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Chapter-3 

 

QUASILINEAR ANALYSIS OF REGULAR PLASMA FIREBALL SHEATH 

INSTABILITY 

 

Abstract: One of the interesting instabilities excitable due to plasma-electrode interaction 

is plasma fireball sheath (PFBS) instability. The PFBS instability is analysed in this 

chapter in the framework of local quasilinear perturbation analysis in relevant laboratory 

scales. The perturbation analysis yields a second-order nonhomogeneous differential 

equation of variable coefficients. Which, upon solving with relevant boundary conditions, 

yields the general solution of the PFBS dynamics in terms of the spatially varying involved 

perturbed plasma parametersϯ. The peakonic profiles of the derived perturbed plasma 

parameters manifest the novelty of this PFBS analysis. These atypical theoretical results 

corroborate with the previously reported experimental outcomes. Finally, the applications 

of PFBS dynamics are highlighted at the end. 

 

3.1 INTRODUCTION 

The laboratory plasma-electrode interaction has been a fascinating topic for the plasma 

physicists over the decades. Existence of extensive utilities of such plasma-wall effects in 

diversified cost-effective material-processing and manufacturing techniques is well-

observed [1]. It inclines the plasma physics community more towards understanding the 

basic physics involved in the plasma-electrode (plasma-wall) interaction processes, 

instabilities, and so forth [2]. Besides, such interaction processes result in the formation of 

non-neutral space charge layers called plasma sheaths, separating the bulk plasma from the 

rest. The fireball (FB) glow is a special outcome of this plasma-electrode interaction. 

The inter-constituent collisions across plasma trigger avalanche-like expansion of 

the plasma sheaths through ionisation. This expansion results in glowing structures, such 

as plasma fireballs (FBs). Such collisions lead to excitation of the neutral atoms. This 

excitation is responsible for the release of energy visible through the FB spectral glow [2]. 

The adjacent double layer (DL) outwards acts as a continuous source of charged particles 

developing the FB. The FB size relies on the rate of plasma production and of ion loss due 

to a modified electron–ion coupling [3]. Also, the adjacent DL plays an active role in 

varying the size of the sheath, and thus, the FB width in the process. Clearly, FBs are 
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discharge phenomena, formed mostly in low-temperature partially ionized plasmas. The 

regular FB (RFB) is formed in the sheath region around a solid electrode along with the 

formation of the DL outwards. 

The plasma FB sheath (PFBS) has widespread practical realization across science, 

engineering, and technology [1]. The FB model evidently includes thermonuclear fusion 

plasmas, low-temperature plasmas, and plasma assisted technology on various laboratory 

and astrocosmic spatiotemporal scales [4, 5]. Besides, it helps in the formulation of high 

energy particle collision experiments generating quark-gluon plasma, especially the large 

hadron collider (LHC), relativistic heavy ion collider (RHIC), and super proton synchrotron 

(SPC). The FB geometry and its expansion pattern help in describing both the yields and 

the spectra of various particles experimented at the heavy ion synchrotron experiments, 

e.g., GSI SIS 18 in Germany and so forth [5]. Similarly, the study of inverted FBs [6] and 

the associated Buneman instabilities have significant importance in a good number of 

laboratory and astrophysical situations, such as stellar chromospheres [7], supernova 

(SN2011fe) explosion [8], cometary tails, bright meteoritic objects, ambient atmospheres, 

and so forth [9, 10]. The dynamic FB model also helps in explaining astronomical 

expansion of Gamma-ray bursts [11], as mentioned in Chapter-1. 

The spatiotemporal nature of the PFBS is extensively evident in both laboratory [3, 

12] as well in astrocosmic scales [10]. A theoretical model to explore the saturation 

mechanisms thereof is yet to be developed to the best of our knowledge. It forms the main 

motivational force for this semi-analytic PFBS analysis in a bifluidic fabric. The existent 

plasma components, i.e., electrons and ions are considered as two sperate individual fluids. 

The plasma medium with these two separate fluids is categorised as bifluidic plasma. A 

quasilinear perturbation turns the PFBS system into a unique class of second-order ordinary 

differential equation (ODE) on the perturbed electrostatic potential with variable 

coefficients. A numerical integration results in peakon-type structures and so forth. 

 

3.2 PHYSICAL MODEL AND FORMALISM 

We consider the PFBS formation around a solid anode of spherical geometry (as in Fig. 

1.1(a)) submerged in a bifluidic plasma. The proposed model consists mainly of electronic 

and ionic fluids with a negligible role of neutral component(s). It is obviously consistent 

and correlative with the plasmas well-realisable in laboratories. It may be noted herein that 

the experimental observations of plasma FBs show a consistently spherical geometric shape 

in such circumstances [2]. The consideration of the spherically symmetric geometry 
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reduces the complex 3-D spherical problem into a simple 1-D radial problem without 

violating any kind of dynamical reality irrespective of spatiotemporal scales [13]. The full 

dynamics of the electronic and ionic fluids are governed by their respective electrodynamic 

governing equations evolving on their relevant laboratory spatiotemporal scales fulfilling 

the plasma existential conditions ((𝑟, 𝑡) >> (𝜆𝐷, 𝜔𝑝
−1)). The model closure is obtained 

with the help of coupling electrostatic Poisson equation describing the potential distribution 

developed due to local charge imbalance. At the beginning, the bulk macroscopic state of 

the entire plasma distribution forms a quasineutral hydrostatic homogeneous equilibrium. 

It should relevantly be noted that both plasma FBs and related sheath are 

experimentally observed to undergo diverse spatiotemporal fluctuations. The 

spatiotemporal fluctuation primarily occurs in terms of electrostatic potential across it, 

current passing through it, and discharge light emanated from it [2], etc. In our analysis, we 

consider only the asymptotic steady-state plasma fluctuations for the sake of simplifying 

the mathematical analysis against the initial state. Thus, it hereby enables us to transform 

our theoretic formalism to a steady-state model ansatz (time-stationary), but with no 

inherent loss of any kind of generality in the PFBS evolution. 

We are now, motivated to see a quasilinear FB sheath-plasma instability within the 

valid framework of a local perturbation analysis against the equilibrium. The corresponding 

basic governing equations describing the classical nonrelativistic dynamics of the PFBS 

structure evolution with all the generic plasma notations [14] in a spherically symmetric 

coordination space (𝑟, 𝑡) are respectively enlisted as 

 

𝜕𝑛𝑒

𝜕𝑡
+ (

1

𝑟2)
𝜕

𝜕𝑟
(𝑟2𝑛𝑒𝑣𝑒) = 0,                                                                    (3.1) 

𝑚𝑒𝑛𝑒
𝜕𝑣𝑒

𝜕𝑡
+ 𝑚𝑒𝑛𝑒𝑣𝑒

𝜕𝑣𝑒

𝜕𝑟
= 𝑛𝑒𝑒

𝜕𝜙

𝜕𝑟
− 𝑇𝑒

𝜕𝑛𝑒

𝜕𝑟
,                       (3.2) 

𝜕𝑛𝑖

𝜕𝑡
+ (

1

𝑟2
)

𝜕

𝜕𝑟
(𝑟2𝑛𝑖𝑣𝑖) = 0,                                                                     (3.3) 

𝑚𝑖𝑛𝑖
𝜕𝑣𝑖

𝜕𝑡
+ 𝑚𝑖𝑛𝑖𝑣𝑖

𝜕𝑣𝑖

𝜕𝑟
= 𝑛𝑖𝑒

𝜕𝜙

𝜕𝑟
− 𝑇𝑖

𝜕𝑛𝑖

𝜕𝑟
.                                     (3.4) 

 

Here, 𝑛𝑒(𝑖), 𝑣𝑒(𝑖), 𝑚𝑒(𝑖), and 𝑇𝑒(𝑖) denote the population density, flow velocity, mass, and 

temperature of electron (ion), respectively. 

It is to be noted here that Eqs. (3.1)-(3.2) represent the equation of continuity and 

that of momentum for the electronic dynamics. Similarly, Eqs. (3.3)-(3.4) depict the same 
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for the ions. The electron-ion closure electrostatic Poisson equation in the spherically 

symmetric geometry reads as 

 

1

𝑟2

𝜕

𝜕𝑟
(𝑟2 𝜕𝜙

𝜕𝑟
) = 4𝜋𝑒(𝑛𝑒 − 𝑛𝑖).                                                                (3.5) 

 

Here, 𝜙 is the electrostatic potential developed due to local charge imbalance. The electron 

(ion) charge 𝑒 = 1.9 × 10−19 C is the quantized unit of charge magnitude of the ionic 

constituents in plasma. Clearly, it is revealed physically from Eq. (3.5) that electric 

polarization effects (charge separation) always result in a commensurable electrostatic 

potential (or field) distribution in the coordination space irrespective of time scales. So, the 

left-hand side of Eq. (3.5) is always independent of time, even if the charge distribution in 

the right-hand side in isolation is not. It justifies the analytic nature of Eq. (3.5). 

We are interested in the steady-state evolution of the PFBS fluctuations (𝜕/𝜕𝑡~0, 

but 𝜕/𝜕𝜉 ≠ 0) in the considered spherical geometry. We adopt here a standard 

normalization scheme well validated for laboratory plasmas [15]. Accordingly, the 

normalized forms of Eqs. (3.1)-(3.4) are obtained in the time-stationary (steady-state) shape 

respectively cast as 

 

𝑀𝑒  
𝜕𝑁𝑒

𝜕𝜉
+ 𝑁𝑒

𝜕𝑀𝑒

𝜕𝜉
+ (

2

𝜉
) 𝑀𝑒𝑁𝑒 = 0,                                            (3.6) 

𝑁𝑒  
𝜕Φ

𝜕𝜉
= 𝑁𝑒𝑀𝑒 (

𝑚𝑒

𝑚𝑖
)

𝜕𝑀𝑒

𝜕𝜉
+  

𝜕𝑁𝑒

𝜕𝜉
,                                                           (3.7) 

𝑀𝑖
𝜕𝑁𝑖

𝜕𝜉
+ 𝑁𝑖

𝜕𝑀𝑖

𝜕𝜉
+ (

2

𝜉
) 𝑀𝑖𝑁𝑖 = 0,                                                (3.8) 

𝑁𝑖  
𝜕Φ

𝜕𝜉
= 𝑁𝑖𝑀𝑖

𝜕𝑀𝑖

𝜕𝜉
+ (

𝑇𝑖

𝑇𝑒
)

𝜕𝑁𝑖

𝜕𝜉
.                    (3.9) 

 

The electrostatic Poisson equation (Eq. (3.5)) in the normalized form is similarly cast as 

 

𝜕2Φ

𝜕𝜉2 + (
2

𝜉
)

𝜕Φ

𝜕𝜉
= 𝑁𝑒 − 𝑁𝑖.                                                        (3.10) 

 

The normalized radial distance is given as 𝜉 = 𝑟/𝜆𝐷; where, 𝜆𝐷 = √𝑇𝑒/4𝜋𝑛𝑒2 is the 

plasma Debye length. The normalized electron (ion) population density is 𝑁𝑒(𝑖) =

𝑛𝑒(𝑖)/𝑛𝑒(𝑜)  = 𝑛𝑒(𝑖)/𝑛𝑜; where, 𝑛𝑜 is the equilibrium density. The electronic (ionic) fluid 
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Mach number is 𝑀𝑒(𝑖) = 𝑣𝑒(𝑖)/𝑐𝑠; where, 𝑐𝑠 = √𝑇𝑒/𝑚𝑖  is the ion-sound phase speed. Φ =

eϕ/Te is electrostatic potential normalized to the electron thermal potential, 𝑇𝑒/𝑒. 

The diverse relevant physical variables (𝐹𝛼(𝜉)) in Eqs. (3.6)-(3.10) now undergo a 

quasilinear local perturbation against their respective equilibrium values (𝐹𝑜) on the 𝜖-order 

expansively as presented below 

 

𝐹(𝜉) = 𝐹𝑜 + ∑ 𝜖𝛼 𝐹𝛼(𝜉)∞
𝛼=1 .                                                   (3.11) 

 

Here, 𝜖 is an order parameter signifying the balanced strength of nonlinearity and 

dispersion [15]. An order-by-order analysis with Eq. (3.11) put in Eqs. (3.6)-(3.9) up to the 

first-order yields 

 

𝜕𝑀𝑒1

𝜕𝜉
+ (

2

𝜉
) 𝑀𝑒1 = 0,                                                                                (3.12) 

𝜕𝛷1

𝜕𝜉
=

𝜕𝑁𝑒1

𝜕𝜉
,                                                              (3.13) 

𝜕𝑀𝑖1

𝜕𝜉
+ (

2

𝜉
) 𝑀𝑖1 = 0,                                                    (3.14) 

𝜕𝛷1

𝜕𝜉
= (

𝑇𝑖

𝑇𝑒
)

𝜕𝑁𝑖1

𝜕𝜉
.                                (3.15) 

 

After an indefinite 𝜉-integration on Eqs. (3.12)-(3.15) with the relevant boundary 

conditions (at 𝜉 = 0, ∞) usually realizable in laboratory plasmas, we get the solutions of 

these equations respectively given as 

 

𝑀𝑒1 =
𝑐𝑒𝑀

𝜉2 ,                                       (3.16) 

𝑁𝑒1 = Φ1 + 𝑐𝑒𝑁,                                                 (3.17) 

𝑀𝑖1 =
𝑐𝑖𝑀

𝜉2 ,                                                         (3.18) 

𝑁𝑖1 = 𝜃𝑒𝑖Φ1 + 𝑐𝑖𝑁.                                           (3.19) 

 

Here, 𝑐𝑒𝑀, 𝑐𝑒𝑁, 𝑐𝑖𝑀, and 𝑐𝑖𝑁 are integration constants, which could be determined with the 

application of appropriate boundary conditions of the problem without loss of any 

generality. The electron-to-ion temperature ratio is 𝜃𝑒𝑖 = 𝑇𝑒/𝑇𝑖. Replacement of 𝑁𝑒1 and 

𝑁𝑖1 from respective Eq. (3.17) and Eq. (3.19) in the first-order quasilinearly perturbed form 

of Eq. (3.10) gives an ODE cast as 
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𝜕2Φ1

𝜕𝜉2 + (
2

𝜉
)

𝜕Φ1

𝜕𝜉
= Φ1(1 − 𝜃𝑒𝑖) − (𝑐𝑒𝑁 − 𝑐𝑖𝑁).                              (3.20) 

 

Through multiplying 𝜉2 with Eq. (3.20), it may be transformed as 

 

𝜉2 𝜕2Φ1

𝜕𝜉2 + 2𝜉
𝜕Φ1

𝜕𝜉
= ξ2Φ1(1 − 𝜃𝑒𝑖) − 𝜉2(𝑐𝑒𝑁 − 𝑐𝑖𝑁).                  (3.21) 

 

The term, (1 − 𝜃𝑒𝑖) in Eqs. (3.20)-(3.21) physically denotes the deviation of the fireball-

sheath region from the isothermal condition. The analytic solution of Eq. (3.20), with the 

usual set of realistic boundary conditions [16], manifests the evolution of the perturbed 

electrostatic potential in the PFBS region. An integration of Eq. (3.20) yields 

 

Φ1(𝜉) =
(1−(√−𝑐1)𝜉)𝑐2

2(−𝑐1)
3
2𝜉

−
(1+(√−𝑐1 )𝜉)𝑐2

2(−𝑐1)
3
2𝜉

+
exp((√−𝑐1)𝜉)𝑐3

𝜉
−

exp(−(√−𝑐1)𝜉)𝑐4

2(√−𝑐1)𝜉
.               (3.22) 

 

Here, 𝑐1 = 𝜃𝑒𝑖 − 1, 𝑐2 = 𝑐𝑒𝑁 − 𝑐𝑖𝑁. 𝑐3 and 𝑐4 are the integration constants to be evaluated 

on the grounds of imposition of appropriate boundary conditions in conformity with 

bolstering experimental findings [1]. The constant 𝑐2 = (𝑐𝑒𝑁 − 𝑐𝑖𝑁), denotes the 

population density difference of the electrons and ions at a very large distance from the 

plasma sheath or the FB. Here, the electrostatic potential due to the embedded electrode is 

not experienced. The constant 𝑐3 denotes the electrostatic potential value at unit Debye 

length (Eq. (3.28)). 

 

In nonthermal plasmas, 𝜃𝑒𝑖 ≥ 1; so, one gets, √−𝑐1 = √(1 − 𝜃𝑒𝑖) = 𝑖√𝑐1. So, Eq. (3.22) 

reads 

 

Φ1(𝜉) =
(1−(𝑖√𝑐1)𝜉)𝑐2

2(−𝑐1)
3
2𝜉

−
(1+(𝑖√𝑐1 )𝜉)𝑐2

2(−𝑐1)
3
2𝜉

+
exp((𝑖√𝑐1)𝜉)𝑐3

𝜉
−

exp(−(𝑖√𝑐1)𝜉)𝑐4

2(𝑖√𝑐1)𝜉
.                      (3.23) 

 

A simplified form of Eq. (3.23) can be given as 

 

Φ1(𝜉) =
𝑐2

𝑐1
+

exp((𝑖√𝑐1)𝜉)𝑐3

𝜉
−

exp(−(𝑖√𝑐1)𝜉)𝑐4

2(𝑖√𝑐1)𝜉
.                             (3.24) 
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It is noteworthy that the terms involving 1/𝜉, appears above because of spherical geometry, 

which would, otherwise, be absent on the grounds of planar geometry [17, 18]. We are 

interested in the localized potential solutions around our reference point, 𝜉 ≈ 0. 

Application of the small amplitude approximation in Eq. (3.24) gives 

 

Φ1(𝜉) =
𝑐2

𝑐1
+

𝑐3

𝜉
[1 + 𝑖√𝑐1 𝜉 +

1

2!
(𝑖√𝑐1 )2𝜉2 +

1

3!
(𝑖√𝑐1 )3𝜉3 +

1

4!
(𝑖√𝑐1 )4𝜉4 + ⋯ )] −

𝑐4

2(𝑖√𝑐1)𝜉
[1 + (−𝑖√𝑐1)𝜉 +

1

2!
(−𝑖√𝑐1)2𝜉2) +

1

3!
(−𝑖√𝑐1)3𝜉3 +

1

4!
(−𝑖√𝑐1)4𝜉4 − ⋯ ].  

                          (3.25)      

Eq. (3.25) can also be rearranged in terms of real and imaginary terms as 

 

Φ1(𝜉) =
𝑐2

𝑐1
+

𝑐3

𝜉
[(1 −

1

2!
𝑐1𝜉2 + ⋯ ) + 𝑖(√𝑐1 𝜉 −

1

3!
(𝑐1)

3

2𝜉3 + ⋯ )] +
𝑐4

2𝜉
[(𝜉 +

1

3!
𝑐1𝜉3 −

⋯ ) − 𝑖((√𝑐1)−1 −
1

2! √𝑐1𝜉2 + ⋯ )].                              (3.26) 

 

A comparison of the real and imaginary terms from both the left and the right-hand sides 

of Eq. (3.26) yields the actual perturbed electrostatic potential as 

 

Φ1(𝜉) =
𝑐2

𝑐1
+

𝑐3

𝜉
(1 −

1

2!
𝑐1𝜉2 +

1

4!
𝑐1

2𝜉4 − ⋯ ) +
𝑐4

2𝜉
(𝜉 −

1

3!
𝑐1𝜉3 +

1

5!
𝑐1

3𝜉5 − ⋯ ).   (3.27) 

 

It may be seen that Eq. (3.27) is analogous to the common Fourier series expansion of any 

arbitrary signal [18]. In that Fourier perspective, the first free term, 𝑐2/𝑐1 on the right-hand 

side would represent the zero-frequency line. The coefficient term, 𝑐3/𝜉, would denote the 

even harmonic strength. Similarly, the last coefficient term, 𝑐4/2𝜉, would designate the 

strength of odd harmonicity in the expansion series. 

Using the physically sensible boundary conditions (Φ1(𝜉 → ±∞) → 0), Eq. (3.27) 

yields 

 

Φ1(𝜉) =
𝑐3

𝜉
.                                                                        (3.28) 

 

It may be noteworthy that, 𝑐3 in Eq. (3.28) could physically also signify the relative strength 

of the electrostatic potential in the intervening plasma. Now, due to our interest in the 
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positive amplitude solutions of the locally perturbed electrostatic potential structures in full 

consistency with the literature [1], Eq. (3.28) gets, therefore, amended to 

 

Φ1(𝜉) =
𝑐3

|𝜉|
.                                         (3.29) 

 

The corresponding perturbed electric field, that is obtained from Eq. (3.28) using the 

universal law of conservative force field, can be presented as follows 

 

E1(𝜉) = −
𝜕Φ1

𝜕𝜉
=

𝑐3

𝜉2.                                         (3.30) 

 

The above analytic field expression, 𝐸1(𝜉) = 𝑐3/𝜉2, can also be derived from the 

electrostatic potential, Φ1(𝜉) = 𝑐3/𝜉, via a calculus limit theorem defined by the first 

principle as: 𝐸1 = −  𝐿𝑡
𝜉2→𝜉1

[Φ1(𝜉2) − Φ1(𝜉1)]/(𝜉2 − 𝜉1) =  𝐿𝑡
𝜉2→𝜉1

[(𝑐3/𝜉1 − 𝑐3/𝜉2)]/(𝜉2 −

𝜉1) = 𝑐3/𝜉2
2 = 𝑐3/𝜉2 for 𝜉 = 𝜉2. It could directly be used to examine the validity of the 

field-potential profile evolutionary mapping as elaborately discussed later. 

A detailed numerical illustrative platform is developed to see the evolution of the 

potential perturbation in the form of spatial potential profiles (Φ1 = Φ1(𝜉), Fig. 3.1(a)), 

spatial field profiles (E1 = E1(𝜉), Fig. 3.1(b)), and conjoint colormaps with the help of a 

triangular coupling of Eq. (3.29) and Eq. (3.30) via 𝜉 (E1 = E1(𝜉, Φ1), Fig. 3.2). The 

different colormaps link to the different 𝑐3-values (as indicated). 

 

3.3 RESULTS AND DISCUSSIONS 

A theoretical bifluidic model is constructed herein to study the quasilinear PFBS instability 

dynamics in the relevant laboratory scale. The quasilinearity arises because of a weak 

coupling between the nonlinear fluid convection and linear fluid dispersion (via 𝜖). 

Application of the quasilinear perturbative analysis reduces the PFBS system into a unique 

construct of a linear second-order ODE having a unique set of variable multiparametric 

coefficients (Eqs. (3.20)-(3.21)). The first-order perturbed electrostatic potential and the 

corresponding electric field are analytically evaluated and numerically portrayed in realistic 

plasma parametric windows. It is fairly supported by both the theoretical boundary 

conditions [16] and the experimental PFBS observations [1]. 
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The peakonic pulse potential structures semi-analytically observed herein signify 

the saturation undergoing in the PFBS instability (Fig. 3.1(a)). The associated narrow 

peakon fields are to be analysed from a dispersive conservative force field perspective (Fig. 

3.1(b)). A quicker reliability validation of Fig. 3.1(b) may be instantly drawn by using the 

limiting graphical analysis in the light of Fig. 3.1(a). It is seen that (Fig. 3.1(a)), 

Φ1(𝜉 = −0.5) = 5 and Φ1(𝜉 = −0.6) = 4; yields E1 = [(Φ1(𝜉 = −0.5) − Φ1(𝜉 =

−0.6)]/[−0.5 − (−0.6)] = 10 (as in Fig. 3.1(b)). Simultaneously, one finds that E1(𝜉 =

−0.55)=10 graphically (Fig. 3.1(b)), which is same as above. It validates the reliability of 

our entire calculation scheme via Fig. 3.1(b) as an outcome of Fig. 3.1(a). 

 

     

Figure 3.1: Profile of the perturbed normalized (a) electrostatic potential (𝛷1 = 𝑓(𝜉)), 

governed by Eq. (3.24)) and (b) electric field (𝐸1 = −𝜕𝛷1/𝜕𝜉), governed by Eq. (3.25)) 

with variation in the normalized radial distance relative to the electrode surface. 

 

In Fig. 3.2, the different lines link to the potential strength arising for c3 = 1 (blue 

solid line), c3 = 2 (red dashed line), and c3 = 3 (black dotted line). The peakon-type 

structures peak at the origin of the spherical coordinate system. 
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Figure 3.2: Colormap showing the evolution of the perturbed normalized electrostatic 

potential (𝛷1) and the corresponding electric field (𝐸1) with variation in the normalized 

radial distance (𝜉).  

 

The different maps in Fig. 3.2 (viz., (a), (b), and (c)) correspond to c3 = 1, 2, and 

3, respectively. A sharp color change at the center hints at a greater rate of the (Φ1, E1)-

variation. The out-fading color replicates a meagre (Φ1, E1)-change off-centrally. 

The Fig. 3.2 manifests the collective spatial variation of the potential (Φ1) and 

electric field (E1) in terms of the colour density and gradient in accordance with Figs. 

3.1(a)-3.1(b). Thus, the previous patterns (Figs. 3.1(a)-3.1(b)) of the steady-state instability 

evolution are fairly confirmed by the colour spectral profiles (Fig. 3.1(b)). In addition to 

the above, a spatially fast variation of the surface colour around the reference point 

characterises a faster rate of the 𝐸1-variation. In contrast, a slower colour spectral variation 

asymptotically indicates a weaker change in 𝐸1 from the reference point outwards. Thus, 

the steady saturation of the instability in the proposed plasma model configuration is 

graphically confirmed. It may be pertinent to add here that the reliability of the spherically 

symmetric FB model analysis is further strengthened in light of the qualitative matching of 

our obtained results (Figs. 3.1-3.2) with the available experimental [1, 13] and theoretical 

[6] findings reported extensively in the literature. 

 

3.4 CONCLUSIONS 

The steady PFBS dynamics excited around a RFB of spherical geometry is analysed herein 

theoretically in a bifluidic plasma model framework. An applied quasilinear perturbative 

analysis (relative to a well-defined hydrostatic homogeneous equilibrium) reduces the 

perturbed PFBS system under test into a unique construct of a second-order linear ODE 

with variable coefficients. The formation of peakon-type potential and electric field 
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structures around the electrode is numerically investigated. The peakonic features are 

confirmed in colourspectral phase space as well. It is shown that peakonic structures could 

result even from a linear ODE system against the traditional peakonic picture of fully 

nonlinear dynamical systems [17, 18]. The representation of peakon structures herewith the 

exponential functions is quite in agreement with the earlier predictions reported in the 

literature [17, 18]. As a consequence, it may be fairly conjectured that our analysis provides 

a theoretical platform to support the experimentally observed PFBS potential structures 

from the bifluidic perspective. The atypical eigen-patterns are fairly consistent and 

correlative with experimental findings reported elsewhere [1]. Thus, our analysis could be 

additionally applicable to understand the coupling stability scenarios of plasma sheath, FB, 

and double layer on the usual laboratory scales. 

It may be added here that the fully nonlinear systems manifest peakons of the form 

exp{−(𝑟 − 𝑣𝑡)/𝐿}; here, 𝑟, 𝑣, 𝑡 and 𝐿 denote the radial distance of observation from system 

centre, velocity of the peakon, time of observation, and soliton length, respectively [16]. 

Whereas weakly nonlinear (quasilinear) asymptotic systems (as analysed herein) are 

observed to manifest atypical peakonic profiles of the form 1/𝑟𝑛, with 𝑛 ≥ 1. 

Inclusion of magnetic field, external electric field, and non-spherical fireball 

geometry can deviate a linear or quasilinear system from the exponential peakonic form. 

The PFBS instability dynamics and the FB model may find its application in various 

plasma processing systems alongside sheath-induced astrolabplasmic circumstances of 

great applied value. In a broader sense, the plasma FBs exert substantial pressure on the 

neutral and ionic components; thereby, inducing a macroscopic bulk gaseous flow in the 

test space-plasma medium taken under consideration, resulting in a plasma-jet 

phenomenon. As a result, a fair understanding of the plasma FBs and instabilities could 

enable us in developing a low-cost jet propulsion device for space-based technical 

explorations [19]. A comprehensive plasma concept of various associated instabilities is 

still in infancy stage as far as seen. It is believed that this analysis could be a promising 

element for illuminating this important direction having both laboratory and astrophysical 

plasma significances in future. 
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