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Chapter-5 

 

NONLINEAR ANALYSIS OF REGULAR PLASMA FIREBALL SHEATH 

INSTABILITY 

 

Abstract: The steady plasma fireball sheath (PFBS) instability is studied herein using 

bifluidic plasma model with spherical geometry. The host plasma is assumed to undergo 

higher-order nonlinear local perturbation in terms of the various plasma parameters 

about their hydrostatic homogeneous equilibrium values. The fluid governing equations 

are perturbed through the substitution of these perturbed plasma parameters of required 

order. The individual governing equations are finally substituted in the closure Poisson 

equation, yielding a non-homogeneous differential equation of variable coefficients. An 

order-by-order numerical analysis of these perturbed governing equations generate the 

spatially variant dependent plasma parameters of the corresponding order. This chapter 

analyses the perturbed plasma parameters up to their fourth-order. The dependent 

plasma parameters comprise of potential, Mach number, number density, and electric 

field. Increasing the order of perturbation is noticed to steepen spatial variation of the 

perturbed plasma parameters, i.e., nonlinearity acts as a fluctuation steepening (anti-

dispersing) agentϯ. The obtained peakonic multi-parametric behaviours are observed to 

be well-corroborating with experimental reporting. The various applications of PFBS 

research in both pure and applied fields are summarily highlighted. 

 

5.1 INTRODUCTION 

The fundamental research on plasma-electrode interaction mechanisms primarily involves 

the basic physics of plasma sheath formation dynamics and active cross-border effects. 

The research has, since, initiated originally by Dr. I. Langmuir in 1923, continued to 

widen with different laboratory arrangements [1]. The fundamental philosophy of active 

plasma sheath has been extremely useful in the overall scientific progress in this direction 

achieved extensively in diverse astrolabcosmic plasma explorations [2]. One of the most 

interesting outcomes of plasma-electrode interactions in such circumstances is realizable 

through the formation of a plasma sheath region enveloping a plasma-embedded electrode 

(anode) and its encompassing regular fireball (RFB) evolutionary structures [3, 4]. 

It is noteworthy that both the sheath and DL are hosts of numerous nonlinear 

instabilities in the plasma fireball (FB) system, such as secondary ionisation instability, 
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electron transit time instability [5], Rayleigh-Taylor instability (RTI) [6], etc. The free 

energy for the eruption of the RTI in a PFBS system originates from the stiff equilibrium 

charge density gradient across it. The density gradient results from the un-even intrinsic 

electric field strength across the sheath [6]. In other words, one may speculate that the 

PFBS instability source is seeded in the existence of the zeroth-order non-zero plasma 

currents in the system. Consequently, there exists such free energies and hence, 

associated instabilities, and an extensive plethora of collective wave phenomena with 

diversified utilities in multiscale domains in different orders [3]. However, it is observed 

that the PFBS instability dynamics, particularly on the nonlinear multi-order parametric 

regime, has still been lying as an open challenge yet to be dealt with for years [2]. This 

serves as the main motivation of the current work highlighting the nonlinear multi-order 

PFBS fluctuation dynamics of practical value and subsequent eigen-pattern analyses. 

We, hence, further intend to explore the nonlinearities involved with the various 

plasma parameters in the PFBS operation zones. The FB events are spatiotemporally 

unstable in both laboratory [7] and astrophysical [8] environs. An appropriate model 

formalism to see the multi-order nonlinear PFBS instability dynamics against this 

backdrop is hence needed. A nonlinear bifluidic plasma model approach is adopted herein 

for the nonlinear stability analysis. It self-consistently reduces the entire PFBS system 

into a unique set of inhomogeneous differential equations on the multi-order perturbations 

with multiparametric variable coefficients. This indeed is the main novelty of this study 

founded on the nonlinear multi-order instability patterns in the PFBS context. 

After an imposition of relevant physical boundary conditions [9], the new plasma 

parametric fluctuation patterns are obtained with the help of numerical software 

programming. It yields mainly atypical nonlinear PFBS eigenmode structures as a unique 

peakon family, tangibly corroborating with the experimental findings on direct FB sheath 

system, already reported elsewhere [3]. The analytical facts and faults of our theoretic 

investigation are finally discussed together with a refined indication to its future 

applicability in diverse astrolabcosmic PFBS circumstances. 

 

5.2 PHYSICAL MODEL AND ANALYTIC FORMALISM 

A plasma FB sheath formed around a spherical electrode is considered herein in the 

framework of a basic bifluidic plasma model on the relevant laboratory scales of space 

and time. The plasma medium is assumed to be exclusively composed of electrons and 

ions with meagre neutral species in a hydrostatic homogeneous equilibrium configuration 
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maintaining a global quasi-neutrality. The FB is assumed to be spherically symmetric in 

geometrical structure so as to simplify the problem as a 1-D one with a one radial degree 

of freedom only. It hereby enables us to get rid of the complications likely to be 

originating from the polar and azimuthal degrees of freedom. The closure of the bifluidic 

model is obtained with the electrostatic Poisson equation giving the net electrostatic 

potential distribution arising from the individual charge density fields, and so forth. 

We are, herein, interested in analysing the asymptotic steady-state evolution of the 

PFBS system on the various sensible orders of nonlinearity in a spherically symmetric 

geometry. It means the temporal fluctuations of the PFBS system are ignored (𝜕/𝜕𝜏 = 0), 

but all the spatial counter parts are retained (𝜕/𝜕𝜉 ≠ 0). Here, the effective radial 

distance (𝜉) is normalized with respect to the Debye length as 𝜉 = 𝑟/𝜆𝐷; where, the 

plasma Debye length is given in generic notations by 𝜆𝐷 = √(𝑇𝑒/4𝜋𝑛𝑒
2 ). The normalized 

continuity and momentum equations (Eqs. (3.6)-(3.9)) depicting the electronic dynamics 

here are respectively given as 

 

𝑀𝑒𝜕𝜉𝑁𝑒 + 𝑁𝑒𝜕𝜉𝑀𝑒 + (
2

𝜉
) 𝑀𝑒𝑁𝑒 = 0,                                                                            (5.1) 

𝑁𝑒𝜕𝜉Φ = 𝑁𝑒𝑀𝑒 (
𝑚𝑒

𝑚𝑖
) 𝜕𝜉𝑀𝑒 + 𝜕𝜉𝑁𝑒.                       (5.2) 

 

Similarly, the normalized set of equations governing the ion dynamics are cast 

respectively as 

 

𝑀𝑖𝜕𝜉𝑁𝑖 + 𝑁𝑖𝜕𝜉𝑀𝑖 + (
2

𝜉
) 𝑀𝑖𝑁𝑖 = 0,                                                                     (5.3) 

𝑁𝑖𝜕𝜉Φ = 𝑁𝑖𝑀𝑖𝜕𝜉𝑀𝑖 + (
𝑇𝑖

𝑇𝑒
) 𝜕𝜉𝑁𝑖.                                                                                   (5.4) 

 

Lastly, the electrostatic Poisson equation coupling the electron and ion dynamics is 

written as   

 

𝜕𝜉
2Φ + (

2

𝜉
) 𝜕𝜉Φ = 𝑁𝑒 − 𝑁𝑖.                                                                                            (5.5) 

 

Here, 𝜕𝜉 ≡ 𝜕/𝜕𝜉, 𝜕𝜉
2 ≡ 𝜕2/𝜕𝜉2, and so forth. The terms 𝑀𝑒(𝑖)(= 𝑣𝑒(𝑖)/𝑐𝑠), and 𝑁𝑒(𝑖)(=

𝑛𝑒(𝑖)/𝑛𝑒(𝑜)) denote the normalized electron (ion) Mach number and normalized electron 
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(ion) population density, respectively. Here, 𝑐𝑠 = √(𝑇𝑒/𝑚𝑖 ) is the ion-sound phase 

speed. The electrostatic plasma potential in the normalized form is given as Φ = 𝑒𝜙/𝑇𝑒; 

where, the normalizing parameter, 𝑇𝑒/𝑒, is called the electron thermal potential. The 

various normalized and normalizing parameters along with their respective typical values 

are tabulated in Table 5.1. The multiparametric numerical values of the different physical 

variables of current relevance are estimated with the inputs available in different sources 

in the literature [10]. Besides, the unnormalized forms of Eqs. (5.1)-(5.5) are available in 

Chapter-3 (Eqs. (3.1)-(3.5)). 

 

Table 5.1: Adopted normalization scheme and parametric values 

S. No. Normalized parameter    Normalizing parameter Typical value  

1.  Radial distance (𝜉 = 𝑟/𝜆𝐷 )                     Debye length (𝜆𝐷)   3.32 × 10−4 m 

2.  Population density (𝑁𝑒(𝑖) =

𝑛𝑒(𝑖)/𝑛𝑜) 

Equilibrium density (𝑛𝑜) 

 

5 × 1014 m-3 

 

3.  Mach number (𝑀𝑒(𝑖) =

𝑣𝑒(𝑖)/𝑐𝑠) 

Ion-sound phase speed 

(𝑐𝑠) 

104 m s-1 

 

4. 

 

5. 

Electrostatic potential (Φ =

eϕ/Te ) 

Electric field (𝐸 = 𝑒𝜙/𝑇𝑒) 

Electron thermal potential 

(𝑇𝑒  /𝑒) 

Electron thermal field 

(𝑇𝑒/𝑒𝜆𝐷) 

1 J C-1   

 

 3.01 × 103 N C-1 

 

 

The relevant plasma parameters (𝐹𝛼(𝜉)) are assumed to undergo nonlinear local 

perturbation in the 𝜖-order against their respective normalized equilibrium values (𝐹𝑜) as 

 

𝐹(𝜉) = 𝐹𝑜 + ∑ 𝜖𝛼𝐹𝛼
∞
𝛼=1 (𝜉),                                                                                          (5.6) 

𝐹(𝜉) = [𝑁𝑒 𝑀𝑒 𝑁𝑖 𝑀𝑖  Φ]𝑇,                   (5.7) 

𝐹𝑜(𝜉) = [1 0 1 0 0]𝑇,                                                                                                      (5.8) 

𝐹𝛼(𝜉) = [𝑁𝛼  𝑀𝛼 𝑁𝛼  𝑀𝛼  Φ𝛼]𝑇.                                                                                       (5.9) 

 

Here, 𝜖 denotes an order (smallness) parameter signifying the strength of nonlinearity 

[11]. The order-wise analyses of the governing equations (Eqs. (5.1)-(5.5)) yield the 

following order specific perturbed set of equations. 
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5.2.1 FIRST-ORDER PERTURBED PARAMETERS 

The first-order perturbed plasma parameters of current relevancy are obtained 

systematically with the help of the order-by-order analysis of Eqs. (5.1)-(5.5) generating 

the corresponding differential equations given as 

 

𝜕𝜉𝑀𝑒1 + (
2

𝜉
) 𝑀𝑒1 = 0,                                                                                                  (5.10) 

𝜕𝜉Φ1 = 𝜕𝜉𝑁𝑒1,                        (5.11) 

𝜕𝜉𝑀𝑖1 + (
2

𝜉
) 𝑀𝑖1 = 0,             (5.12) 

𝜕𝜉Φ1 = (
𝑇𝑖

𝑇𝑒
) 𝜕𝜉𝑁𝑖1,                       (5.13) 

𝜕𝜉
2Φ1 + (

2

𝜉
) 𝜕𝜉Φ1 = 𝑁𝑒1 − 𝑁𝑖1.                                             (5.14) 

 

The spatial integration of Eqs. (5.10)-(5.13) with respect to 𝜉 yields the following first-

order quasilinear plasma parameters presented respectively as 

 

𝑀𝑒1 =
𝑐𝑒𝑀

𝜉2 ,                   (5.15)  

𝑁𝑒1 = Φ1 + 𝑐𝑒𝑁,           (5.16)  

𝑀𝑖1 =
𝑐𝑖𝑀

𝜉2 ,                                (5.17)  

𝑁𝑖1 = 𝜃𝑒𝑖Φ1 + 𝑐𝑖𝑁.                   (5.18) 

 

Here, 𝜃𝑒𝑖(= 𝑇𝑒/𝑇𝑖) in Eq. (5.18), denotes the electron-to-ion temperature ratio. Further, 

𝑐𝑒𝑀, 𝑐𝑖𝑀, and 𝑐3 are the integration constants arising due to the indefinite spatial 

integration of Eqs. (5.10)-(5.13). The values of these constants can be determined using 

the boundary conditions at the local extrema. 

The first-order perturbed Poisson equation (Eq. (5.14)) encompasses both the 

perturbed electron and ion densities, viz., 𝑁𝑒1 and 𝑁𝑖1, respectively. Substituting the 

expressions for both 𝑁𝑒1 from Eq. (5.16) and 𝑁𝑖1 from Eq. (5.18) in Eq. (5.14) within the 

purview of standard asymptotic local conditions [2], e.g., Φ1(𝜉 → ±∞) = 0, etc., the 

first-order perturbed electrostatic potential is worked out as 

 

Φ1(𝜉) =
𝑐3

𝜉
.                 (5.19) 
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It may be noted here that the 1/𝜉-term involved in Eq. (5.19) originates on account of the 

inevitable geometric curvature effects in the spherical symmetry of the PFBS [12, 13]. 

Replacing the expression for Φ1(𝜉) = 𝑐3/𝜉 from Eq. (5.19) in Eq. (5.16) and Eq. (5.18), 

we get the spatially varying expressions for 𝑁𝑒1 and 𝑁𝑖1 respectively as 

 

𝑁𝑒1 =
𝑐3

𝜉
 + 𝑐𝑒𝑁,           (5.20) 

𝑁𝑖1 = 𝜃𝑒𝑖
𝑐3

𝜉
+ 𝑐𝑖𝑁.                   (5.21) 

 

The corresponding first-order perturbed electric field is evaluated from Eq. (5.19) as per 

the fundamental definition of a conservative force field as 

 

𝐸1 = −𝜕𝜉Φ1 =
𝑐3

𝜉2.           (5.22) 

        

5.2.2 SECOND-ORDER PERTURBED PARAMETERS 

The governing equations (Eqs. (5.1)-(5.5)) are now analysed systematically up to the 

second-order nonlinear perturbation. The second-order perturbation of Eq. (5.1) yields 

 

𝑀𝑒1𝜕𝜉𝑁𝑒1 + 𝜕𝜉𝑀𝑒2 +
2

𝜉
(𝑀𝑒2 + 𝑀𝑒1𝑁𝑒1) = 0.           (5.23) 

 

We, now, substitute the first-order plasma parameters, 𝑀𝑒1 and 𝑁𝑒1, from Eq. (5.15) and 

Eq. (5.20), respectively in Eq. (5.23). A spatial integration of Eq. (5.23) yields 

 

𝑀𝑒2 =
𝑐5

𝜉2 −
𝑐3𝑐𝑒𝑀

𝜉3 .            (5.24) 

 

Here, 𝑐5 is an integration constant appearing as a result of the indefinite integration. 

Redefining the constant −𝑐3𝑐𝑒𝑀 as 𝐶𝑒𝑀 in Eq. (5.24), we find a modified form of Eq. 

(5.24) given as 

 

𝑀𝑒2 =
𝑐5

𝜉2 +
𝐶𝑒𝑀

𝜉3 .                (5.25) 
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Treating Eq. (5.3) alike with Eq. (5.1) for ion-dynamics in its second-order, the 

corresponding plasma parameter, the second-order perturbed ionic Mach number, 𝑀𝑖2, is 

deduced with 𝐶𝑖𝑀 = −𝜃𝑒𝑖𝑐3𝑐𝑖𝑀 as 

  

𝑀𝑖2 =
𝑐6

𝜉2 +
𝐶𝑖𝑀

𝜉3 .                       (5.26) 

 

Moreover, Eq. (5.2) and Eq. (5.4) are perturbed nonlinearly in their respective second-

order form. The existent first-order plasma parameters 𝑀𝑒1, 𝑁𝑒1, 𝑀𝑖1, 𝑁𝑖1, and Φ1 are 

now substituted from Eq. (5.15), Eq. (5.20), Eq. (5.17), Eq. (5.21), and Eq. (5.19) in Eq. 

(5.2) and Eq. (5.4), respectively. The resulting perturbed density differential equations for 

the electrons and ions are respectively obtained as 

 

𝜕𝜉𝑁𝑒2 = 𝜕𝜉Φ2 −
𝑐3𝑐𝑒𝑀

𝜉2 −
𝑐3

2

𝜉3 + 2 (
𝑚𝑒

𝑚𝑖
)

𝑐𝑒𝑀
2

𝜉5 ,                      (5.27) 

𝜕𝜉𝑁𝑖2 = 𝜃𝑒𝑖 (𝜕𝜉Φ2 −
𝑐3𝑐𝑖𝑀

𝜉2 −
𝑐3

2

𝜉3 + 2
𝑐𝑒𝑀

2

𝜉5 ).                      (5.28) 

 

A spatial differentiation (with respect to 𝜉) of the second-order perturbed form of Eq. 

(5.5) yields a third-order ODE (Eq. (5.29)) involving both 𝜕𝜉𝑁𝑒2 and 𝜕𝜉𝑁𝑖2 given as 

 

𝜕𝜉
3Φ2 + (

2

𝜉
) 𝜕𝜉

2Φ2 − (
2

𝜉2) 𝜕𝜉Φ2 = ∂ξ𝑁𝑒2 − ∂ξ𝑁𝑖2.          (5.29) 

 

Substitution for 𝜕𝜉𝑁𝑒2 from Eq. (5.27) and 𝜕𝜉𝑁𝑖2 from Eq. (5.28) in Eq. (5.29) results in 

 

𝜕𝜉
3Φ2 + (

2

𝜉
) 𝜕𝜉

2Φ2 − (
2

𝜉2) 𝜕𝜉
2Φ2 + 𝐴𝜕𝜉Φ2 =

𝐵

𝜉2 +
𝐶

𝜉3 +
𝐷

𝜉5.       (5.30) 

 

The coefficients involved in Eq. (5.30) are given as 

 

𝐴 = (𝜃𝑒𝑖 − 1),            (5.31) 

𝐵 = 𝑐3(𝜃𝑒𝑖𝑐𝑖𝑁 + 𝑐𝑒𝑁),           (5.32) 

𝐶 = 𝑐3
2(𝜃𝑒𝑖 − 1),            (5.33) 

𝐷 = 2 [(
𝑚𝑒

𝑚𝑖
) 𝑐𝑒𝑀

2 − 𝜃𝑒𝑖𝑐𝑖𝑀
2 ].          (5.34) 
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We integrate Eq. (5.30) spatially with respect to 𝜉 to reduce its order of differentiation to 

second-order. The simplified second-order perturbed electrostatic Poisson equation (Eq. 

(5.30)) is cast as 

 

 𝜕𝜉
2Φ2 + (

2

𝜉
) ∂ξΦ2 + 𝐴Φ2 +

𝐵

𝜉
+

𝐶

2𝜉
+

𝐷

4𝜉4 + 𝐸 = 0;                   (5.35) 

 

Where, E is an integration constant appearing due to the indefinite spatial integration of 

Eq. (5.30). 

The differential equation (Eq. (5.35)) is solved analytically. The solution of Eq. 

(5.35) is given as follows 

 

Φ2(𝜉) = 𝑐7
𝑒𝑥𝑝(√𝐴𝜉)

𝜉
−

𝑐8

2√−𝐴

𝑒𝑥𝑝(−√−𝐴𝜉)

𝜉
−

1

𝜉
[(

1

8√−𝐴𝜉2 (
𝐷

2
+ 4 (

𝐸

𝐴
−

𝐶

√−𝐴
) 𝜉2 −

4𝐸

√−𝐴
𝜉3 −

√−𝐴𝐷

2
𝜉) −

(4𝐵−𝐴𝐷)

16√−𝐴
exp(√−𝐴𝜉) 𝐸𝑖(−√−𝐴𝜉))] +

1

2√−𝐴𝜉
[

1

4𝜉2 (
𝐷

2
+ 4 (

𝐸

𝐴
+

𝐶

√−𝐴
) 𝜉2 +

4𝐸

√−𝐴
𝜉3 +

√−𝐴𝐷

2
𝜉) − (

𝐵

2
−

𝐴𝐷

8
) 𝐸𝑖(√−𝐴𝜉)].                                (5.36)  

                              

Here, 𝐸𝑖(√−𝐴𝜉)=∫ (exp(𝑡) /𝑡) 𝑑𝑡
√−𝐴𝜉

−∞
 and 𝐸𝑖(−√−𝐴𝜉)=∫ (exp(𝑡) /𝑡)𝑑𝑡

−√−𝐴𝜉

−∞
 denote 

the one argument exponential integral function (appears in a while in the analytical 

solutions generated with specialized numerical software) [14]. As these two integrals fail 

to converge to any finite value with increasing distance (𝜉), hence, the two terms 

comprising these integrals are ignored. Due to our interest in the localised potential 

solution around the electrode centre, i.e., 𝜉 ≈ 0, we further expand the exponentials in Eq. 

(5.36). The terms which lead to the violation of the boundary conditions (Φ2(𝜉 → ±∞) =

0) and source to unnecessary complications (imaginary terms) are neglected. Considering 

only the physically admissible terms which abide by all necessary conditions, the second-

order perturbed electrostatic potential equation (Eq. (5.36)) reduces to 

 

Φ2(𝜉) =
𝐹

𝜉
+

𝐺

𝜉2.            (5.37) 

 

Here, the different involved constants are given as 
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𝐹 = 𝑐7 − 1 − 𝜃𝑒𝑖,           (5.38) 

𝐺 =
𝐷

8
.             (5.39) 

 

There is no integration constant in Eq. (5.37) because of the global quasi-neutrality 

condition in the considered bulk plasma system. The corresponding second-order 

perturbed electric field is evaluated from Eq. (5.37) as per the fundamental definition of a 

conservative force field given as 

 

𝐸2(𝜉) = −𝜕𝜉Φ2 =
𝐹

𝜉2 +
2𝐺

𝜉3 .           (5.40) 

 

A spatial integration of Eqs. (5.27)-(5.28) in the light of Eq. (5.37) yields the algebraic 

expressions for 𝑁𝑒2 and 𝑁𝑖2 respectively presented as 

 

𝑁𝑒2 =
𝐴𝑒1

𝜉
+

𝐵𝑒1

𝜉2 +
𝐶𝑒1

𝜉4 + 𝑐9;                      (5.41) 

𝑁𝑖2 =
𝐴𝑖1

𝜉
+

𝐵𝑖1

𝜉2 +
𝐶𝑖1

𝜉4 + 𝑐10;                                   (5.42) 

𝐴𝑒1 = 𝑐3𝑐𝑒𝑁 + 𝐹,                                    (5.43) 

𝐵𝑒1 = 2𝑐3
2 + 𝐺,                                              (5.44) 

𝐶𝑒1 = −
1

2
(

𝑚𝑒

𝑚𝑖
) 𝑐𝑒𝑀

2 ,                         (5.45) 

𝐴𝑖1 = 𝜃𝑒𝑖(𝑐3𝑐𝑖𝑁 + 𝐹),                                                 (5.46) 

𝐵𝑖1 = 𝜃𝑒𝑖(𝑐3
2𝜃𝑒𝑖 + 𝐺),                                   (5.47) 

𝐶𝑖1 = −
1

2
𝜃𝑒𝑖𝑐𝑖𝑚

2 .                        (5.48) 

 

In addition to the above, the two distinct integration constants, 𝑐9 and 𝑐10, asymptotically 

should vanish in the local approximation of the considered multi-order parametric 

fluctuations idealistically. 

 

5.2.3 THIRD-ORDER PERTURBED PARAMETERS 

The governing equations (Eqs. (5.1)-(5.5)) are now analysed systematically up to the 

third-order nonlinear perturbation. Now, the third-order perturbation of Eq. (5.1) yields 

 

𝑀𝑒1𝜕𝜉𝑁𝑒2 + 𝑀𝑒2𝜕𝜉𝑁𝑒1 + 𝜕𝜉𝑀𝑒3 + 𝑁𝑒1𝜕𝜉𝑀𝑒2 + 𝑁𝑒2𝜕𝜉𝑀𝑒1  
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                 +
2

𝜉
(𝑀𝑒3 + 𝑀𝑒2𝑁𝑒1 + 𝑀𝑒1𝑁𝑒2) = 0.                (5.49) 

 

We now substitute for 𝑀𝑒1 from Eq. (5.15), 𝑁𝑒2 from Eq. (5.41), 𝑀𝑒2 from Eq. (5.25), 

and 𝑁𝑒1 from Eq. (5.20) in Eq. (5.49), the second-order perturbed continuity equation 

takes the new form as 

 

(
𝐴𝑒1

𝜉2
+

2𝐵𝑒1

𝜉2
−

4𝐶𝑒1

𝜉5
) (

𝑐𝑒𝑀

𝜉2
) − (

𝑐𝑒𝑀𝑐3

𝜉3
−

𝐶5

𝜉2
) (

𝑐3

𝜉2
) − 𝜕𝜉𝑀𝑒3 − (𝑐𝑒𝑁 +

𝑐3

𝜉
) (

3𝑐𝑒𝑀𝑐3

𝜉4
−

2𝑐5

𝜉3
)  

+ (
𝐴𝑒1

𝜉
+

𝐵𝑒1

𝜉2
−

𝐶𝑒1

𝜉4
+ 𝑐9) (

2𝑐𝑒𝑀

𝜉3
) − (

2

𝜉
) (𝑀𝑒3 − (

𝑐𝑒𝑀𝑐3

𝜉3
−

𝑐5

𝜉2
) (𝑐𝑒𝑁 +

𝑐3

𝜉
) + (

𝐴𝑒1

𝜉
+

𝐵𝑒1

𝜉2
−

𝐶𝑒1

𝜉4 + 𝑐9) (
𝑐𝑒𝑀

𝜉2 )) = 0.                                 (5.50) 

 

The various terms in Eq. (5.50) are rearranged so as to yield a first-order differential 

equation with involved variable coefficients given as 

 

𝜕𝜉𝑀𝑒3 + 2
𝑀𝑒3

𝜉
−

𝐴1

𝜉4 −
𝐵1

𝜉5 +
𝐶1

𝜉7 = 0;          (5.51) 

𝐴1 = 𝑐3𝑐𝑒𝑀𝑐𝑒𝑁 − 𝑐3𝑐5 − 𝐴𝑒1𝑐𝑒𝑀,                     (5.52) 

𝐵1 = 2(𝑐3
2 − 𝐵𝑒1)𝑐𝑒𝑀,          (5.53) 

𝐶1 = −4𝑐𝑒𝑀𝐶𝑒1.             (5.54) 

 

A spatial indefinite integration of Eq. (5.51) with respect to 𝜉 yields the following third-

order electronic Mach number perturbation as 

 

𝑀𝑒3 =
𝑐11

𝜉2 +
𝐴1

𝜉3 +
𝐵1

2𝜉4 +
𝐶1

4𝜉6;          (5.55) 

 

Where, 𝑐11 is an integration constant evaluable with fair boundary conditions. 

Similarly, for the ionic dynamics, we substitute for 𝑀𝑖1 from Eq. (5.17), 𝑁𝑖2 from 

Eq. (5.42), 𝑀𝑖2 from Eq. (5.26), and 𝑁𝑖1 from Eq. (5.21) in the third-order perturbed form 

of Eq. (5.3) and integrate it spatially with respect to 𝜉 to yield the third-order perturbed 

ionic Mach number given as 
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𝑀𝑖3 =
𝑐12

𝜉2 +
𝐴2

𝜉3 +
𝐵2

2𝜉4 +
𝐶2

4𝜉6;           (5.56) 

 

Where, 𝑐12 is a new integration constant and other involved constants read as  

 

𝐴2 = 𝜃𝑒𝑖𝑐3𝑐𝑖𝑀𝑐𝑖𝑁 − 3𝐴𝑖1𝑐𝑖𝑀 − 𝜃𝑒𝑖𝑐3𝑐6,                              (5.57) 

𝐵2 = 2𝐵𝑖1𝑐𝑖𝑀 + 2𝜃𝑒𝑖
2 𝑐3

2𝑐𝑖𝑀,                          (5.58) 

𝐶2 = 4𝐶𝑖1𝑐𝑖𝑀.             (5.59)  

 

We now perturb Eq. (5.2) up to the third-order of nonlinearity so as to yield what is given 

below 

 

𝜕𝜉Φ3 + 𝑁𝑒1𝜕𝜉Φ2 + 𝑁𝑒2𝜕Φ1  

            = (
𝑚𝑒

𝑚𝑖
) (𝑀𝑒1𝜕𝜉𝑀𝑒2 + 𝑀𝑒2𝜕𝜉𝑀𝑒1 + 𝑁𝑒1𝑀𝑒1𝜕𝜉𝑀𝑒1) + 𝜕𝜉𝑁𝑒3.            (5.60) 

 

We substitute for 𝑁𝑒1 from Eq. (5.20), Φ2 from Eq. (5.37), 𝑁𝑒2 from Eq. (5.41), Φ1 from 

Eq. (5.19), 𝑀𝑒1 from Eq. (5.15), and  𝑀𝑒2 from Eq. (5.25) in Eq. (5.60) so as to obtain the 

ordinary evolution equation of the third-order perturbed electronic density as 

 

𝜕𝜉𝑁𝑒3 = 𝜕𝜉Φ3 − (𝑐𝑒𝑁 +
𝑐2

𝜉
) (

𝐹

𝜉2 +
𝐷

4𝜉3) − (
𝐴𝑒1

𝜉
+

𝐵𝑒1

𝜉2 −
𝐶𝑒1

𝜉4 + 𝑐9) (
𝑐3

𝜉2)                                  

− (
𝑚𝑒

𝑚𝑖
) (

𝑐𝑒𝑀

𝜉2 (
3𝑐3𝑐𝑒𝑀

𝜉4 −
2𝑐5

𝜉3 ) − (
𝑐3𝑐𝑒𝑀

𝜉3 +
𝑐5

𝜉2) (
2𝑐𝑒𝑀

𝜉3 ) + (𝑐𝑒𝑁 +
𝑐2

𝜉
) (

𝑐𝑒𝑀

𝜉2 ) (
2𝑐𝑒𝑀

𝜉3 )).    (5.61) 

 

A systematic rearrangement of Eq. (5.61) yields 

 

𝜕𝜉𝑁𝑒3 = ∂ξΦ3 −
𝐴3

𝜉2 −
𝐵3

𝜉3 −
𝐶3

𝜉4 +
𝐷3

𝜉5 +
𝐹3

𝜉6;         (5.62) 

𝐴3 = 𝑐3𝑐9 + 𝑐𝑒𝑁𝐹,                        (5.63) 

𝐵3 =
1

4
𝑐3𝑐𝑒𝑁𝐷𝐹,                        (5.64) 

𝐶3 =
1

4
𝐶2𝐷 + 𝑐3𝐵𝑒1,                        (5.65) 

𝐷3 = (
𝑚𝑒

𝑚𝑖
) (2𝑐𝑒𝑚

2 𝑐𝑒𝑁 + 4𝑐5𝑐𝑒𝑀),                               (5.66) 

𝐹3 = 𝑐3 [2 (
𝑚𝑒

𝑚𝑖
) 𝑐𝑒𝑀

2 − 𝑐𝑒1].                           (5.67) 
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Repeating the same perturbation and rearrangement with Eq. (5.4) for the ions, as done in 

Eq. (5.61), we get 

 

𝜕𝜉𝑁𝑖3 = 𝜃𝑒𝑖 ∂ξΦ3 −
𝐴4

𝜉2
−

𝐵4

𝜉3
−

𝐶4

𝜉4
+

𝐷4

𝜉5
+

𝐹4

𝜉6
;                                                                (5.68) 

𝐴4 = 𝜃𝑒𝑖(𝑐3𝑐10 + 𝑐𝑖𝑁𝐹),                                   (5.69) 

𝐵4 = 𝜃𝑒𝑖(𝑐3𝐴𝑖1 + 𝜃𝑒𝑖𝑐3𝐹 +
1

4
𝐶𝑖𝑁𝐷),                                            (5.70) 

𝐶4 = −𝜃𝑒𝑖 (𝐵𝑖1𝑐3 +
1

4
𝜃𝑒𝑖𝑐3𝐷),                      (5.71) 

𝐷4 = −𝜃𝑒𝑖(4𝑐6𝐶𝑖𝑀 + 2𝐶𝑖𝑀
2 𝐶𝑖𝑁),         (5.72) 

𝐹4 = 𝜃𝑒𝑖(2𝜃𝑒𝑖𝑐3𝐶𝑖𝑀
2 + 𝑐6𝐶𝑖1).                      (5.73) 

                       

The third-order perturbed Poisson equation (Eq. (5.5)) differentiated once further with 

respect to 𝜉 yields 

 

𝜕𝜉
3Φ3 + (

2

𝜉
) 𝜕𝜉

2Φ3 − (
2

𝜉2) 𝜕𝜉Φ3 = 𝜕𝜉𝑁𝑒3 − 𝜕𝜉𝑁𝑖3.        (5.74) 

 

We substitute for 𝜕𝜉𝑁𝑒3 from Eq. (5.62) and 𝜕𝜉𝑁𝑖3 from Eq. (5.68) in Eq. (5.74) to obtain  

 

𝜕𝜉
3Φ3 + (

2

𝜉
) 𝜕𝜉

2Φ3 − (
2

𝜉2) 𝜕𝜉Φ3 + 𝐵𝜕𝜉Φ3 +
𝐴5

𝜉2 +
𝐵5

𝜉3 +
𝐶5

𝜉4 −
𝐷5

𝜉5 −
𝐹5

𝜉6 = 0;    (5.75) 

𝐵 = 𝜃𝑒𝑖 − 1,             (5.76) 

𝐴5 = 𝐴4 − 𝐴3,                                           (5.77) 

𝐵5 = 𝐵4 − 𝐵3,            (5.78) 

𝐶5 = −(𝐶4 + 𝐶3),            (5.79) 

𝐷5 = 𝐷3 − 𝐷4,            (5.80) 

𝐹5 = 𝐹3 − 𝐹4.                          (5.81) 

        

An indefinite integration of Eq. (5.75), with respect to 𝜉 gives the third-order electrostatic 

potential fluctuations as 

 

Φ3(𝜉) = 𝑐13
exp(𝑖√𝐵𝜉)

𝜉
− 𝑐14

exp(−𝑖√𝐵𝜉)

2𝑖√𝐵𝜉
 −

𝑒𝑖(𝑖√𝐵𝜉)

2𝑖√𝐵𝜉
(

𝐵6

2
+

𝑖𝐶6

3
+

𝐷6𝐵

8
+

𝑖𝐹6𝐵
3
2

30
)        
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−
1

120𝑖√𝐵𝜉4
[(4𝐹6 + (2𝑖𝐸6√𝐵 +

15

2
𝐷6) 𝜉 − (2𝐵𝐹6 + 20𝐶6 − 15𝑖𝐷6√𝐵)𝜉2 −

𝑖60

√𝐵
𝐴6𝜉3)] −

1

𝜉
[𝑒𝑖(−𝑖√𝐵𝜉) (

𝐵𝐹6

60
−

𝐵6

4𝑖√𝐵
+

𝐶6

6
+

𝑖𝐷6√𝐵

16
) exp(𝑖√𝐵𝜉) −

1

120𝑖√𝐵𝜉3
(4𝐹6 + (

15

2
𝐷6 − 2𝐹√𝐵) 𝜉 − (2𝐹6𝐵 + 20𝐶6 + 𝑖

15

6
𝐷6√𝐵) 𝜉2 +

𝑖
60𝐴6

√𝐵
𝜉3)].                                                                           (5.82)                              

 

Repeating the same procedure, as done in the case of Φ2(𝜉) in Eq. (5.36), we finally 

deduce the third-order perturbed electrostatic potential as    

 

Φ3(𝜉) =
𝐴6

𝜉
+

𝐵6

𝜉2 +
𝐶6

𝜉3;                      (5.83) 

𝐴6 =
𝐴5

2𝐵
−

𝐴5

2√𝐵
+ 𝑐13,            (5.84) 

𝐵6 =
3

16
𝐷5 +

1

60√𝐵
(𝐵𝐹5 + 10𝐶5),         (5.85) 

𝐶6 =
1

60
𝐹5.             (5.86) 

 

The corresponding third-order perturbed electric field (𝐸3(𝜉)) is evaluated from Eq. 

(5.83) as per the fundamental rule of a conservative force field as 

 

𝐸3(𝜉) = −𝜕𝜉Φ3 =
𝐴6

𝜉2 +
2𝐵6

𝜉3 +
3𝐶6

𝜉4 .                      (5.87) 

 

We substitute for Φ3(𝜉) from Eq. (5.83) in Eq. (5.62) and integrate it spatially with 

respect to 𝜉 so as to extract third-order perturbed electronic population density 

 

𝑁𝑒3 = 𝐴6ln (𝜉) + (𝐴3 − 𝐵6)
1

𝜉
+

1

2
(𝐵3 + 𝐶6) (

1

𝜉2) +
𝐶3

3𝜉3 +
𝐷3

4𝜉4 +
𝐹3

5𝜉5 + 𝑐15.    (5.88) 

 

We take 𝐴6 = 0, because the logarithmic term asymptotically yields an unacceptable 

divergence (𝑁𝑒3(𝜉 → ±∞) = ∞). Consequently, an admissible form of 𝑁𝑒3 is given as 

 

𝑁𝑒3 =
𝐴𝑒7

𝜉
+

𝐵𝑒7

2𝜉2 +
𝐶3

3𝜉3 +
𝐷3

4𝜉4 +
𝐹3

5𝜉5 + 𝑐15;                   (5.89) 

𝐴𝑒7 = 𝐴3 − 𝐵6,            (5.90) 

𝐵𝑒7 = 𝐵3 + 𝐶6.            (5.91) 



Chapter-5:  Nonlinear analysis of regular plasma fireball sheath instability 

 

99 
 

In addition to the above, the integration constant, 𝑐15, asymptotically should vanish in the 

local approximation of the considered multi-order parametric fluctuations idealistically. 

Repeating the same for the ionic dynamics with Eq. (5.68), as in the case of 𝑁𝑒3 in Eq. 

(5.88), one gets 

 

𝑁𝑖3 =
𝐴𝑖7

𝜉
+

𝐵𝑖7

2𝜉2
+

𝐶4

3𝜉3
+

𝐷4

4𝜉4
+

𝐹4

5𝜉5
+ 𝑐16;                   (5.92) 

𝐴𝑖7 = 𝐴4 − 𝜃𝑒𝑖𝐵6,            (5.93) 

𝐵𝑖7 = 𝐵4 − 𝐶6.            (5.94) 

 

The new integration constant, 𝑐16 in Eq. (5.92), should also vanish asymptotically without 

any loss of generality during the multi-order FB sheath instability dynamics.  

 

5.2.4 FOURTH-ORDER PERTURBED PARAMETERS 

The PFBS governing equations (Eqs. (5.1)-(5.5)) are now perturbed nonlinearly up to the 

fourth-order so as to perceive the effects of associated harmonic generations. The lower-

order plasma parameters already deduced previously are now substituted in the perturbed 

governing equations to derive the fourth-order parameters. The fourth-order perturbation 

of the electron momentum equation (Eq. (5.2)) now reads as 

 

𝜕𝜉Φ4 + 𝑁𝑒1𝜕𝜉Φ3 + 𝑁𝑒2𝜕𝜉Φ2 + 𝑁𝑒3𝜕Φ1 = 𝜕𝜉𝑁𝑒4     

+ (
𝑚𝑒

𝑚𝑖
) (𝑀𝑒1𝜕𝜉𝑀𝑒3 + 𝑀𝑒2𝜕𝑀𝑒2 + 𝑀𝑒3𝜕𝜉𝑀𝑒1 + 𝑁𝑒1𝑀𝑒1 𝜕𝜉𝑀𝑒2 + 𝑁𝑒1𝑀𝑒2𝜕𝜉𝑀𝑒1 +

𝑁𝑒2𝑀𝑒1𝜕𝜉𝑀𝑒1).                                       (5.95)                                                                                

 

It is now intended to derive a steady-state evolution equation for the fourth-order 

perturbed electronic population density, 𝑁𝑒4, with the help of a standard method of 

decoupling among the above various perturbed equations on the plasma parameters 

systematically. Accordingly, we substitute for 𝑁𝑒1 from Eq. (5.20), Φ3 from Eq. (5.83), 

𝑁𝑒2 from Eq. (5.41), Φ2 from Eq. (5.37), 𝑁𝑒3 from Eq. (5.89), Φ1 from Eq. (5.19), 𝑀𝑒1 

from Eq. (5.15), 𝑀𝑒3 from Eq. (5.55), and  𝑀𝑒2 from Eq. (5.25) in Eq. (5.95) to obtain the 

𝑁𝑒4-evolution equation given as 

 

𝜕𝜉𝑁𝑒4 = ∂ξΦ4 −
𝐴𝑒7

𝜉2 −
𝐵𝑒7

𝜉3 −
𝐶𝑒7

𝜉4 −
𝐷𝑒7

𝜉5 +
𝐸𝑒7

𝜉6 +
𝐹𝑒7

𝜉7 −
𝐺𝑒7

𝜉9 ;       (5.96) 
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𝐴𝑒7 = 𝐴6𝑐𝑒𝑁 + 𝑐3𝑐15,           (5.97) 

𝐵𝑒7 = 𝐴6𝑐3 + 𝐴𝑒1𝐹2𝐵6𝑐𝑒𝑁 − 𝐴𝑒7𝑐3 +
1

4
𝑐9𝐷,        (5.98) 

𝐶𝑒7 =
1

4
𝐴𝑒1𝐷 + 2𝐵6𝑐3 − 3𝑐𝑒𝑁𝐶6 + 𝐵𝑒1𝐹 +

1

2
𝐵𝑒7𝑐3 + 3 (

𝑚𝑒

𝑚𝑖
) 𝑐2𝑐𝑒𝑀,                         (5.99) 

𝐷𝑒7 =
1

4
𝐵𝑒1𝐷3 − 3𝑐3𝐶6 +

1

3
𝑐3𝐶3 + (

𝑚𝑒

𝑚𝑖
) (4𝑐5𝑐𝑒𝑀𝑐𝑒𝑁 − 2𝑐5

2 + 2𝑐9𝑐𝑒𝑀
2 + 4𝑐11𝑐𝑒𝑀),  

            (5.100) 

𝐸𝑒7 =
1

4
𝑐3𝐷3 + 𝐶𝑒1𝐹 − (

𝑚𝑒

𝑚𝑖
) (5𝑐3𝑐5𝑐𝑒𝑀 + 2𝑐𝑒𝑀(𝐴1 − 𝑐3𝑐5) − 2𝑐3𝑐5 + 5𝑐3𝑐𝑒𝑀

2 𝑐𝑒𝑁 −

2𝐴𝑒1𝑐𝑒𝑀
2 ),                     (5.101)  

𝐹𝑒7 =
1

5
𝑐3𝐸3 +

1

4
𝑐𝑒1𝐷 − (

𝑚𝑒

𝑚𝑖
) (2𝐵2𝑐𝑒𝑀 − 𝑐3

2𝑐𝑒𝑀
2 + 𝐵1𝑐𝑒𝑀 − 3𝑐3

2𝑐𝑒𝑀 − 2𝐵𝑒1𝑐𝑒𝑀
2 ), (5.102) 

𝐺𝑒7 = (
𝑚𝑒

𝑚𝑖
) (

7

2
𝐶1𝑐𝑒𝑀 + 2𝑐𝑒1𝑐𝑒𝑀

2 ).                   (5.103) 

 

A similar mathematical treatment, as already applied in the case of finding a valid 

expression for 𝑁𝑒4 in Eq. (5.96), now in Eq. (5.4) followed by a rigorous exercise of 

elimination and simplification results in the 𝑁𝑖4-evolution equation presented in the 

generic notations given as 

 

𝜕𝜉𝑁𝑖4 = ∂ξΦ4 −
𝐴𝑖7

𝜉2 −
𝐵𝑖7

𝜉3 −
𝐶𝑖7

𝜉4 −
𝐷𝑖7

𝜉5 +
𝐸𝑖7

𝜉6 +
𝐹𝑖7

𝜉7 −
𝐺𝑖7

𝜉9 ;                  (5.104) 

𝐴𝑖7 = 𝜃𝑒𝑖(𝐴6𝑐𝑖𝑁 + 𝑐10𝐹),                    (5.105) 

𝐵𝑖7 = 𝜃𝑒𝑖(𝐴6𝑐3𝜃𝑒𝑖 + 2𝐵6𝑐𝑖𝑁 + 𝐴𝑖1𝐹 +
1

4
𝑐10𝐷 + 𝐴𝑖7𝑐3,                (5.106) 

𝐶𝑖7 = 𝜃𝑒𝑖 (2𝐵6𝑐3𝜃𝑒𝑖 − 3𝐶6𝑐𝑖𝑁 +
1

4
𝐴𝑖1𝐷 + 𝐵𝑖1𝐹 +

1

2
𝐵𝑖7𝑐3),                       (5.107) 

𝐷𝑖7 = 𝜃𝑒𝑖 (3𝑐3𝐶6𝜃𝑒𝑖 −
1

4
𝐵𝑖1𝐷3 −

𝑐3𝐶5

3
+ 2𝑐12𝑐𝑖𝑀 + 2𝑐6

2 + 𝑐3𝑐12 + 4𝑐6𝑐𝑖𝑀𝑐𝑖𝑁 + 2𝑐10𝑐𝑖𝑀
2 ),           

                                                                                        (5.108) 

𝐸𝑖7 = 𝜃𝑒𝑖 (2𝐴𝑖1𝑐𝑖𝑀
2 + 𝐶𝑖1𝐹 +

1

4
𝑐3𝐷4 − 3𝐴2𝑐𝑖𝑀 − 3𝜃𝑒𝑖𝑐3𝑐6𝑐𝑖𝑁 − 2𝑐3𝑐6𝜃𝑒𝑖𝑐𝑖𝑀 − 𝐴2𝑐3 +

2𝑐3𝑐6𝑐𝑖𝑀𝜃𝑒𝑖 − 3𝜃𝑒𝑖𝑐3𝑐𝑖𝑀
2 𝑐𝑖𝑁 + 2𝜃𝑒𝑖𝑐3𝑐6𝑐𝑖𝑀 − 2𝑐3𝜃𝑒𝑖𝑐𝑖𝑀

2 𝑐𝑖𝑁),                        (5.109) 

𝐹𝑖7 = 𝜃𝑒𝑖 (2𝐵𝑖1𝑐𝑖𝑀
2 −

1

2
𝐵2𝑐3 +

1

4
𝐶𝑖1𝐷 +

1

5
𝑐3𝐸4 − 2𝐵2𝑐𝑖𝑀 + 3𝜃𝑒𝑖

2 𝑐3
2𝑐𝑖𝑀

2 − 5𝜃𝑒𝑖𝑐3
2𝑐𝑖𝑀

2 ),                  

            (5.110) 

𝐺𝑖7 = 𝜃𝑒𝑖 (
1

2
𝑐3𝑐𝑖𝑀 +

1

4
𝑐3𝐶2 + 2𝑐𝑖1𝑐𝑖𝑀

2 ).                 (5.111) 

 



Chapter-5:  Nonlinear analysis of regular plasma fireball sheath instability 

 

101 
 

In order to derive the fourth-order electrostatic potential fluctuation, Φ4, we perturb the 

electrostatic Poisson equation (Eq. (5.5)) up to the required order to yield  

 

𝜕𝜉
3Φ4 + (

2

𝜉
) 𝜕𝜉

2Φ4 − (
2

𝜉2) ∂ξΦ4 = 𝜕𝜉𝑁𝑒4 − 𝜕𝜉𝑁𝑖4.                                  (5.112) 

 

Substituting for 𝜕𝜉𝑁𝑒4 from Eq. (5.96) and 𝜕𝜉𝑁𝑖4 from Eq. (5.104), we find the following 

third-order differential equation for Φ4 given as 

 

𝜕𝜉
3Φ4 + (

2

𝜉
) 𝜕𝜉

2Φ4 − (
2

𝜉2
) ∂ξΦ4 + 𝐵𝜕𝜉Φ4 +

𝐴7

𝜉2
+

𝐵7

𝜉3
+

𝐶7

𝜉4
−

𝐷7

𝜉5
+

𝐸7

𝜉6
+

𝐹7

𝜉7
+

𝐺7

𝜉9
= 0. (5.113) 

 

A spatial indefinite integration of Eq. (5.113) with respect to 𝜉 results in the following 

Φ4-evolution equation with multi-order contributory terms given as   

 

𝜕𝜉
2Φ4 + (

2

𝜉
) 𝜕𝜉Φ4 + 𝐵𝜕𝜉Φ4 −

𝐴7

𝜉
−

𝐵7

2𝜉2 −
𝐶7

3𝜉3 +
𝐷7

4𝜉4 +
𝐹7

5𝜉5 −
𝐺7

6𝜉6 −
𝐻7

8𝜉8 + 𝐽7 = 0;     (5.114) 

𝐴7 = 𝐴𝑒7 + 𝐴𝑖7,                     (5.115) 

𝐵7 = 𝐵𝑒7 + 𝐵𝑖7,                     (5.116) 

𝐶7 = 𝐶𝑒7 + 𝐶𝑖7,                     (5.117) 

𝐷7 = 𝐷𝑖7 − 𝐷𝑒7,                     (5.118) 

𝐹7 = 𝐸𝑒7 − 𝐸𝑖7,                      (5.119) 

𝐺7 = 𝐹𝑒7 − 𝐹𝑖7,                     (5.120) 

𝐻7 = 𝐺𝑒7 − 𝐺𝑖7.                     (5.121) 

 

Where, 𝐽7 is an integration constant appearing here as a direct consequence of the 

indefinite spatial integration of Eq. (5.113) with respect to 𝜉. The presence of geometrical 

curvature effects makes it tedious to find an exact solution manually. Therefore, an 

analytic solution of Eq. (5.114) with the help of software programs is obtained as 

 

Φ4(𝜉) = 𝑐17
exp (𝑖√𝐵𝜉)

𝜉
−

𝑐18

2𝑖√𝐵

exp(−𝑖√𝐵𝜉)

𝜉
−

1

𝜉
[(

𝐶7

6
+

𝐹7𝐵

60
−

𝐵7

4𝑖√𝐵
+

𝑖𝐷7√𝐵

16
−

𝑖𝐺8𝐵
3
2

288
−

𝑖𝐺7𝐵
5
2

11520
) 𝐹𝑖(−𝑖√𝐵𝜉) exp(𝑖√𝐵𝜉) +

1

240𝑖√𝐵𝜉
(

5𝐻7

2
+ (40𝐶7 + 4𝐹7𝐵 + 15𝑖𝐷7√𝐺 +
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𝑖
5

6
𝐺7𝐵

3

2 − 𝑖
𝐻7𝐵

5
2

48
) 𝜉5 + 𝜉6 (

120𝐽7

𝐵
+

120𝐴7

𝑖√𝐵
)) − (

5𝑖𝐹7√𝐵

3
+ 8𝐹7 −

𝑖𝐻7𝐵
3
2

24
) 𝜉3 +

(5𝐺7 −
𝐻7𝐵

8
) 𝜉2 − (15𝐷7 +

5𝐺7𝑔

6
−

𝐻7𝐵2

48
− 4𝑖𝐹7√𝐵) 𝜉4 −

120𝐽7

𝑖√𝐵
𝜉7 − 𝑖

𝐻7

2
√𝐵𝜉]  

−
1

2𝑖√𝐵𝜉
[(

𝐵7

2
+

𝐷7𝐵

8
−

𝐺7𝐵2

144
−

𝐻7𝐵3

5760
+

𝑖𝐶7√𝐵

3
+

𝑖𝐹7𝐵
3
2

30
) 𝐸𝑖(𝑖√𝐵𝜉) exp(𝑖√𝐵𝜉) −

1

120𝜉6
(

5𝐻7

2
+ (40𝐶7 + 4𝐹7𝐵 − 15𝑖𝐷7√𝐵 − 𝑖

5

6
𝐺7𝐵

3

2 −
𝑖𝐻7𝐵

5
2

48
) 𝜉5 + 𝜉6 (

120𝐽7

𝐵
−

120𝐴7

𝑖√𝐵
)) + (

5𝑖𝐺7√𝐵

3
+ 8𝐹7 −

𝑖𝐻7𝐵
3
2

24
) 𝜉3 + (5𝐺7 −

𝐻7𝐵

8
) 𝜉2 − (15𝐷7 +

5𝐺7𝑔

6
−

𝐻7𝐵2

48
− 4𝑖𝐹7√𝐵) 𝜉4 +

120𝐽7

𝑖√𝐵
𝜉7 + 𝑖

𝐻7

2
√𝐵𝜉].                              (5.122) 

 

It may be noted here that the various numerical figures in the above equation originate 

naturally from the programming employed for the analytic evaluation and simplification. 

We expand the exponential terms in Eq. (5.122). The component terms involving 

𝐸𝑖 (±√(−𝐴)𝜉) = ∫ [exp(𝑡)/𝑡]𝑑𝑡
±√(−𝐴)𝜉

−∞
 may be summarily ignored on the local grounds 

of obtaining physically acceptable converging solutions of Eq. (5.122). Accordingly, we 

apply the admissible boundary conditions on the relevant perturbed physical variables so 

as to obtain a validated asymptotic expression for Φ4(𝜉) as 

 

Φ4(𝜉) =
𝐴8

𝜉
+

𝐵8

𝜉2 +
𝐶8

𝜉3 +
𝐷8

𝜉4;                          (5.123) 

𝐴8 = 𝑐17 +
𝐴7

2𝐵
,                     (5.124) 

𝐵8 =
1

5760
(720𝐷7 + 40𝐵 − 𝐵2𝐻7),                                                       (5.125) 

𝐶8 =
1

30
𝐹3,                      (5.126) 

𝐷8 =
1

2880
(40𝐺7 − 𝐵𝐻7).                                                                                         (5.127) 
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We now substitute for Φ4(𝜉) from Eq. (5.123) in Eq. (5.96) and finally deduce the fourth-

order perturbed population density for the electrons after a spatial integration of the 

resultant equation with respect to 𝜉 as 

 

𝑁𝑒4 =
𝐴𝑒9

𝜉
+

𝐵𝑒9

𝜉2 +
𝐶𝑒9

𝜉3 +
𝐷𝑒9

𝜉4 +
𝐸𝑒7

5𝜉5 +
𝐹𝑒7

6𝜉6 +
𝐺𝑒7

8𝜉8;                    (5.128) 

𝐴𝑒9 = 𝐴8 + 𝐴𝑒7,                     (5.129) 

𝐵𝑒9 = 𝐵8 −
1

2
𝐵𝑒7,                     (5.130) 

𝐶𝑒9 = 𝐶8 −
1

3
𝐶𝑒7,                     (5.131) 

𝐷𝑒9 =
1

4
𝐷8(4𝐷8 + 𝐷𝑒7).                               (5.132) 

 

The involved constants 𝐸𝑒7, 𝐹𝑒7, and 𝐺𝑒7 are already explicitly given with the help of 

Eqs. (5.101)-(5.103). Repeating similarly for 𝑁𝑖4 as done with 𝑁𝑒4 in Eq. (5.128) yields 

 

𝑁𝑖4 =
𝐴𝑖9

𝜉
+

𝐵𝑖9

𝜉2 +
𝐶𝑖9

𝜉3 +
𝐷𝑖9

𝜉4 +
𝐸𝑖7

5𝜉5 +
𝐹𝑖7

6𝜉6 +
𝐺𝑖7

8𝜉8;                      (5.133) 

𝐴𝑖9 = 𝜃𝑒𝑖𝐴8 + 𝐴𝑖7,                     (5.134) 

𝐵𝑖9 = 2𝜃𝑒𝑖𝐵8 + 𝐵𝑖7,                     (5.135) 

𝐶𝑖9 = 3𝜃𝑒𝑖𝐶8 + 𝐶𝑒7,                     (5.136) 

𝐷𝑖9 = 4𝜃𝑒𝑖(𝐷8 − 𝐷𝑖7),                   (5.137) 

 

The involved constants 𝐸𝑖7, 𝐹𝑖7, 𝐺𝑖7 are already given in Eqs. (5.109)-(5.111). We again 

perturb Eq. (5.1) nonlinearity up to its fourth-order to yield 

 

𝑀𝑒1𝜕𝜉𝑁𝑒3 + 𝑀𝑒2𝜕𝜉𝑁𝑒2 + 𝑀𝑒3𝜕𝜉𝑁𝑒1 + 𝜕𝜉𝑀𝑒4 + 𝑁𝑒1𝜕𝜉𝑀𝑒3  

+𝑁𝑒2𝜕𝜉𝑀𝑒2 + 𝑁𝑒3𝜕𝜉𝑀𝑒1 +
2

𝜉
(𝑀𝑒4 + 𝑀𝑒3𝑁𝑒1 + 𝑀𝑒2𝑁𝑒2 + 𝑀𝑒1𝑁𝑒3) = 0.   (5.138) 

                                  

We substitute the evaluated lower order plasma parameters with required order of 

differentiations in Eq. (5.138), same as Eq. (5.50) for 𝑀𝑒3. We rearrange the terms with 

ascending order of power in the denominators to yield 

 

𝜕𝜉𝑀𝑒4 +
2𝑀𝑒4

𝜉
+

𝐴𝑒8

𝜉4 +
𝐵𝑒8

𝜉5 +
𝐶𝑒8

𝜉6 +
𝐷𝑒8

𝜉7 +
𝐸𝑒8

𝜉8 = 0.                (5.139) 
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The analytic solution of Eq. (5.139) is given as 

 

𝑀𝑒4 =
𝑐19

𝜉2 +
𝐴𝑒8

𝜉3 +
𝐵𝑒8

2𝜉4 +
𝐶𝑒8

3𝜉5 +
𝐷𝑒8

𝜉6 +
𝐸𝑒8

5𝜉7;                             (5.140) 

𝐴𝑒8 = 2𝐴𝑒1𝑐5 + 2𝐴𝑒7𝑐𝑒𝑀 − 3𝐴1𝑐𝑒𝑁 − 𝐴𝑒7𝑐5 + 2𝐵𝑒1𝑐5 + 𝑐5𝐹 + 𝑐3𝑐11,   (5.141) 

𝐵𝑒8 = 2𝐵𝑒7𝑐𝑒𝑀 +
1

4
𝑐5𝐷 + 4𝑐3

2𝑐5 − 𝑐2𝑐𝑒𝑀𝐹 − 𝑐3
2𝑐𝑒𝑀𝑐𝑒𝑁 − 4𝐴1𝑐3 − 2𝐵2𝑐𝑒𝑁,          (5.142) 

𝐶𝑒8 = 2𝐵𝑒7𝑐3𝑐𝑒𝑀 +
1

2
𝐵1𝑐3 + 𝑐4𝑐𝑒𝑀 −

1

4
𝑐3𝑐𝑒𝑀𝐷 − 4𝑐3

3𝑐𝑒𝑀,                                      (5.143) 

𝐷𝑒8 = 𝑐2𝑐𝑒𝑁 + 𝑐𝑒𝑀𝐷3 + 2 (
𝑚𝑒

𝑚𝑖
) 𝑐5𝑐𝑒𝑀

2 + 2𝑐5(𝑐𝑒𝑁 − 𝑐𝑒1),                            (5.144) 

𝐸𝑒8 =
3

5
𝑐𝑒𝑀𝐸3 − 2 (

𝑚𝑒

𝑚𝑖
) 𝑐3𝑐𝑒𝑀

2 +
7

4
𝑐2𝑐3 − 𝑐3𝑐𝑒𝑀𝑐𝑒1.                            (5.145) 

 

In addition, 𝑐19 in Eq. (5.140), is an integration constant resulting due to indefinite 

integration of Eq. (5.139) with respect to 𝜉. We repeat the same procedure to Eq. (5.3) as 

done in Eq. (5.55) and obtain the fourth-order perturbed ion Mach number given as 

 

𝑀𝑖4 =
𝑐20

𝜉2 +
𝐴𝑖8

𝜉3 +
𝐵𝑖8

2𝜉4 +
𝐶𝑖8

3𝜉5 +
𝐷𝑖8

𝜉6 +
𝐸𝑖8

5𝜉7 ;                 (5.146) 

𝐴𝑖8 = 2𝐴1𝑐𝑖𝑁 − 3𝐴2𝑐𝑖𝑁 + 2𝐴𝑒1𝑐5 + 𝐴𝑖7𝑐𝑖𝑀 − 2𝐴𝑖1𝑐3 + 𝜃𝑒𝑖𝑐3𝑐12 − 3𝐶𝑚4𝑐10 + 𝐵2𝑐𝑖𝑁 +

2𝑐𝑀3𝑐9,                       (5.147) 

𝐵𝑖8 = 2𝐴2𝜃𝑒𝑖𝑐3 + 2𝐴𝑒1𝑐𝑀3 + 2𝐵𝑒1𝑐5 + 3𝜃𝑒𝑖𝑐3𝐴1 − 3𝜃𝑒𝑖𝑐3𝐴2 − 2𝐵2𝑐𝑖𝑁 − 3𝐴𝑖1𝑐𝑀4 −

2𝐵𝑖7𝑐𝑖𝑀,                                                                               (5.148) 

𝐶𝑖8 = 2𝐵𝑒1𝑐𝑀3 +
2

3
𝐶4𝑐𝑖𝑀 −

4

3
𝑐5𝑐𝑖𝑀 +

3

2
𝜃𝑒𝑖𝐵1𝑐3 − 2𝜃𝑒𝑖𝐵2𝑐3 − 3𝐵𝑖1𝑐𝑀4,                 (5.149)

               

𝐷𝑖8 =
1

2
𝐶𝑐𝑖𝑁 + 2𝑐5𝑐𝑖1 −

1

2
𝑐𝑖𝑀𝐷4 −

3

2
𝐶2𝑐𝑖𝑁 − 2𝑐𝑖1𝑐3,        (5.150) 

                             

𝐸𝑖8 = 𝜃𝑒𝑖𝑐3𝑐2 −
3

2
𝐶2𝑐3𝜃𝑒𝑖 − 3 𝑐𝑖1𝑐𝑀4 −

2

5
𝐸4𝑐𝑖𝑀 +

1

2
𝜃𝑒𝑖𝑐12𝑐3.                               (5.151) 

                             

The corresponding fourth-order perturbed electric field (𝐸4(𝜉)) is evaluated from Eq. 

(5.123) as per the fundamental definition of a conservative force field as already applied 

in the following form 

 

𝐸4(𝜉) =
𝐴8

𝜉2 +
2𝐵8

𝜉3 +
3𝐶8

𝜉4 +
4𝐷8

𝜉5 .                   (5.152) 
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The deduced fourth-order perturbed electric field expression, 𝐸4(𝜉) as in Eq. (5.152), 

determines the electrostatic force experienced by a unit charge of primary or secondary 

origin in the sheath region as a fifth-degree polynomial form with the 1/𝜉-dependency. It 

may be important to note here that the perturbed field 𝐸4(𝜉) developed due to the electron 

accumulation around the embedded central anode forces the other adjacent electrons and 

ions in the sheath region to diverge outward and converge inward as per the universal 

long-range Coulombic force law, respectively. 

It is admitted that the analysis is constrained up to the fourth-order plasma 

parametric PFBS perturbation dynamics only. As already mentioned, the free energy 

source for the excitation of the PFBS instability originates from the equilibrium plasma 

currents across the sheath structures. The fourth-order truncation is basically on account 

of the ascending power of the 1/𝜉-dependency of the plasma field variables (𝐸𝑛(𝜉) ~ 𝑛/

𝜉𝑛+1, 𝑛 𝜖 𝑍+). Besides, our formalism is stemmed in a weakly nonlinear perturbative 

analysis. Hence, the higher-order perturbed parameters asymptotically get redundant due 

to their algebraically weaker strength with enhanced perturbation order (Fig. 5.2). 

 

5.3 RESULTS AND DISCUSSIONS 

A theoretical bifluidic PFBS model is constructed herein to analyse its instability 

dynamics in the multi-order nonlinear perturbative analysis framework on the relevant 

laboratory spatiotemporal scale. As a typical scenario, we choose the ion-acoustic wave 

evolutionary scales as our referral standardization unit of the spatiotemporal coordinates 

as a first step. The order-wise nonlinearly perturbed governing equations of the 

considered fluctuating PFBS system decouple systematically into a set of third-order 

perturbed Poisson equations in a unique nonhomogeneous differential form with variable 

coefficients. The multi-order perturbed plasma parameters in the presence of geometrical 

curvature effects are independently derived in the framework of judicious boundary 

conditions relevant for a realistic PFBS instability to evolve. The derived lower-order 

plasma parameters are further substituted in the higher-order perturbed differential 

equations, rearranged and integrated further to yield the higher-order perturbed plasma 

parameters. The power of 1/𝜉-factors get polynomially enhanced in the algebraic 

expression of the perturbed quantities with the order of parametric nonlinearity. It is 

further noteworthy here that the 1/𝜉-terms appear in the parametric equations due to the 
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spherical geometry of the considered system. The 1/𝜉-factor would not appear in the 

PFBS formalism if it were carried out in a plane parallel geometry instead [12, 13]. 

 

     

     

Figure 5.1: Spatial profile of the (a) first-order, (b) second-order, (c) third-order, and (d) 

fourth-order perturbed plasma parameters given as: (i) Electrostatic potential (𝛷, blue 

solid line), (ii) Electric field (𝐸, red dashed-dotted line), (iii) Density (𝑁, green dashed 

line), and (iv) Mach number (𝑀, black dotted line). The various fine details for our 

numerical analysis are given in the text. 

 

The PFBS instability governed by the multi-order perturbed Poisson equations are 

graphically illustrated after judicious numerical analysis in Figs. (5.1(a)-5.1(d)). The 

analytically developed spatial plots and colormaps manifest a negative rate of change of 

the plasma parameters with respect to the radial distance (𝜉). As it is evident from Figs. 

(5.1)-(5.2), the highest rate of change of the plasma parameters is observed across one 

Debye length (𝜆𝐷) only. The spatial variation of the plasma parameters is negligibly small 

at scale larger than one Debye length, (𝑑𝑃/𝑑𝜉)𝜉>|𝜆𝐷| ≈ 0; here, 𝑃 =(Φ, E, 𝑁, 𝑀). The 

narrow spike in the electrostatic potential (Fig. 5.2(a)) beside the anode region (within 

one Debye length, 𝜆𝐷), is a consequence of the consistent higher electrostatic potential 

sustained owing to the anode voltage in the dissipative plasma media. 
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Figure 5.2: Spatial comparative profile of the (a) electrostatic potential, (b) electric field, 

(c) number density, and (d) Mach number across their order of nonlinearity, denoted by 

their suffixes. The detailed analyses are given in the text. 

 

The simultaneous existence of the Mach number spikes (Fig. 5.2(d)) manifests 

higher electron (ion) velocities at the periphery of the anode, originating from denser 

electric field lines, thereby pulling (pushing) the electron (ions) inwards (outwards). Here, 

the field line density determines the electrostatic force strength experienced by the 

charged particles. It is found that the analytically developed potential plot (Fig. 5.2(a)) 

smoothly corroborates with the experimental [2] and theoretical [3] findings available in 

the literature. It justifies and validates the reliability of our bifluidic plasma model 

conjectures for the steady-state description of the PFBS dynamics [2, 3]. 

The resembling surface colormaps (Figs. 5.3(a)-5.3(d)) with 2-D plots (Figs. 

5.2(a)-5.2(b)) further embolden the above inferences drawn from the behavioural analyses 

of the PFBS dynamics. The surface colormaps manifest the magnitude of the collective 

spatial variation of three adjoint plasma parameters (Φ, −𝜕𝜉Φ, −𝜕𝜉
2Φ) with four order-

wise surface plots. The inconsistent colour gradient in the surface plots of the electrostatic 

potential (Φ), electric field (𝐸 = −𝜕𝜉Φ), and potential curvature (−𝜕𝜉
2Φ), with respect to 

the radial distance (𝜉) denote the collective parametric variations with respect to each 

other. It is highlighted that the rapid colour variations of the surface plots beside the 

anode (𝜉 → 0) signifies a greater potential curvature effect in comparison to the wider 
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distance (𝜉 ≥ 𝜆𝐷). The spatially attenuating plasma parameters (diminished colour 

gradient) outwards is a consequence of the intrinsic dissipative mechanism of the plasma 

medium hindering in the propagation of disturbance outwards from the central anode. 

 

       

       

Figure 5.3: Profile of the (a) first-order, (b) second-order, (c) third-order, and (d) fourth-

order perturbed plasma parameters in a 4-D phase space defined by (i) Distance (𝜉), (ii) 

Electrostatic potential (𝛷1), (iii) Electric field (𝐸1), (iv) Potential curvature (𝜕2𝛷1/𝜕𝜉2). 

The initial and input parameters used here are the same as Fig. 5.1. 

 

To obtain the 2-D profiles (Figs. 5.1-5.2) smoothly, we assign a numerical value 

of unity to the natural constants (𝐹, 𝐺, 𝐴𝑒1, 𝐵𝑒1, 𝐶𝑒1, 𝐴𝑖1, 𝐵𝑖1, 𝐶𝑖1, 𝐴1, 𝐵1, 𝐶1, 𝐴2, 𝐵2, 𝐶2, 

𝐴6, 𝐵6, 𝐶6, 𝐴𝑒7, 𝐵𝑒7, 𝐶3, 𝐷3, 𝐹3, 𝐴𝑖7, 𝐵𝑖7, 𝐴8, 𝐵8, 𝐶8, 𝐴𝑒8, 𝐵𝑒8, 𝐶𝑒8, 𝐷𝑒8, 𝐸𝑒8, 𝐴𝑖8, 𝐵𝑖8, 𝐶𝑖8, 

𝐷𝑖8, 𝐸𝑖8, 𝐴𝑒9, 𝐵𝑒9, 𝐶𝑒9, 𝐷𝑒9, 𝐴𝑖9, 𝐵𝑖9, 𝐶𝑖9, 𝐷𝑖9) and integration constants (𝐶𝑒𝑀, 𝐶𝑖𝑀, 𝐶𝑒𝑁, 

𝑐3, 𝑐𝑒𝑁, 𝑐5, 𝑐6, 𝑐11, 𝑐12, 𝑐19, 𝑐20). In order to simplify the surface plotting, the order-wise 

common constants taken in the first-order (Fig. 5.3(a)), second-order (Fig. 5.3(b)), third-

order (Fig. 5.3(c)), and fourth-order (Fig. 5.3(d)) surface plots are 1 (for 𝑐3), 0.1 (for 𝑐5, 

𝐶𝑒𝑀, 𝐶𝑖𝑀, 𝐶𝑒𝑁, 𝑐6, 𝐺, 𝐻, 𝐴𝑒1, 𝐵𝑒1, 𝐶𝑒1, 𝐴𝑖1, 𝐵𝑖1, and 𝐶𝑖1), 0.01 (for 𝑐11, 𝑐12, 𝐴1, 𝐵1, 𝐶1, 

𝐴2, 𝐵2, 𝐶2, 𝐴6, 𝐵6, 𝐶6, 𝐴𝑒7, 𝐵𝑒7, 𝐴𝑖7, and 𝐵𝑖7), and 0.001 (for 𝑐19, 𝑐20, 𝐴8, 𝐵8, 𝐶8, 𝐷8, 

𝐴𝑒8, 𝐵𝑒8, 𝐶𝑒8, 𝐷𝑒8, 𝐸𝑒8, 𝐴𝑖8, 𝐵𝑖8, 𝐶𝑖8, 𝐷𝑖8, 𝐸𝑖8, 𝐴𝑒9, 𝐵𝑒9, 𝐶𝑒9, 𝐷𝑒9, 𝐴𝑖9, 𝐵𝑖9, 𝐶𝑖9, and 𝐷𝑖9), 

respectively. The same magnitudes of the unknown constants are considered to shrink the 
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plasma parametric variations within a physically admissible range in accordance with the 

relevant normalized laboratory spatiotemporal scales. 

 

5.4 CONCLUSIONS 

This chapter analyses the nonlinear multi-order fluctuation dynamics of a spherical PFBS 

developed around a plasma embedded anode. The analysis is done with the help of a 

steady-state bifluidic plasma model approach on the relevant laboratory spatial scales. 

The bifluidic model-based multi-order nonlinear PFBS perturbative analysis proves to be 

efficaciously successful in recreating the experimental results in terms of the plasma 

parametric variations in the diversified peakonic pattern forms without any loss of 

generality [3, 17, 18]. The electrostatic potential and other parametric variations agree 

with each other throughout their spatial evolution as well as the colour-phase mapping 

profiles. The model enables us to find out a unique class of peakon-type plasma potential 

profiles with the interrelation of the electron and ion dynamics through a new set of the 

third-order linear differential equations of the perturbed electrostatic Poisson formalism. 

The governing ODEs for the PFBS system are analysed herein with multi-order 

nonlinear perturbation up to their fourth-order of nonlinearity. The escalating 

(amplifying) plasma parameters with their order of nonlinearity indicates the unstable 

equilibrium state of the PFBS system as a whole [9]. A stable equilibrium state of the 

PFBS system would otherwise reduce the magnitude of the plasma parameters with 

sensible dispersive effects. The slight parametric amplification (with the order of 

nonlinearity) may also indicate the abrupt fluid (plasma) density variation across the 

associated double layer and the plasma sheath region leading to the eruption of the 

Rayleigh-Taylor instability (RTI) or other fluid instabilities caused by the equilibrium 

density gradients acting as free energy source therein [6]. 

In other words, we can alternatively say that the free energy source for the PFBS 

instability excitation originates from the equilibrium plasma currents across the sheath 

structures under investigation. The nonlinear PFBS fluctuation dynamics has been known 

to evolve in the form of diverse peakonic structures only up to the first-order of 

perturbation as of now [2]. The proposed semi-analytic investigation strengthens the same 

density gradient-driven instability to evolve up to the fourth-order nonlinearity with a 

higher level of fluctuation amplitude exhibiting quantitatively modified characteristics. 

It is further manifested that an increase in the order of plasma nonlinearity in our 

analysis increases the amplitude peakiness of the peakonic structures explored here, and 
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vice-versa. The investigated peakonic pattern structures are fairly bolstered by both the 

asymptotic boundary conditions predicted theoretically [9] and PFBS instability 

observations reported experimentally [3]. The harmonic amplitude enhancement with the 

order of plasma fluid nonlinearity in this perturbation analysis is quite in accordance with 

the previous predictions available in the literature [15-18]. It, therefore, enables us to 

guarantee the reliability of our multi-order nonlinear perturbative analysis of the steady-

state PFBS instability dynamics. Although it is semi-analytically restricted only up to the 

fourth-order parametric perturbations, but evolving self-consistently as a unique class of 

multi-order peakonic eigen-structures with varied amplitudes, collectively. 

It is relevant to reiterate here that the PFBS instability dynamics analysed herein, 

tentatively supports a plethora of utilities in diversified astrolabcosmic environments. To 

enumerate a few, the pressure exerted by the plasma FB on the constitutive ions and 

neutral atoms around it builds a considerable macroscopic force. A streamlined flow of 

these moving ions and neutrals can develop into a power jet, proving the significance of 

PFBS research for aviation technology and various astrophysical explorations as well 

[19]. A systematic analysis of the PFBS evolution would reveal the excitation of various 

microscopic instabilities and their saturations summarily left here now for our future 

course of studies with a refined incorporation of wave-turbulence effects. 

 

REFERENCES 

[1] Langmuir, I. Positive ion currents from the positive column of mercury arcs. Science, 

58(1502):290-291, 1923. 

[2] Dutta, S. and Karmakar, P. K. Fireball sheath instability. J. Astrophys. Astron. 

43(64):1-8, 2022. 

[3] Stenzel, R. L., Gruenwald, J., Ionita, C., Scrittwieser, R. and Urrutia, J. M. Sheaths 

and double layers with instabilities. J. Technol. Space Plasmas, 2(1):1-70, 2021. 

[4] Gruenwald, J., Reynvaan, J., and Knoll, P. Creation and characterization of inverted 

fireballs in H2 plasma. Phys. Scr., T161(014006):1-3, 2014. 

[5] Nakamura, Y., Nomura, Y. and Stenzel, R. L. Sheath expansion of plane probe by 

ion-beam reflection, J. Appl. Phys. 52(3):1197-1201, 1981. 

[6] Pandey, B. P. and Roy, S. An explanation of the sheath plasma instability. Phys. 

Plasmas, 10(1):5-8, 2003. 

[7] Stenzel, R. L., Ionita, C. and Scrittwieser, R. Dynamics of fireball, Plasma Sources 

Sci. Technol., 17(3):035006(1-11), 2008. 



Chapter-5:  Nonlinear analysis of regular plasma fireball sheath instability 

 

111 
 

[8] https://www.britannica.com/science/fireball-astronomy. 

[9] Chen, F. F. Plasma physics and controlled fusion, Plenum Press, New York, USA, 

1984. 

[10] Gohain, M. and Karmakar, P. K. Evolutionary sheath structure in magnetized 

collisionless plasma with electron inertia. Plasma Phys. Rep., 43(9):957-968, 2017. 

[11] Mamun, A. A. and Shukla, P. K. The role of dust charge fluctuations on nonlinear 

dust ion-acoustic waves. IEEE Trans. Plasma Sci., 30(2):720-724, 2002. 

[12] Degasperis, A., Holm, D. D. and Hone, A. N. W. A new integrable equation with 

peakon solutions. Theor. Math. Phys., 133(2):1463-1474, 2002. 

[13] Holm, D. D. and Hone, A. N. W. A class of equations with peakon and pulson 

solutions. J. Nonlin. Math. Phys. 12(1):380-394, 2005. 

[14] Abramowitz, M. and Stegun, I. A. Handbook of mathematical function with 

formulas, graphs, and mathematical tables. Dover Publications, NY, USA, 1965. 

[15] Salam, M. A., Akbar, M. A., Ali, M. Z. Higher-order nonlinear and dispersive effects 

on dust-ion-acoustic solitary waves in magnetized dusty plasmas. Results Phys. 

32(105114):1–7, 2022. 

[16] Ahmed, S. M., Hassib, E. R., Abdelsalam, U. M., et al. Ion-acoustic waves at the 

night side of titan’s ionosphere: higher-order approximation. Commun Theor Phys. 

72(055501):1–8, 2020. 

[17] Zabusky, N. J. and Kruskal, M. D. Interaction of “solitons” in a collisionless plasma 

and the recurrence of initial states. Phys. Rev. Lett., 15(6):240-243, 1965. 

[18] Zhou, Y., Song, J. and Tong, H. Solitary waves, periodic peakons, pseudo-peakons 

and compactons given by three ion-acoustic wave models in electron plasmas. J. 

Appl. Analysis Computation, 9(2):810-828, 2019. 

[19] Gruenwald, J., Kovacic, J., Fonda, B., et al. A model for the basic plasma parameter 

profiles and the force exerted by fireballs with non-isothermal electrons. Phys 

Plasmas. 25(113508):1–7, 2018. 

https://www.britannica.com/science/fireball-astronomy

	09_chapter 5

