔𝑖 (instability or stability) and 𝜔𝑟 

(propagation or evanescence) with respect to 𝑘 for viscosity and density variations. The 

smaller 𝜔𝑟-magnitude yields a larger 𝜔𝑖/𝜔𝑟-ratio of order~1010-1011. Larger 𝜔𝑖 and 

smaller 𝜔𝑟 prove the standing wave-like and reflecting SPI-nature at the inner edge of IFB. 

The respective rise and fall in the perturbation expressed through 𝜔𝑖-variations are 

due to an increased plasma density close to the IFB center. The lower 𝜔𝑟-value towards the 

IFB boundary (sheath region) indicates an evanescent SPI. The 𝜔𝑟-parameter gradually 

approaching zero indicates a purely standing wave SPI at the IFB center. 
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Figure 2.13: Colormap showing the 𝜔𝑟-profile with variation of 𝜒 evolving in (a) 𝑟 and 

(b) 𝑘. 

 

It is noticeable that Fig. 2.6 and Fig. 2.14 illustratively show a similar variational 

pattern in 𝜔𝑖 and in 𝜔𝑟, respectively. It is further seen that all the 2-D line profiles (Figs. 

2.1-2.5, Figs. 2.9-2.12) and 4-D color profiles (Figs. 2.6-2.8, Figs. 2.13-2.14) from both the 

analytical and numerical outcomes corroborate each other. It justifies the reliability of our 

semi-analytical calculation scheme. It is further noteworthy that, the small jumps noticed 

in Fig. 2.14 (a) are purely mathematical outcomes stemming from the lowest-order 

coefficients, as already discussed in the case of Fig. 2.1 illustratively. 

 

        

Figure 2.14: 4-D Colormap showing the collective variation of 𝜔𝑟 with respect to 𝑛𝑜, (a) 

𝑟, and (b) 𝑘. 

 

The multi-parametric influences on the SPR stability features (Figs. 2.1-2.14) are 

now highlighted in Table 2.1 for the sake of instant reference of its readers. Besides, a 

tabular comparison of the analytical and numerical results is also presented in Table 2.2. It 

draws a relative contrast between these two sets of results by using two different software 

tools for graphical analyses. The similarities and the dissimilarities between the two sets of 
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graphical results are highlighted in Table 2.2. Their fine matching expressed through their 

corresponding plots emboldens the accuracy of the SPR analysis. 

               

Table 2.1: Multi-parametric SPR stability 

S. No. Physical 

parameter 

Influence Figure Physical remark 

1 Central 

density (𝑛𝑐) 

Weakly 

damping  

Figs. 2.2, 

2.4, 2.6, 2.7 

Density fields act 

against the 

acoustic 

oscillations 

2 Density steepness 

parameter (𝛾) 

Damping Fig. 2.5 Higher steepness 

increases the rate 

of damping at the 

IFB center and 

vice-versa 

3 Effective viscosity 

(𝜉𝑘2 + 2𝛽/𝑟2) 

Damping Figs. 2.8, 

2.13 

High-viscosity 

plasmic shells 

prevent acoustic 

oscillations 

 

Table 2.2: Analytical vs. numerical results 

S. No. Item Contrast Figure Remarks 

1 𝜔𝑖 = 𝜔𝑖(𝑟) for 

different 𝜉- values 

Similar Fig. 2.1 Two results corroborate 

2 𝜔𝑖 = 𝜔𝑖(𝑟) for 

different 𝑛𝑐 values 

Similar Fig. 2.2 Two results corroborate 

3 𝜔𝑖 = 𝜔𝑖(𝑘) for 

different 𝜉-values 

Similar Fig. 2.3 Two results corroborate 

4 𝜔𝑖 = 𝜔𝑖(𝑘) for 

different 𝑛𝑐 values 

Similar Fig. 2.4 Two results corroborate 

5 𝜔𝑖 = 𝜔𝑖(𝑘) for 

different 𝛾 values 

Similar Fig. 2.5 Two results corroborate 
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6 𝜔𝑟 vs any other 

parameter 

NA Figs. 2.9-

2.14 

𝜔𝑟 ≈ 0 for analytical 

solution and 𝜔𝑟 < 0 for 

numerical solution 

 

2.5 CONCLUSIONS 

The SPR excitation physics in an IFB system is semi-analytically studied from the 

viewpoint of linear local perturbative treatment in a spherically symmetric geometry. The 

spherical symmetry makes the polar and azimuthal components redundant. The direction 

unbiased nature of the spherically symmetric fireballs nullifies the polar and azimuthal 

terms. Therefore, the polar and azimuthal parametric contributions are justifiably ignored 

for the sake of mathematical simplicity in the adopted calculation scheme. However, 

considering a non-spherical symmetry of the fireball structure or a nonzero applied 

magnetic field would make the polar and azimuthal components as significant as radial 

components for the plasma parameters, as well as the excited instabilities. 

The basic structuring equations for portraying the electron and ion dynamics are 

linearized due to the assumed small-scale multi-parametric perturbations. This linearization 

enables us to ignore the nonlinear (higher-order) terms (multi-parametric cross-coupling 

effects) in the formalism of the plasma system. Moreover, the results of linear perturbation 

scheme manifest parameters directly influencing the stability or instability in the system. 

The electrostatic Poisson equation for the potential distribution yields the multi-parametric 

model closure as an intrinsic local model coupling property originating from the 

constitutive local charge density fields. The perturbed model system gets methodically 

decoupled into a quartic DR (Eq. (2.16)). The analysis theoretically demonstrates the SPR 

excitation in a reticular IFB in spherical geometry, unlike those found in the experimental 

arrangements, set up with central solid anodes. Such an SPR instability, studied here semi-

analytically, has practically been observed and reported in solid anode experiments with 

typical plasma parameters: 𝑛𝑒 < 5 × 1017 m−3,  𝑘𝐵𝑇𝑒 ≤  0.5 eV, and 𝑃 < 3 × 10−4 Torr 

[6]. The typical variations in the magnitudes of the constant parameters [viz., 𝑛𝑐, 𝜉(= 𝛽), 

and 𝛾] considered in the graphical analyses (Figs. 2.1-2.4, 2.9-2.14) are in light of these 

experimental reporting on solid anode arrangement SPR studies. To the best of our 

knowledge, no SPR excitation has hitherto been reported experimentally in the literature 

for an IFB system developed within such hollow and reticular anodes as described above. 
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The obtained DR (Eq. (2.16)) is simplified by comparing the magnitudes of the 

multi-parametric coefficients through parametric substitution from an exemplary hydrogen 

plasma system [17]. The quartic equation is hence analytically reduced to a quadratic 

equation. It is noteworthy that among the four roots obtained, only one strong SPR mode 

is found to survive, with no propagation component (𝜔𝑟 = 0). It indicates that the SPR 

mode behaves as standing wave-like patterns in nature. 

The quartic DR derived and solved analytically above, is now solved numerically, 

for analyzing the exact DR roots. This technique yields four different roots with fully 

distinct characteristics. However, only one out of the four roots produce feasible results, 

which are plotted in this work with respect to 𝑟 and 𝑘. The lengthy numerical solutions are 

not presented here in detail. But the plots obtained from the solutions are used in the SPR 

analysis. A fair matching of the analytical and numerical solution patterns (for 𝜔𝑖) proves 

the reliability of our calculation scheme. The numerically evaluated evanescent (𝜔𝑟 < 0, 

spatially constrained at the source) nature of the instability within the IFB sheath is also 

further validated with the help of obtained colourmaps (Fig. 2.14). Such evanescent modal 

features within the IFB originate due to the reflecting behavior of the sheath for the SPR 

frequencies, subcritical against the sheath plasma frequency, 𝜔𝑠𝑝𝑒. 

The robustness of the numerical result can be manifested through feasible graphical 

plots prepared for different values of these plasma parameters. Three different numerical 

values for density {𝑛𝑜 = 𝑛𝑐exp (−𝛾𝑟2)} and viscosity (𝜒) are used for preparing the plots 

which prove the applicability of the derived solution within the given range. 

The SPR develops in the sheath region and shows spatial variations of 𝜔𝑖 across the 

IFB. The externally biased IFB anode serves as the energy source for the SPI. As the density 

(𝑛𝑜) and viscosity (𝜒) increase towards the IFB center from the sheath, the SPR disturbance 

starts damping. This quasi-stable SPR disturbance here shows a steep damping towards the 

IFB center after a finite traversal. Moreover, the SPR disturbance cannot leak through the 

sheath as the plasma frequency in the sheath region (𝜔𝑠𝑝𝑒) is higher than 𝜔𝑖-magnitude. 

So, it may be concluded that the IFB acts as a cavity resonator during the excitation of the 

SPR within it. It is because the IFB functions both as a cavity (shield) for the SPR 

excitations and as its sheath resonates with the internally trapped IFB plasma. 

Along with SPR research, the fireball model is noticed to have many other 

applications in both pure and applied fields of active research and development. A few of 

these applications have been explored for decades, while the rest have been studied quite 
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recently. Some of the focal investigative areas prevailing so far in the IFB context are 

briefly highlighted as follows: 

(i) Antenna signals in spacecrafts: The spacecraft antennas get electrically charged in 

space and astroplasmic environments, thereby behaving further as electrodes with 

floating potentials. The possible excitations of the SPR in the antenna replicates with 

that in laboratory plasmas. Therefore, the laboratory SPR model studies could help 

in understanding antenna signal processing and subsequent applied diagnostics [5]. 

(ii) Coronal mass ejection: The Sun could usually be modelled as a huge plasma fireball 

in the thermonuclear fusion perspective. The magnetic turbulence associated with the 

solar sheath and subsequent coronal mass ejections (CMEs) could also be therewith 

studied. It is possible via fireball model formalisms in a scale invariant pathway as 

herein. These CMEs are interestingly active agents to yield major geomagnetic 

storms (as observed on the 20th of February 2023). It has been reported widely via the 

Wind/WAVES instrumentation and detection technology [18]. 

(iii) Junction diode analysis: The depletion region in a junction diode behaves as a plasma 

sheath. This region functions as a barrier in between the n- and p-type charges against 

diffusion, and the sheath functions as a similar potential barrier in between the 

electrode and ambient plasmas [19]. So, the proposed SPR analyses could be broadly 

useful for similar high-frequency diode-biasing experiments, observational analyses, 

and realistic applications extensively. 

(iv) Sheath diagnosis: The SPR analysis reveals multiple plasma properties of great 

technological importance. It includes mainly the electron (ion) densities, electrostatic 

sheath potential, transient (displacement) currents, current-voltage characteristics, 

sheath electric field penetration and its shielding, ion ejection mechanism, potential 

relaxation oscillations, and so forth [20]. Such outcomes derived during an SPR study 

could be broadly useful to diagnose and characterize the involved plasma sheath 

structures in the said configurations comprehensively. 

 

Apart from the above, the proposed model analysis could bring forward various 

future possible applicability and scope in more practical plasma environments. Such 

situations may involve highly nonlinear perturbations, presence of inhomogeneous 

magnetic fields, non-spherical geometries, nonlocal perturbations, and so forth. The study 

of SPRs in IFBs yields more physical insights into diverse plasma phenomena. It is shown 
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here how SPR behaves inside an IFB illustratively. Besides, numerical and analytical 

outcomes are compared elaborately, resulting in reasonable corroboration. It is specifically 

shown herein that the SPR exhibits the collective excitation of evanescent standing wave 

patterns inside IFBs, subject to specific multi-parametric ranges. These waves fulfill the 

SPR condition. They are fully reflected by the plasma sheath, surrounding the IFB, thereby 

rendering it purely an internal IFB instability mode sourced in the free energy associated 

with the biased electrode (anode). 

 

APPENDIX 2(A): 

LINEAR AND QUASILINEAR SPR FEATURES 

It may be expedient and convenient for the reader to highlight some of the relevant 

parameters of the linear SPI analysis using various formalisms alongside investigated 

characteristics alongside their corresponding quasilinear counterparts. 

 

(a) Condition for linear SPR structure 

The purely linear perturbation (small-scale) formalism applied in this work assumes that a 

perturbation in a relevant physical variable of the model system is so small that its rate of 

change varies directly as its instantaneous magnitude. For example, if a physical parameter, 

𝐹 undergoes a linear perturbation, 𝐹1, then its spatiotemporal rate is proportional to its 

instantaneous state, mathematically given as 

 

𝑑𝐹1

𝑑(𝑟,𝑡)
∝ 𝐹1(𝑟, 𝑡).                    (2(A1)) 

 

Solving this proportionality equation with a constant on the RHS yields the exponential 

form of perturbation variation, i.e., 𝐹1 = 𝐹10exp (−𝑖(𝜔𝑡 − 𝑘𝑟)) used in this SPR analysis 

within an IFB. 

The above formalism allows us to examine whether the SPI pulses grow and reflect 

from the sheath or leak through it, by comparing the magnitude of the general solution of 

the DR (Eq. (2.31)) to the generic expression of 𝜔𝑠𝑝𝑒 [21]. An experimental determination 

of the charge number density at the sheath (𝑛𝑠) would help to figure out the magnitudes of 

other plasma parameters, and vice-versa. These equations can also be used to evaluate the 

limiting and threshold values of the relevant plasma parameters within which the IFB 

system can form evanescent SPI characteristics. 
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The DR solution and the generic expression for 𝜔𝑠𝑝𝑒 [21] can be arranged 

analytically to yield the linear SPR condition given as 

 

(
1

𝑚𝑒𝑛𝑐
) (𝜉𝑘2 +

2𝛽

𝑟2) exp(𝛾𝑟2) ≤ 5.64 × 104√𝑛𝑠.               (2(A2))  

 

If the LHS in Eq. (2(A2)) is greater than the RHS at 𝑟 = 𝑅, where 𝑅 is the radial distance 

of sheath from IFB center, the resonance condition will not be fulfilled and no SPR 

excitation will occur. In other situations, the SPR may still develop and reflect with LHS 

greater than the RHS, occurring at 𝑟 ≠ 𝑅, but it must be somewhere at 𝑟 < 𝑅. It is 

noteworthy that, during the resonance, both 𝑟 and 𝑘 are interdependent through the linear 

SPR condition as 𝑟𝑘 = (4𝜋)−1. 

 

In summary, the various possibilities derivable from Eq. (2(A2)) are highlighted as follows 

 

𝜔𝑖(𝑟 = 𝑅) ≤ 5.64 × 104√𝑛𝑠 (SPR occurs and gets reflected from the sheath),          (2(A3)) 

𝜔𝑖(𝑟 = 𝑅) > 5.64 × 104√𝑛𝑠 (No SPR occurs),                                                                          (2(A4)) 

𝜔𝑖(𝑟 < 𝑅) ≤ 5.64 × 104√𝑛𝑠 (SPR occurs and gets reflected from the sheath),          (2(A5)) 

𝜔𝑖(𝑟 < 𝑅) > 5.64 × 104√𝑛𝑠 (SPR may not occur at all).                                                      (2(A6)) 

 

The new 𝜔𝑖-expression during the linear SPR behaviors in terms of 𝑟 [with 𝑘 = (4𝜋𝑟)−1] 

as an independent variable mathematically reads as 

 

𝜔𝑖(𝑟) = −(
1

𝑚𝑒𝑛𝑐
) (

2𝛽

𝑟2
) exp(𝛾𝑟2).                  (2(A7)) 

 

Similarly, new 𝜔𝑖-expression during the linear SPR behaviors in terms of 𝑘 [with 𝑟 =

(4𝜋𝑘)−1] as an independent variable is mathematically given as 

 

𝜔𝑖(𝑘) = −(
1

𝑚𝑒𝑛𝑐
) (32𝜋2𝛽𝑘2)exp (

𝛾

16𝜋2 (
1

𝑘2)).               (2(A8)) 
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Hence, at the time of the SPI, the parameters 𝑟 and 𝑘 are interdependent. During the rest of 

the IFB operation, these two parameters may behave independently. Apart from other 

parametric values, 𝑟 and 𝑘 together yield the angular frequency (𝜔𝑖) magnitude. 

 

(b) Condition for quasilinear SPR structure 

The linear formalism discussed before is based upon the small-amplitude perturbation 

assumed in the analysis. Increasing the order of perturbation, however, may break the 

linearity condition as the rate of change of the perturbation and its instantaneous order 

(magnitude) are no longer proportional. This minimum magnitude of 𝐹1 for which the 

proportionality relation (Eq. 2(A1)) loses its validity yields the quasilinearity. Unlike the 

linear treatment there is no pre-assigned form of perturbation and the same must be derived 

subsequently. A plasma parameter undergoing quasilinear perturbation is written as 

 

𝐹 = 𝐹𝑜 + 𝜖𝐹1 + ⋯                              (2(A9)) 

 

Where, 𝐹𝑜 is the unperturbed parametric state, 𝐹1 is quasilinearly perturbed state, and 𝜖 is 

a small parameter further denoting the amplitude of the quasilinear perturbation. Besides, 

𝜖 also denotes a balanced strength between dispersion and convection [22]. It should be 

noted that further increase in the order of perturbation leads to nonlinearity in the system. 

A table comprising of various items showing the contrast between the linear and quasilinear 

formalism is presented in Table 1.2 to highlight the difference between the two. 
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