
Chapter 2

Structure and dynamics of finite

three-dimensional Yukawa clusters:

Newtonian versus Langevin

Dynamics

The structure and dynamics of a harmonically confined three dimensional cluster of

32 charged dust particles is investigated via both Langevin Dynamics (LD) and fric-

tionless Molecular Dynamics (fMD) simulation. The static structure of the system

is analyzed through the Radial Distribution Function, Center-two-particle correlation

function (C2P) and angular correlation function. The intra-shell angular correlation,

Radial Distribution Function and C2P remains largely unaffected by the dynamics em-

ployed. However, the inter-shell angular correlation exhibits sharp peaks at irregular

angular intervals in fMD which are not seen in LD indicating strongly correlated mo-

tion of the two spherical shells in the cluster in fMD. The single particle dynamics of

the cluster is characterized by the Van - Hove self autocorrelation function and Mean

Squared Displacement (MSD). Notably, the Van - Hove autocorrelation function in

fMD simulations exhibits narrower width and higher peak height as compared to the

LD simulations, suggesting greater particle mobility in LD. Trajectory analysis reveals

a rotational motion of the particles about a common axis in fMD which disappears

with progressively increasing friction coefficient. We show that the disappearance of
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coherent rotational motion with the introduction of neutral friction in the dynamics is

due to the much faster relaxation of the interparticle distance as well as interparticle

angular separation in LD as compared to fMD.

2.1 Introduction
Clusters formed by trapping charged particles in space are achieved in different

physical systems for example ions in electromagnetic traps [78], charged dust par-

ticles in plasmas [51], electrons in quantum dots [77] etc. By studying these

systems, valuable insights may be obtained about the microscopic dynamics of

charged particles in finite systems.

In these systems the confinement leads to some unique collective and single par-

ticle behavior which is normally not observed in bulk homogeneous systems. A

characteristic property of harmonically trapped finite charged particle clusters is

the occurence of concentric spherical shells in 3D and concentric circular rings in

2D [86].

Particle dynamics in an interacting many body system can be studied by using

both Hamiltonian as well as Langevin Dynamics. The phase space evolution in a

Hamiltonian Dynamical system is given by Liouville equation whereas the corre-

sponding evolution in Langevin dynamical systems is governed by Fokker-Planck

equation [110]. Static, dynamic and thermodynamic properties of finite trapped

system of particles can be studied by using either Newtonian or Langevin Dy-

namics method. For example, the formation of dynamical states by harmonically

confined charged dust particles in two dimensions was investigated via frictionless

MD simulation by Maity et al. [111]. They observed different modes of the clus-

ter depending upon the total number of particles and the screening strengths, for

example intershell rotation, radial oscillation etc. It was observed in the Langevin

Dynamics simulation of a one dimensional chain of trapped ions that in the ab-

sence of the stochastic force the competition of the ions with thermal motion

leads to a transition from perfect one dimensional chain to a zig-zag chain ar-

rangement. Stochastic force was found to play an important role in nucleation as
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well as in defect formation [112].

Rotation of dust clusters in complex plasma was widely investigated in the past

by many researchers. Traditionally the rotation of dust clusters in complex plasma

experiments in the presence of a magnetic field is attributed to the drag force

exerted by the ions due to E × B drift on the dust particles. However, it was

observed by Carstensen et al. [101] that the neutral gas may be set into rotation

by ion-neutral collisions and the neutral gas in turn advects the dust particles

causing rotation of the cluster. Cluster rotation was also induced by the torque

applied by an electron beam by Ticos et al. [113]. Rotation is also observed

in clusters without any external forcing agency. For example, the nomal mode

analysis of 2D clusters by solving the dynamical matrix and finding the eigenvalues

and eigenvectors reveals that the cluster contains rotational mode in addition to

the other modes such as, center-of-mass mode, breathing mode, vortex-antivortex

mode etc [88, 15].

The neutral component in a complex plasma system provides damping to the

dust particle motion thereby “cooling down” the system of dust particles [5]. In

a dusty plasma system the presence of ion flow gives rise to attractive wake

potential among the dust particles. Besides dust-neutral collision, the ions also

collide with the neutrals and it was found that in the strong collisional limit the

attractive wake potential vanishes [114].

The motivation for the present work, is to understand the effects of dust-neutral

collision in the static and dynamic properties of a harmonically confined charged

dust cluster in complex plasma. These clusters known as Yukawa clusters contain

multiple time scales. The interplay among these time scales was recently shown to

give rise to various interesting collective and single particle dynamical phenomena

in two-dimensional finite dust clusters via Langevin Dynamics simulation [115].

Although the finite charged particle clusters have been studied by using frictionless

MD simulation as well as Langevin Dynamics simulation by many researchers in

the past [116, 86, 117, 118], a comparative study between Newtonian and Langevin

Dynamics has not been done yet.

The remainder of the chapter is organized as follows : section 2.2 describes the
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model adopted. Section 2.3 describes the simulation technique and the quantities

used to understand the static and dynamic properties of the Yukawa cluster. The

results are presented in section 2.4 followed by the concluding remarks in section

2.5.

2.2 Model description
We consider a system of N interacting dust particles each having mass m and

charge qd in three dimensions immersed in plasma obeying quasineutrality. The

interaction among the particles is assumed to be governed by Yukawa potential,

VY (rij) =
qd

4πϵ0rij
exp (−rij/λd), (2.1)

where, rij is interparticle distance between the ith and jth particle and λd is the

Debye length for the dust particles. The particles are assumed to be harmoni-

cally confined i.e, each dust particle experiences a force due to a global harmonic

oscillator potential,

VC(r) =
1

2
mω2

0r
2, (2.2)

where, ω0 is the harmonic confinement strength and r is the distance from the

center of the simulation box. The harmonic confining potential was shown to

mimic the superposition of gravity, ion drag, electrostatic and thermophoretic force

acting on a dust particle [85].

The equation of motion of the ith particle can thus be written as :

mr̈i = −qd∇
N∑
j ̸=i

V (rij)−mω2
0ri − νmṙi +Ai(t), (2.3)

where, rij = |ri − rj | is the distance between the ith and jth particles, ν is the

dust-neutral collision frequency and Ai(t) denotes the random force acting on the

ith dust particle due to collision with the neutrals [119]. The random force term

is assumed to obey the following relation according to the fluctuation - dissipation

theorem, 〈
Aiα(0)Aiβ(t)

〉
= 2mνkBTdδ(t)δαβ, α, β ∈ {x, y, z} (2.4)

where, Td denotes dust kinetic temperature and δ(t) is delta function.
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The random force term Ai(t) in the equation of motion (Eq. 2.3) is not a

differentiable function. That’s why, the differential increment of the random force

term (dAi) is proportional to ∆t1/2 in contrast to the other terms present in the

force equation which are proportional to ∆t, ∆t being the value of a time step

in the simulation [106].

In numerical simulations, the random force term on the ith particle (Ai(t)) can

be represented as [120],

Ai(t) =
√
2mνkBTd/∆t Gi, (2.5)

where, Gi is a Gaussian white noise. Equation 2.3 can be expressed in dimen-

sionless form as follows :

r̈′i = Γκ
N∑
j ̸=i

[
1 + r′ij

]
r′ 3ij

exp (−r′ij)r
′
ij + ω′ 2

0 r′i − ν ′ṙ′i +
√

2ν ′/∆t′Gi, (2.6)

where, r′ = r/λd, ω′
0 = t0ω0, ν ′ = t0ν and ∆t′ = ∆t/t0. The scale factor for time

is defined as, t0 =

√
mλ2

d
kBTd

. The overdot now denotes the redefined time derivative.

2.3 Simulation scheme
The case of a harmonically confined three-dimensional cluster consisting of N

particles is investigated by considering two different dynamics. We use frictionless

Molecular Dynamics (MD) on one hand to study both the static and dynamic

structural properites and then the same quantities are evaluated by incorporating

the effect of dust-neutral collision in to the picture via Langevin Dynamics (LD).

We consider the N dust particles to be point sized each having a mass (m)

and charge (qd) equal to 6.99 × 10−13 kg and −1.78 × 10−16 C respectively and

initially distribute them randomly inside a cubical simulation box with random

initial velocities whose edge length (L) is determined by the number of particles

(N) and initial number density density (nd) which is assigned as 1011 m−3. In

case of frictionless MD we integrate the equations of motion of the particles by

using a second order velocity verlet algorithm. To simulate the system of particles

at a desired temperature, we use a velocity rescaling procedure which is known

as the Berendsen thermostat. In the case of LD runs we integrate the equations
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of motion, by using the BAOAB algorithm which was shown to perform well in

the limits of both low and high friction [106, 121].

In the present work we use different quantities to probe the static structure of

the system of particles. First of all, the Radial Distribution Function (RDF)

is evaluated at different values of parameters defining the system. The RDF is

defined as,

g(r) =
1

ndN

〈 N∑
i=1

N∑
j ̸=i

δ(r − rij)
〉
, (2.7)

where, nd = N/L3 denotes the number density of dust particles. The RDF as it

is evaluated here, cannot distinguish between radial and angular correlation. To

distinguish between the radial and angular correlations present in the cluster a

two-particle correlation function known as the center-two-particle correlation func-

tion (C2P) has been used here which was developed by Thomsen et al.[79]. This

is a two particle correlation function of radial positions with respect to the cen-

ter of the cluster and the angle between the radial coordinates. It is defined as

the ratio of the correlated two particle density to the uncorrelated or ideal two

particle denstity,

f(r1,r2,θ) =
ρcorr2 (r1,r2,θ)

ρid2 (r1,r2,θ)
, (2.8)

where,

ρid2 (r1,r2,θ) = 8r21r
2
2 sin(θ)ρ(r1)ρ(r2). (2.9)

In the above ρcorr2 (r1,r2,θ) is sampled from simulations and ρ(r) is the single

particle radial densitiy. ρid2 (r1,r2,θ) is the ideal pair density of the same cluster

if it is filled homogeneously with shells about the trap center. The intra-shell

angular correlation is then obtained from the C2P by integrating out the radial

coordinates r1 and r2 over the range of a shell of the cluster.

To understand the dynamic structure of the cluster we use the self part of Van
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Hove autocorrelation function which is defined as [122],

Gs(r, t) =
1

N

〈 N∑
i=1

δ(r − |ri(0)− ri(t)|)
〉
. (2.10)

This function is proportional to the probability of finding a particle at distance

r at time t given that the particle was at the origin at t = 0. In the context

of our simulation, the angle bracket
〈
..
〉

denotes average over a sufficiently large

number of time origins. While calculating Gs(r, t) the bin width is chosen as

∆r = 0.001 λd.

A simulation run lasts for 5.5 × 106 time steps and the value of a time step is

chosen as 4 × 10−4 t0. The equilibration period lasts for 5 × 105 time steps and

the data for calculating the static and dynamic quantities are recorded for the

next 5× 106 time steps.

2.4 Results and discussion
The particles in the harmonically confined 3D cluster arrange themselves into

nested spherical shells. A few snapshots of the particle positions obtained from

fMD simulations at different values of Coulomb coupling parameter for a cluster

having N = 32 particles are shown along with the radial distances of the particles

from the center of the harmonic trap in Fig. 2.1. The 32 particle cluster was

studied in the past via both experiment and simulation [134]. Since it could be

realised in experiments, we therefore chose it in our studies. This serves as a

way to benchmark our results against experiments. It is seen that the thickness

of the spherical shells decreases with increase in Coupling strength.

2.4.1 Static structural properties

To get an idea of the static structure of the cluster we obtain RDF, C2P and

angular correlation functions and plotted them at different values of coupling and

screening parameters. We obtain these properties using both frictionless Molecu-

lar Dynamics and Langevin Dynamics simulation. It is expected that the static

properties doesn’t change with the dynamics considered.
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Figure 2.1: Snapshots of particle positions along with their radial distances from

the center of the cluster having N = 32 particles at different values

of Coulomb coupling parameter Γ. In the figure, Γ = 5.14 for (a)

and (b), Γ = 51.43 for (c) and (d) and Γ = 1543.14 for (e) and (f).
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Frictionless Molecular Dynamics

Figure 2.2: Radial distribution function of particles at different values of coupling

strengths at fixed values of screening parameter κ = 1.8 for a cluster

having N = 32 particles.

In order to understand the effect of variation of coupling parameter on the static

structure of the dust cluster we have plotted the Radial Distribution Function.

Fig. 2.2 shows the Radial Distribution Functions evaluated at different values of

coupling parameter keeping the screening parameter and total number of particles

fixed. The RDFs suggest that the system remains in a liquid like state upto a

certain value of coupling parameter Γ and then on further increasing the coupling

parameter the system exhibits order as in a partially crystallized state.

One of the important parameters of a Yukawa system is the screening parameter.

The radial distribution functions at different values of screening parameter κ by

keeping Γ = 257.19 and total number of particles N = 32 are shown in Fig. 2.3.

The first peak of the RDFs shifts towards left with increase in κ. This is due

to the fact that with increase in the screening parameter, the Yukawa repulsion

among the particles reduces and the screening independent attractive harmonic

potential brings the particles to closer interparticle separation. In Fig. 2.4 C2P

is plotted by integrating out the second radial coordinate r2 from g(r1,r2,θ). The

integration is done over the range of the outer shell. Fig. 2.4 shows the C2P

plots for different coupling strengths at fixed value of screening parameter κ and

total number of particles. The two strips seen in the Fig. 2.4 correspond to
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Figure 2.3: Radial distribution functions at different values of screening parameter

for a fixed value of coupling strength Γ = 257.19. for a cluster of

N = 32 particles.

the particles located in two distinct shells. The upper strip represents intra-shell

correlation among the particles of outer shell whreas, the lower strip represents

inter-shell correlation among the particles of inner and outer shell. The dark shade

in blue at angular separation around 40◦ and radial distance ∼ 1.5 ( in units of

λd ) indicates a strong correlation. Relatively weaker correlation is maintained by

the particles at around angles 80◦, 120◦ and 160◦. This result is in agreement

with the result of the intra-shell angular correlation of fig. 2.5. The angular

correlation is obtained from the integrated C2P by integrating out the radial

coordinate r1 over the range of the outer shell. From the angular correlation

results it is seen that, at Γ = 257.19 substructure appeas in the second and third

peaks which indicates a structural transition in the cluster. A still weaker inter-

shell correlation is seen in the lower strip. As the temperature is increased or Γ

is lowered, merging of the two shells is seen at around Γ = 19.29 accompanied by

the exchange of the particles in the two shells as shown in 2.6.

The center-two-particle correlation functions at different values of screening pa-

rameter and the corresponding angular correlation functions are shown in Fig.

2.7 and 2.8 respectively. The C2P shows both intra-shell correlation among the

outer shell particles (the outer strip) and inter-shell correlation among the parti-
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cles from the outer and inner shells (the inner strip). It is seen that with increase

in screening, the width of the inner strip decreases which suggests the reduction

of inner shell width with increase in screening. From the angular correlation plots

in Fig. 2.8 it is seen that, the 2nd and 4th dips in the angular correlation plots

tend to shift towards large angles for κ = 3.19 and κ = 4.53.

Figure 2.4: C2P at different values of coupling strengths (a) Γ = 102.88, (b)

Γ = 128.60, (c) Γ = 171.46, (d) Γ = 257.19 by keeping screening

parameter fixed as κ = 1.8 for a cluster having N = 32 particles.

Langevin Dynamics

The RDF of the cluster at different values of coupling strenghts at a fixed value

of screening parameter is shown in Fig. 2.9 for two different values of dust-neutral
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Figure 2.5: Intra-shell angular correlation among the particles from the outer

shell at different values of coupling strengths at κ = 1.8 for a cluster

of N = 32 particles.

collision frequency. The RDFs do not differ significantly from the corresponding

Newtonian Dynamics case which is attributable to the fact that the static prop-

erties of the system are independent of the dynamics considered. The observed

difference in the plots may be attributed to statistical uncertainity. Similar to

the Newtonian Dynamics case at a large enough value of coupling strength (Γ)

the second peak of the RDF starts showing substructure which is an indication

of glassy behaviour. The height of the first peak of the RDF as a function of

Coulomb coupling parameter is shown in Fig. 2.10 for three different dust-neutral

collision frequencies. It is seen that for fMD, the first peak height is greater

for all the values of coupling parameter suggesting a larger nearest neighbour

coordination number than for LD.

The center-two-particle correlation function at four different values of coupling

strengths is shown at ν = 0.3 Hz and ν = 3 Hz in Fig. 2.11 and 2.12 respectively

by keeping screening parameter fixed as κ = 1.8. As expected the C2P doesn’t

show much difference from its frictionless counterpart (see Fig. 2.4).
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Figure 2.6: C2P at different values of coupling strengths (a) Γ = 77.16, (b) Γ =

38.16, (c) Γ = 19.29, (d) Γ = 0.86 for κ = 1.8. for a cluster having

N = 32 particles.
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Figure 2.7: C2P at different values of screening parameters (a) κ = 2.59, (b)

κ = 3.19, (c) κ = 4.13, (d) κ = 4.53 for Γ = 257.19 and N = 32.
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Figure 2.8: Intra-shell angular correlation among the particles of the outer shell

at different values of screening parameter at a fixed value of coupling

strength Γ = 257.19 for a cluster with N = 32.

Figure 2.9: RDF of a N = 32 particle cluster at different values of coupling

strengths at two different friction coefficients (a) ν = 0.3 Hz, (b)

ν = 3 Hz at fixed value of screening parameter κ = 1.8.
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Figure 2.10: Maximum first peakheight of the Radial Distribution Function as a

function of Coulomb coupling parameter at different values of dust-

neutral collision frequencies.

2.4.2 Dynamic properties

To understand the Dynamic properties of the cluster with variation of coupling

and screening strength we have evaluated the self part of Van Hove autocorrela-

tion function both using frictionless Molecular Dynamics and Langevin Dynamics

simulation. The Van Hove function reveals the single particle dynamics of the

particles in the cluster.

Frictionless Molecular Dynamics

To investigate the dynamic structure of the Yukawa ball the Van Hove self auto-

correlation function is obtained in fricntionless MD simulation and plotted in Fig.

2.13. The results are shown at four different values of coupling parameter and

for each of them Gs(r, t) is plotted at four different delay times. It is seen that,

at around t = 0.08t0 a particle has the maximum probability of being at around

r = 0.1λd. From Fig. 2.13 it is seen that a peak occurs at r ∼ 0.1λd at all delay

times for all the coupling strengths. Initally, a particle is localized at r ∼ 0.1λd.

At fixed coupling, the peak height at r ∼ 0.1λd decreases with increasing delay

times indicating the diffusion of the particles to other locations. However, with
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Figure 2.11: C2P at four different values of coupling strengths (a) Γ = 102.88,

(b) Γ = 128.60, (c) Γ = 171.46, (d) Γ = 257.19 for κ = 1.8 and

ν = 0.3 Hz
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Figure 2.12: C2P at four different values of coupling strengths (a) Γ = 102.88,

(b) Γ = 128.60, (c) Γ = 171.46, (d) Γ = 257.19 for κ = 1.8 and

ν = 3 Hz
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Figure 2.13: Self part of Van Hove autocorrelation function for a cluster of N =

32 particles at four different values of coupling parameters,(a) Γ =

257.19, (b) Γ = 171.46, (c) Γ = 128.60, (d) Γ = 102.88 for κ = 1.8

in frictionless MD simulation
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decreasing Γ the peak heights in the plots at all delay times decreases.

The second peak of the Radial Distribution Functions as shown in Fig. 2.2 and

2.9 start splitting up at around Γ = 257.19. To see if there is any change in the

Van Hove self correlation function around this value, it is shown at ten different

coupling parameters and for each of them it is plotted at four different delay

times as shown in Fig. 2.14. It is seen that as the coupling strength is decreased,

Gs(r, t) at all the delay times tend to decay to zero as r → λd at around Γ =

257.19 indicating the tendency of the particles to freeze.
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Figure 2.14: Self part of Van Hove autocorrelation function for a cluster of N =

32 particles in frictionless MD simulation.

The self Van-Hove autocorrelation function has been plotted at four different val-

ues of delay times as shown in 2.15. For each of these figures, the function is

plotted at four different coupling strengths as shown. It is clear that the peak

shifts towards right as the coupling parameter decreases which means that with

decrease in coupling the particle can diffuse upto a large distance from the origin.

Also it is seen that at a lower value of coupling parameter (Γ = 257.19) and at

a later time (t/t0 = 2.48) the smoothness of the curve is lost and substructure

appears which is a signature of a structural transition of the cluster. The self

part of Van Hove autocorrelation function is plotted at four different screening

parameters in Fig. 2.16 at a fixed value of coupling strength Γ = 257.19 at differ-
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Figure 2.15: Self part of Van Hove autocorrelation function at a) t/t0 = 0.08, b)

t/t0 = 0.88, c) t/t0 = 1.68 and d) t/t0 = 2.48 for κ = 1.8.
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Figure 2.16: Self part of Van-Hove autocorrelation function plotted at four dif-

ferent values of screening parameter (a) κ = 2.59, (b) κ = 3.19, (c)

κ = 4.13 and (d) κ = 4.53 at Γ = 257.19 for a cluster with N = 32.
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ent delay times. At the shortest delay time t = 0.08 t0 a peak appears in Gs(r, t)

which shifts towards left with increase in κ.

Langevin Dynamics

To understand the effect of introducing dust-neutral collision in the single particle

dynamics of the cluster, we have obtained the Van-Hove self correlation function

using Langevin Dynamics simulation. The results are shown in Fig. 2.17 and 2.18

at two different values of friction coefficients. Fig. 2.17 shows the Gs(r, t) plots

Figure 2.17: Self part of Van Hove autocorrelation function at four different val-

ues of coupling parameter (a) Γ = 257.19, (b) Γ = 171.46, (c)

Γ = 128.60, (d) Γ = 102.88 for κ = 1.8. and ν = 0.3 Hz

at four different coupling strengths. The plots clearly show that the probability

of a particle lying at a distance r after time t lowers with decreasing value of Γ.
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Figure 2.18: Self part of Van Hove autocorrelation function at four different cou-

pling strengths (a) Γ = 257.19, (b) Γ = 171.46, (c) Γ = 128.60, (d)

Γ = 102.88 for κ = 1.8 and ν = 3 Hz.

The Van Hove self correlation function is plotted at four different delay times and

ten different coupling strengths as shown in Fig. 2.19. This should be compared

with Fig. 2.14 which was the Newtonian Dynamics case.

It is to be noted that the Gs(r, t) in the Newtonian and Langevin dynamics

has some important differences. The peak heights of Gs(r, t) in the Newtonian

Dynamics are much higher than the corresponding peak heights in Langevin dy-

namics at all coupling strengths and delay times. Moreover, the witdh of the

plots are much larger in Langevin Dynamics than the corresponding widths in
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Figure 2.19: Self part of Van Hove autocorrelation function for a cluster of N =

32 particles in Langevin Dynamics simulation at ν = 0.3 Hz.

Newtonian Dynamics. This means that the particles in Langevin Dynamics have

a wider range of displacement suggesting greater mobility.

2.4.3 Disappearance of coherent rotational motion

To get an idea of the mobility of the particles, the plot of trajectories of the dust

particles in the cluster are shown in Fig. 2.22 for both Newtonian and Langevin

Dynamics. It is seen that for frictionless MD the particles in the cluster exhibit

rotational motion. This rotational motion of course depends upon the harmonic

confinement strength as shown in Fig. 2.21. Qualitatively, it can be seen that

as the harmonic confining strength increases the rotation of the particles become

much ordered. In LD simulation, for a smaller value of neutral friction it can

be seen that the particles still exhibit rotational motion and at higher values

of neutral friction the rotational motion of the particles about a common axis

disappears.

An analysis of the inter-shell angular correlation function indicates that the two

nested spherical shells exhibit highly correlated motion in fMD as evidenced by

the appearance of sharp peaks in the intershell angular correlation function in
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Fig.2.20. However, in LD for all values of friction coefficients there are no sharp

peaks in the intershell angular correlation function. The fact that the rota-
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Figure 2.20: Intershell angular correlation at different values of dust-neutral col-

lision frequencies at Γ = 1543.14 and κ = 1.8.

tional motion of a dust particle in the cluster around the spherical surface of

the cluster changes with change in dust-neutral collision frequency motivated us

to examine the time correlation function of interparticle distance and interparticle

angular separation at different values of dust-neutral collision frequency. The time

autocorrelation function of interparticle distance and interparticle angular separa-

tion are obtained as Cr(t) =
〈
rij(0)rij(t)

〉
and Cθ(t) =

〈
θij(0)θij(t)

〉
respectively,

where
〈
.
〉

represents an average over a large number of time origins and all the

particle pairs. The angular separation between the ith and jth particles (θij) is

measured as the angle between the two vectors drawn from center of the har-

monic trap to the two particles. Moreover, we average Cr(t) and Cθ(t) over 80

independent random initial conditions. The result is presented in Fig. 2.23. It

can be seen that for fMD there is a very small change of these two quantities as

a function of time, whereas for LD the correlation decays much faster with time.

The cluster therfore exhibits a persistent rotational motion like a rigid body in

fMD which is absent in LD.
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Figure 2.21: Particle trajectores for a duration of t/t0 = 100 at different values

of harmonic confining strengths (a) ω0 = 10 Hz, (b) ω0 = 20 Hz,

(c) ω0 = 30 Hz and (d) ω0 = 50 Hz obtained from fMD simulation.
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Figure 2.22: Trajectories of dust particles for a time duration of t/t0 = 20 ob-

tained from (a) frictionless MD simulation and Langevin Dynamics

simulation at friction coefficient (b) ν = 0.003 Hz, (c) ν = 0.08 Hz

and (d) ν = 0.3 Hz. The coupling and screening parameter for both

the figures is fixed as Γ = 1543.14 and κ = 1.8 respectively.
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Figure 2.23: Time correlation of (a) interparticle distance and (b) interparticle

angular separation at different values of dust-neutral collision fre-

quency at fixed values of Γ = 1543.14 and κ = 1.8. The time cor-

relation function for fMD is shown separately in the inset to show

the very long time decay of correlations.

2.4.4 Mean Squared Displacement

The observed change in the static structure as shown by the RDF, C2P and

angular correlation function with increase in coupling strength (i.e, the splitting

up of the 2nd peak of RDF or the angular correlation function) motivates us to

examine the mean squared displacement around this range of Γ values.

The MSD for both the frictionless MD and Langevin Dynamics cases have been

shown in Fig. 2.24. For a Brownian particle moving in harmonic potential in 1D

the total MSD can be calculated analytically and has the form [123] :

〈
∆x2(t)

〉
=

2kBTd

mω2
0

[
1− exp

(
− νt

2

)
{cos(ω̄0t)−

ν

2ω̄0
sin(ω̄0t)}

]
, (2.11)

where, ω̄0 =
√

ω2
0 − (ν/2)2. For a harmonically confined Brownian particle moving

in three dimensions, the total MSD then becomes 3
〈
∆x2(t)

〉
and at long times

such that t >> 1/ν the MSD approaches 6kBTd

mω2
0
. For a Yukawa cluster like the

one considered here, this will happen only when the coupling parameter is so low

that the particles’ motion becomes almost uncorrelated. For the MSDs shown in

Fig. 2.24 this doesn’t happen because the coupling strengths are much larger.

65



Chapter 2. Structure and dynamics of finite three-dimensional Yukawa clusters: Newtonian versus

Langevin Dynamics

Figure 2.24: Mean squared displacement obtained from (a) frictionless MD simu-

lation and Langevin dynamics simulation at (b) ν = 0.3 Hz and (c)

ν = 10 Hz.
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2.5 Conclusions
In summary, we have investigated the static and dynamic properties of a three

dimensional cluster of harmonically confined Yukawa interacting charged dust par-

ticles via both frictionless Molecular Dynamics and Langevin Dynamics. Among

the static structural properties the RDF and C2P remains largely unaffected by

the dynamics employed. However, the inter-shell angular correlation in fMD shows

sharp peaks indicating highly correlated motion of the two shells which is absent

in LD. The dynamic properties shown by the Van-Hove self correlation function

and the self diffusion of the particles in the cluster are affected by the dynamics

considered.

We have investigated the effect of increasing coupling strength on both the static

and dynamic properties of the finite harmonically confined cluster. With increase

in coupling, the ordering of particles in the cluster changes which is reflected in

the static structural properties of the cluster namely, the RDF, C2P and intra-

shell angular correlation function. It is seen that with increase in the coupling,

the second peak of RDF and the intra-shell angular correlation function splits up,

i.e, sustructure appears.

The change in coupling strength also affects the dynamical properties of the clus-

ter. The Van Hove self autocorrelation function exhibits such change as the cou-

pling strength is varied. We see that for frictionless Molecular Dynamics with

decrease in the coupling strength and at a fixed delay time the Van Hove func-

tion broadens. Also the main peak height at all delay times can be seen to

be reducing with decreasing coupling strength. With the introduction of neutral

friction, i.e, when the particle dynamics is governed by the Langevin equation

of motion the basic nature of the Van-Hove self correlation function remains the

same although the peak height remains smaller and the widths broader at all

delay times than the corresponding plots of Newtonian Dynamics. This indicates

greater particle mobility in Langevin Dynamics than in frictionless Molecular Dy-

namics. The trajectory plot of fMD reveals a coherent rotational motion of the

particles about a common axis in the cluster. The coherent rotation of the clus-

ter disappears with the introduction of dust-neutral collision. An analysis of the
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time autocorrelation function of the interparticle distance and interparticle angular

separation reveals that persistent rotation of the cluster like a rigid body is not

possible in the presence of dust-neutral collision as the time autocorrelation of

interparticle distance (rij) and interparticle angular separation (θij) decays much

faster in case of Langevin Dynamics as compared to Newtonian Dynamics.

The differences between Langevin Dynamics and Newtonian Dynamics arise be-

cause of the difference in the procedures by which the system is brought to

thermal equilibrium in the two kinds of dynamics. In Langevin Dynamics the

thermalization is controlled by the collision with the neutral particles modeled as

white noise in our simulation. On the contrary, in Newtonian Dynamics simulation

a velocity rescaling thermostat (Berendsen thermostat) is used which suppresses

the kinetic energy fluctuations. This two temperature controlling mechanisms ac-

tually introduce the observed differences. It is not yet fully clear how exactly the

thermalization procedure affects particle trajectories, and a study in this direction

is ongoing.
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