
Chapter 4

Collective and single particle

behaviour of finite dust clusters

under a transverse external

magnetic field

The work included in this chapter is published in “H. Sarma and N. Das, Phys.

Plasmas 31, 063704 (2024)”.

The dynamics of two-dimensional dust clusters in plasma environment are studied at

different strengths of a transverse external magnetic field, via Langevin dynamics sim-

ulation. The collective oscillation spectra obtained from simulation are compared with

the dispersion relation derived from analytical calculation under harmonic approxima-

tion. At high magnetic field strength, in the case of a linear chain, a longitudinal optic

branch emerges whereas in the case of a 2D isotropic cluster, two clear distinct branches

appear with the high frequency branch approaching cyclotron frequency. Mean squared

displacement is obtained for the 2D cluster as a probe of single particle dynamics at

different values of magnetization. At a larger value of coupling parameter, the cluster

exhibits a crossover from normal to superdiffusive behaviour with change in magnetic

field strength which is a result of the competition between the cyclotron and harmonic
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time period. However, at a lower value of coupling parameter the cluster remains subd-

iffusive at all field strengths. The study brings out several novel features of magnetized

dust clusters in complex plasma environments.

4.1 Introduction
Finite clusters can be formed in complex plasma by the charged dust grains and

they exhibit different interesting properties which may be relevant to other fi-

nite systems like ions in traps, electrons at the surface of liquid He, electrons in

quantum dots etc [78, 76, 77]. For example, finite dust clusters exhibit solidlike

or liquidlike phases [117, 79], rotation about the symmetry axis [149, 148, 101],

concentric circular arrangement of particles [150], “magic” numbered shell config-

urations [86] and normal modes [88, 82] etc. These clusters consist of a small

number of charged dust particles and their behaviour depends strongly on the

particle number, strength of particle-particle interaction, confining potential etc.

[51].

Collective oscillation processes in finite charged particle clusters have been exten-

sively studied by many groups in the past. Schweigert et al. studied the spectral

properties of two-dimensional Coulomb clusters [89]. They obtained the ground

states and the spectrum of normal modes of two-dimensional clusters formed by

charged particles [89]. The normal mode analysis of two- and three-dimensional

clusters of charged dust particles has also been reported in various other works

[88, 90, 91, 151, 103]. In these works, the analysis was done by solving an eigen-

value equation involving the dynamical matrix thereby finding the mode oscillation

patterns and mode frequencies.

The effect of magnetic field on the behaviour of clusters of dust in complex

plasma has also been widely investigated previously both via numerical simulation

and experiments [101, 100, 104]. It was found in frictionless Molecular Dynam-

ics simulation recently that a three dimensional Yukawa cluster consisting of 32

particles exhibits phase transition from an ordered rotational phase to disordered

rotational phase as a function of external magnetic field strength and Coulomb
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coupling parameter [152]. Melzer et al. studied 2D cluster of 34 dust particles

and found to exhibit rotation in the presence of sufficiently strong external mag-

netic field [103]. Konopka et al. observed rigid and sheared rotation of a dusty

plasma monolayer in the presence of a perpendicular magnetic field [137]. The

shear elastic modulus of the plasma crystal was obtained by using the critical

shear stress at which shear-induced melting occurs.

In the present work, normal mode spectra of finite dust cluster in the presence of

external magnetic field has been obtained by using Langevin Dynamics simulation

for the first time. The results are in good agreement with the dispersion relation

obtained from theoretical analysis taking into account Lorentz force. The nor-

mal modes in cluster of charged dust particles in the presence of magnetic field

has remained an almost unexplored area. Melzer et al. experimentally studied

the dynamics of 2D cluster of 34 particles in the presence of magnetic field in

terms of normal modes that were determined from dynamical matrix [103]. Liter-

ature however does not show any simulation or theoretical work related to phonon

spectra of finite dust cluster in the presence of magnetic field. Presence of strong

magnetic field may affect the trajectories of massive dust particles thus control-

ling the single particle dynamics as well as pattern of phonon spectra provided

cyclotron time scale becomes comparable to harmonic time scale. We also try to

find a connection between the self-diffusion of cluster particles and the emergence

of new modes with increase in magnetic field strength.

Diffusion in confined geometries is an interesting topic of study. Because the parti-

cle motion is restricted in space such systems are expected to show anomalous dif-

fusion behaviour. In some biological systems where particles’ motion is restricted

anomalous diffusion behaviour is seen. For example, diffusion of tracer particles in

crowded environment of living cells is found to be anomalous in length and time

scales below a few micrometers and several seconds [153]. Statistical analyses of

particle position increments in an experiment on 2D dust cluster suggested the

particle dynamics to be superdiffusive on all timescales until the displacements of

particles exceed the size of the cluster besides confirming the particle dynamics to

have self similar nature [154]. The effect of magnetic field on diffusion of charged

particles in plasma has been widely investigated in recent decades via numeri-
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cal simulation and laboratory experiments. Ott and Bonitz found that diffusion

of dust particles in a 2D strongly coupled magnetized complex plasma exhibits

Bohm like 1/B dependence in the strong field limit corresponding to both paral-

lel and perpendicular diffusion coefficients [155]. The effect of magnetic field on

diffusion of dust particles was investigated in the presence of ion flow and dust-

neutral collision via Langevin Dynamics simulations which confirmed the diffusion

to be anomalous [156, 157].

The motivation behind the present study is to understand phenomena that may

emerge in clusters of charged dust particles under high magnetic field. In a finite

dust cluster in complex plasma the application of an external magnetic field intro-

duces a time scale in addition to the already existing time scales i.e, timescales

associated with dust neutral collision, confinemnent potential and dust-dust in-

teraction. The competition of the cyclotron timescale with the other timescales

may give rise to various intriguing phenomena. It is often difficult to see direct

effect of the magnetic field on dust particles due to its large mass. It requires a

sufficiently large magnetic field to magnetize the massive dust particles compared

to electrons and ions so that the Hall parameter h = Ωc
ν and the magnetization

parameter β = Ωc
ωpd

are of the order 1, Ωc, ωpd and ν being the dust cyclotron

frequency, dust plasma frequency and dust-neutral collision frequency respectively.

However, it has now been possible to generate sufficiently high magnetic fields

in complex plasma experiments so that dust particles get mangetized [93]. Or-

dered structures formed by dust particles were observed in the Magnetized Dusty

Plasma Experiment (MDPX) which was found to have the same spatial shape

as a grid [98] Kählert et al. proposed an interesting technique that exploits the

frictional coupling between complex plasma and rotating neutral gas that can be

used to realize the effect of strong magnetic field on dust particles [94]. The basic

idea of this technique is to induce coriolis force that may bring out similar effects

as by magnetic Lorentz force. Using this technique they could generate effective

magnetic field greater than 104 T .

The remainder of the chapter is organized as follows. The description of the

model is outlined in section 4.2. The details of Langevin Dynamics simulation

and the methods adopted to study collective modes are discussed in section 4.3.
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The results of linear dust chain and isotropic two-dimensional Yukawa clusters are

described in section 4.4 and section 4.5 summarises the findings of this work.

4.2 The Model
We consider a system of N interacting dust particles each having mass m and

charge qd in two dimension immersed in plasma obeying quasineutrality. The

interaction among the particles is assumed to be governed by Yukawa potential,

VY (r) =
qd

4πϵ0r
exp (−r/λd), (4.1)

where, r is interparticle distance and λd is the Debye length for the dust particles.

The particles are assumed to be harmonically confined i.e, each dust particle

experiences a force due to the harmonic oscillator potential energy,

VC(x, y) =
1

2
m
(
ω2
0xx

2 + ω2
0yy

2
)
, (4.2)

where, ω0x and ω0y are the harmonic confinement strengths along x− and y−directions

respectively. The confining harmonic potential can be applied in laboratory dusty

plasma experiments by using a circular trough or ring in the lower electrode

[88, 37]. An external magnetic field acting on the dust particles is also consid-

ered in the z− direction.

The equation of motion of the ith particle can thus be written as :

mr̈i = qd(vi ×B)− qd∇
N∑
j ̸=i

V (rij)

−mω2
0xxiêx −mω2

0yyiêy − νmṙi +Ai(t), (4.3)

where, rij = |ri − rj | is the distance between the ith and jth particles, êx and

êy are the unit vectors in the x− and y−directions respectively, ν is the dust-

neutral collision frequency and Ai(t) denotes the random force acting on the ith

dust particle due to collision with the neutrals [119]. The random force term is

assumed to obey the following relation according to the fluctuation - dissipation

theorem [106],

〈
Aij(0)Aik(t)

〉
= 2mνkBTdδ(t)δjk, j, k ∈ {x, y} (4.4)
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where, Td denotes dust kinetic temperature and δ(t) is delta function. The present

system can be charcterized by four dimensionless parameters, Γ =
q2d

4πϵ0r0kBTd
,

κ = r0
λd
, Ω′

c = qdB
mω0x

and ν ′ = νω−1
0x . Γ and κ are known as the coupling con-

stant and screening parameters respectively. Ω′
c and ν ′ denotes the dimensionless

magnetic field strength and dimensionless friction coefficient respectively. Here,

r0 =
[

2q2d
4πϵ0mω2

0x

]1/3
which is the ground state inter-particle distance for a system

consisting of two harmonically confined Coulomb interacting particles [109]. The

present system can be described in terms of four different time scales : the col-

lision time scale (τcol =
1
ν ), the harmonic time scale (τh = 1

ω0x
), cyclotron time

scale (τc =
2π
Ωc

) and the time scale associated with the interaction among the dust

grains defined by the dust plasma frequency (τint =
2π
ωpd

). The dust plasma fre-

quency is defined as ωpd =

√
q2d

4πϵ0ma3
where, a is the average interparticle distance

between the dust grains [158].

4.3 Langevin dynamics simulation
Langevin dynamics simulation was performed on a system of 34 Yukawa interact-

ing particles in two dimension confined harmonically in the x − y plane in the

presence of an external magnetic field applied along z− direction. The particles

are initially randomly distributed inside a square simulation box with random ini-

tial velocities. A dimensionless version of Eq. (4.3) has been solved numerically

by using the BAOAB algorithm which was shown to perform well in the lim-

its of both low and high friction [121], [106]. In the simulation, time, distance,

energy and temperature are scaled respectively by t0 = ω−1
0x , r0 =

[
2q2d

4πϵ0mω2
0x

]1/3
,

E0 =
[
q2dm

1/2ω0x

4πϵ021/2

]2/3
and T0 = E0/kB. In our simulation, longitudinal and transverse

current autocorrelation functions are evaluated from the knowledge of particle po-

sitions and velocities. They are defined as [159],

JL(k, t) =
〈
jL(k, t)jL(−k, 0)

〉
, (4.5)

and

JT (k, t) =
〈
jT (k, t)jT (−k, 0)

〉
, (4.6)
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where, jL(k, t) and jT (k, t) are spatial Fourier transform of longitudinal and trans-

verse particle current density and are defined as,

jL(k, t) =
1√
N

N∑
i=1

vix exp(ik · ri), (4.7)

and

jT (k, t) =
1√
N

N∑
i=1

viy exp(ik · ri). (4.8)

In the context of our simulation, the angle bracket
〈
..
〉

denotes average over a

sufficiently large number of time origins [106], the wavenumber is chosen to be

along x−direction i.e, k = k êx, vix and viy denote the x− and y− components

of the velocity of the ith particle. The Fourier transform of JL(k, t) and JT (k, t)

gives the spectrum of longitudinal and transverse modes respectively and defined

as,

CL(k, ω) =

∫ ∞

−∞
JL(k, t) exp(iωt)dt, (4.9)

and,

CT (k, ω) =

∫ ∞

−∞
JT (k, t) exp(iωt)dt. (4.10)

In our simulation, CL(k, ω) and CT (k, ω) are obtained by performing discrete

Fourier transform on the functions JL(k, t) and JT (k, t) for a time interval of

300 ω−1
0x . In the process of obtaining the phonon spectrum, a simulation run lasts

for 1×107 time steps with the value of a time step chosen as 1×10−4 ω−1
0x (except

in the run corresponding to Ω′
c = 11.33 and Γ = 7274 where the time step is

chosen as 1.3× 10−4ω−1
0x ). The system of dust particles is first allowed to attain

a steady state by collision with the neutrals. This phase lasts for 5 × 106 time

steps. The spectrum is obtained from the position and velocity data acquired

during the last 5× 106 steps. While obtaining the time series for Mean Squared

Displacement the length of the simulation run is increased up to 1 × 108 time

steps and the time step is increased up to 1.3× 10−4 ω−1
0x in order to obtain an

extended time series.

4.4 Results and Discussion
The case of a Yukawa cluster consisting of 34 particles was investigated in two

different situations. First the longitudinal and transverse current correlation spec-
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tra for a linear chain of charged dust particles was obtained in the presence of

an external magnetic field and secondly, the spectra of a 2D cluster of particles

was obtained and compared them (for both linear chain and 2D cluster) with

the dispersion obtained from an analytical model of the cluster under harmonic

approximation.

4.4.1 Linear chain in the presence of a perpendicular mag-

netic field

A linear chain of particles lying along x− direction can be created by making

the harmonic confining strength along y− direction (ω0y) sufficiently greater than

that along x− direction (ω0x) [160]. In our simulation, the ratio of confining

strengths αconf =
ω0y

ω0x
is chosen to be 20. A snapshot of the simulation is shown

in Fig. 4.1. The particles can be seen to be lying along a chain, although

−2 0 2
x/r0

−4

−2

0

2

4

y/
r 0

Figure 4.1: A snapshot from the Langevin dynamics simulation of the linear

chain of harmonically confined dust particles. The values of the cou-

pling constant, screening parameter and dimensionless friction coeffi-

cients respectively are Γ = 2487.67, κ = 4.32. and ν ′ = 0.6. The value

of αconf is chosen to be 20.

some of the particles in the central region shows slight deviation from strict one-

dimensional arrangement. Since, the variance of particle positions in y− direction

is much smaller than that in x− direction the arrangement of particle positions
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can reasonably be considered linear.

Such linear chain of particles have been observed both in experiments and sim-

ulations previously in diverse physical systems[161, 162, 163, 164]. Here, we are

interested in the behaviour of a chain formed by charged dust particles in complex

plasma in the presence of an externally applied perpendicular magnetic field. The

longitudinal current correlation spectra of such a chain of particles is shown in

Fig. 4.2 at different magnetic field strengths by keeping the coupling and screen-

ing parameters fixed. It can be seen that there are two different branches in

the spectrum at higher and lower frequencies which are reminiscent of optic and

acoustic branches observed in a linear diatomic lattice [165, 166]. The transverse

current correlation spectra is shown in Fig. 4.3. To understand the origin of

Figure 4.2: Longitudinal current correlation spectra CL(k, ω) at different mag-

netic field strengths a) Ω′
c = 0.00, b) Ω′

c = 2.83, c) Ω′
c = 5.67 and

d) Ω′
c = 11.33 with fixed values for other parameters as Γ = 2487.67,

κ = 4.32 and ν ′ = 0.6. The white dashed and dash-dot lines respec-

tively denotes the lower and higher frequency branches obtained by

numerically solving the dispersion relation (Eq. 4.18).
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Figure 4.3: Transverse current correlation spectra CT (k, ω) at different magnetic

field strengths a) Ω′
c = 0.00, b) Ω′

c = 2.83, c) Ω′
c = 5.67 and d)

Ω′
c = 11.33 with fixed values for other parameters as Γ = 2487.67 ,

κ = 4.32 and ν ′ = 0.6. The white dashed and dash-dot lines respec-

tively denotes the lower and higher frequency branches obtained by

numerically solving the dispersion relation (Eq. 4.18).

the spectra, the dispersion relation is obtained from the equation of motion under

the harmonic approximation as outlined below.

Considering the interparticle interaction to be modeled by Yukawa potential (Eq.

4.1), the spring constants along x− and y−directions can be obtained by lineariz-

ing Yukawa potential as,

Kx =
q2d

4πϵ0

[2 + 2jκ̄+ j2κ̄2

j3a3 exp(jκ̄)

]
, (4.11)

and

Ky =
q2d

4πϵ0

[ 1 + jκ̄

j3a3 exp(jκ̄)

]
, (4.12)

98



4.4. Results and Discussion

where, κ̄ = a
λd
, a being the distance between two immediate neighbours in equi-

librium. In the above, j is a number denoting the index of a particle along

the linear chain. The equations of motion along x- and y-directions considering

linearized force due to Yukawa interaction,

mẍn =

Nneigh∑
j=1

Kx(xn+j + xn−j − 2xn) + qdBẏn −mω2
0xxn −mνẋn, (4.13)

mÿn =

Nneigh∑
j=1

Ky(yn+j + yn−j − 2yn)− qdBẋn −mω2
0yyn −mνẏn. (4.14)

We assume,

xn = x0 exp (−iωt) exp (−ikna),

and,

yn = y0 exp (−iωt) exp (−ikna).

By substituting the solutions in the above equations of motion we get,

−ω2xn = −E2
1xn − iΩcωyn + iωνxn, (4.15)

−ω2yn = −E2
2yn + iΩcωxn + iωνyn. (4.16)

Here,

E2
1 = ω2

0x +

Nneigh∑
j=1

4Kx

m
sin2(kja/2),

and,
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E2
2 = ω2

0y −
Nneigh∑
j=1

4Ky

m
sin2(kja/2),

where, Nneigh denotes the number of neighbors considered for interaction with the

nth particle.

These two equations can be written in matrix form,

A

 xn

yn

 = 0, (4.17)

where,

A =

 (−ω2 + E2
1 − iων) iωΩc

−iωΩc (−ω2 + E2
2 − iων)

 .

The dispersion relation is obtained by letting the determinant of A vanish, i.e,

(−ω2 + E2
1 − iων)(−ω2 + E2

2 − iων)− (ωΩc)
2 = 0. (4.18)

The phonon spectra obtained from longitudinal and transverse current autocorre-

lation functions are shown in Fig. 4.2 and Fig. 4.3 respectively. The results are

compared with the frequency branches obtained from the numerical solution of the

dispersion relation Eq. 4.18. For B → 0 the results agree with that reported by

Liu et al. for 1D chain formed in complex plasma [81]. In the absence of an exter-

nal magnetic field the longitudinal phonon spectrum consists only of the acoustic

branch ( as seen from Fig. 4.2). But as the magnetic field strength is increased,

the longitudinal phonon spectrum starts showing both acoustic and optic branch.

This can be attributed to the increased localization of the particles’ motion with

the increase of the magnetic field strength. On the contrary, the transverse phonon

spectrum consists only of the optic branch at all the field strengths (Fig. 4.3).

Piacente et al. observed that on increasing magnetic field strength to sufficiently

large values the frequency of the optical branch approaches cyclotron frequency

[167]. In our case, although the frequency of the optical branch increases with

increase in the magnetic field strength for all values of dimensionless wavenumber

kr0, the frequency remains always higher than the cyclotron frequency. It can be

seen that, at zero wavenumber the acoustic mode freqency is zero and the optical
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mode frequency is 20 ω0x which is the same as harmonic confining strength along

y−direction. This zero wavenumber mode indicates a sloshing oscillation of the

cluster at ω = ω0y = 20 ω0x. As the wavenumber is increased, the repulsive Yukawa

interaction starts playing a dominant role and the frequency of the optical mode

decreases. A similar observation was reported by Liu et al. [81].

4.4.2 2D Yukawa cluster in the presence of a perpendicular

magnetic field

In dusty plasma experiments, dust particles can be trapped to form two-dimensional

layer in the sheath region of radiofrequency (rf) discharge due to the balance be-

tween gravity and electric field force [82]. In MD simulation such a system can be

acheived by applying harmonic confinement in the form of a potential described

by Eq. 4.2. An external magnetic field is applied along z−direction perpendicular

to the cluster. The ratio of confining strength αconf =
ω0y

ω0x
is chosen to be 1

so that an isotropic cluster is formed as shown in Fig. 4.4. For the results of

isotropic 2D cluster in this study the dimensionless friction coefficient is fixed as

ν ′ = 0.12 except for Fig. 4.12(c) and 4.12(d) where it is fixed as ν ′ = 3.84. The

value of confinement strengths are chosen as ω0x = ω0y = 25 s−1.

−1 0 1
x/r0

−1.0

−0.5

0.0

0.5

1.0

y/
r 0

Figure 4.4: Snapshot of a two-dimensional Yukawa cluster consisting of N = 34

particles obtained from Langevin dynamics simulation at zero external

magnetic field with Γ = 7274 and κ = 4.7.

The trajectory of an arbitrarily chosen particle from a harmonically confined clus-
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ter of 34 Yukawa interacting particles is shown in Fig. 4.5 at different strengths

of transverse external magnetic field. It is clear from the trajectories that on

increasing the magnetic field strength the particles start exhibiting Larmor oscil-

lation about the magnetic field in perpendicular direction. This is evident from

the fact that the trajectories curls up with the increase of the magnetic field

strength. Dusty plasma like other many body systems support variety of col-

Figure 4.5: Trajectory of an arbitrarily chosen particle at different magnetic field

strengths, a) Ω′
c = 1.13, b) Ω′

c = 5.67, c) Ω′
c = 7.93 and d) Ω′

c = 11.33

keeping coupling and screening parameter fixed at Γ = 145.48 and

κ = 4.7 respectively. The trajectories are plotted for a time duration

of 7.5 ω−1
0x .

lective modes. Dust acoustic waves, dust density waves, dust cyclotron waves

are some of the low frequency waves exhibited by dusty plasma in weakly cou-

pled state whereas dust lattice wave arises in strongly coupled solid like state.

The 2D dusty plasmas in strongly coupled solid like regime are known to exhibit

compressional or longitudinal waves with direction of oscillation along the wave

propagation direction. While longitudinal waves arise in gaseous state, transverse
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waves are characteristic feature of strongly correlated system. The purpose of the

present work is to find the phonon spectra of magnetized dust cluster which will

help in understanding the dynamical behaviour of such a system with increasing

magnetic field.

Phonon spectrum

The longitudinal and transverse current correlation spectra of a cluster of 34

particles are shown in Fig. 4.6 at two different coupling strengths (Γ = 7274 and

Γ = 145.48) at zero external magnetic field. The spectra at Γ = 7274 suggests

the presence of solid like order in the cluster whereas, at Γ = 145.48 the system

is in a partially melted state as was observed in bulk 2D complex plasma by

Nunomura et al. [168]. The longitudinal current correlation spectra of a 2D

a) b)

c) d)

Figure 4.6: Current correlation spectra for longitudinal and transverse modes re-

flecting the phase state of the cluster (N = 34) at two different value

of coupling strengths, Γ = 7274 [a) and b)] and Γ = 145.48 [c) and

d)] at zero external magnetic field and κ = 4.7.
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Yukawa cluster is shown in Fig. 4.7 for Γ = 7274 at different values of magnetic

field strengths denoted by Ω′
c. The longitudinal mode is excited at ∼ 6ω0x =

150 rad/s corresponding to kr0 ∼ 15 at Ω′
c = 0. The increase in the disturbance

of the mode at Ω′
c = 0.11 may be due to the onset of a new mode in the

presence of a magnetic field. This becomes clear in Fig. 4.7(c) corresponding to

Ω′
c = 5.67 where the original normal mode arising due to thermal effects split

into two distinct modes. In order to understand the origin of the spectra the

dispersion relation for the system is obtained by assuming a linearized Yukawa

interaction potential among the particles.

We assume a monolayer of dust particles having a hexagonal lattice structure with

lattice parameter a. So, considering a particle to be lying at (0, 0), the positions of

its nearest neighbours are, (a, 0), (−a, 0), (a/2,
√
3a/2), (−a/2,

√
3a/2), (a/2,−

√
3a/2)

and (−a/2,−
√
3a/2). Using harmonic approximation, the Yukawa potential (Eq.

4.1) can be written as,

VY (r) =
1

2
K(r − a)2, (4.19)

where, K is the spring constant and defined as,

K =
q2d

4πϵ0λ3
d

(2 + 2κ̄+ κ̄2)

κ̄3
exp(−κ̄). (4.20)

In the above, κ̄ = a
λd
. Taking into account the force due to all the nearest

neighbour particles, the magnetic Lorentz force due to a perpendicular magnetic

field, confining harmonic force and the frictional drag force due to the neutrals,

the x− and y− components of force on the (s, l) particle of the monolayer can

be represented respectively as [169],

mζ̈s,l = K
2∑

i=1

(−1)i+1(ri − a)
a+∆ζi

ri

+K

6∑
i=3

(−1)i+1(ri − a)
a/2 + ∆ζi

ri

+ qdBη̇s,l −mω2
0xζs,l −mνζ̇s,l,
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and,

mη̈s,l = K
2∑

i=1

(−1)i+1(ri − a)
∆ηi
ri

+K
[
(r3 − a)

√
3a/2 + ∆η3

r3
− (r4 − a)

√
3a/2−∆η4

r4

]
+K

[
(r5 − a)

√
3a/2−∆η5

r5
− (r6 − a)

√
3a/2 + ∆η6

r6

]
− qdBζ̇s,l −mω2

0yηs,l −mνη̇s,l.

In the above two equations, the displacements of the particles from equilibrium

positions along x− and y− directions are denoted respectively by ζs,l and ηs,l

and the particle indices along x− and y− directions are denoted by s and l

respectively. Also, ∆ζi and ∆ηi are [170],

∆ζ1 = ζs+1,l − ζs,l, ∆η1 = ηs+1,l − ηs,l,

∆ζ2 = ζs,l − ζs−1,l, ∆η2 = ηs,l − ηs−1,l,

∆ζ3 = ζs+1/2,l+
√
3/2 − ζs,l, ∆η3 = ηs+1/2,l+

√
3/2 − ηs,l,

∆ζ4 = ζs,l − ζs−1/2,l+
√
3/2, ∆η4 = ηs−1/2,l+

√
3/2 − ηs,l,

∆ζ5 = ζs+1/2,l−
√
3/2 − ζs,l, ∆η5 = ηs,l − ηs+1/2,l−

√
3/2,

∆ζ6 = ζs,l − ζs−1/2,l−
√
3/2, ∆η6 = ηs,l − ηs−1/2,l−

√
3/2.

Considering the displacements to be much smaller than the equlibrium interparti-

cle distance a, i.e, ∆ζi << a and ∆ηi << a the force equation along x−direction

becomes,

m
d2ζs,l
dt2

= K
[
∆ζ1 −∆ζ2 +

1

4
(∆ζ3 −∆ζ4

+∆ζ5 −∆ζ6) +

√
3

4
(∆η3 −∆η4

+∆η5 −∆η6)
]
−mω2

0xζs,l

+ qdB
dηs,l
dt

−mν
dζs,l
dt

, (4.21)
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and along y−direction,

m
d2ηs,l
dt2

= K
[3
4
(∆η3 +∆η4 −∆η5 −∆η6)

+

√
3

4
(∆ζ3 +∆ζ4 −∆ζ5 −∆ζ6)

]
−mω2

0yηs,l − qdB
dζs,l
dt

−mν
dηs,l
dt

. (4.22)

Now, considering longitudinal oscillation we assume the following two solutions

ζs,l = ζ0 exp(−iωt) exp(ikas), (4.23)

and,

ηs,l = η0 exp(−iωt) exp(ikas). (4.24)

Using these two solutions in Eq. (4.21) and (4.22) the following two equations

are obtained, (
ω2 − ω2

0x + iων + C1

)
ζs,l − iωΩcηs,l = 0, (4.25)

and,

iωΩcζs,l +
(
ω2 − ω2

0y + iων + C2

)
ηs,l = 0, (4.26)

In the above the constants C1 and C2 are as follows,

C1 = −2
K

m

(
2 sin2(ka/2) + sin2(ka/4)

)
,

and,

C2 = −6
K

m
sin2(ka/4).

By arranging the Eq. 4.25 and 4.26 in matrix form,

D

 ζs,l

ηs,l

 = 0, (4.27)

where,

D =

 (
ω2 − ω2

0x + iων + C1

)
−iωΩc

iωΩc

(
ω2 − ω2

0y + iων + C2

)
 .

The dispersion relation is obtained by using the condition that the determinant

of the coefficient matrix D in Eq. 4.27 should vanish for solutions to exist. This

leads to the dispersion relation as follows,(
ω2 − ω2

0x + iων + C1

)(
ω2 − ω2

0y + iων + C2

)
− (ωΩc)

2 = 0. (4.28)
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This dispersion relation is similar to that obtained by Farokhi et al. for bulk 2D

dusty plasma in the presence of an externally applied perpendicular magnetic field

with a modification due to the harmonic confining term [170].

Assuming the frequency ω to be consisting of real and imaginary parts, i.e, taking

ω = ωr + iωi and substituting in Eq. 4.28 a system of two non-linear equations is

obtained as follows,

(ω2
r − ωiν + C1 − ω2

0x)(ω
2
r − ωiν + C2 − ω2

0y)

−4(ωi +
ν

2
)2ω2

r − (ω2
rΩ

2
c) = 0, (4.29)

(ωi +
ν

2
)ωr(2ω

2
r − 2ωiν + C1 + C2 − ω2

0x − ω2
0y)− ωrωiΩ

2
c = 0. (4.30)

In the above, the imaginary part of the frequency ωi is assumed to be much

smaller than the real part ωr so that ω2
i ∼ 0. These two equations are solved nu-

merically to obtain the frequencies at different values of wavenumber. Frequency

vs wavenumber plots are shown in Fig. 4.7 and 4.8 along with longitudinal and

transverse current correlation spectra obtained from simulation at Γ = 7274 and

κ = 4.7 respectively. It is seen from the plots that the dispersion obtained from

the analytical model shows good agreement with CL(k, ω) and CT (k, ω) obtained

from simulation. In Fig. 4.7 the longitudinal phonon spectrum has been shown at

four different magnetic field strengths keeping the coupling parameter and screen-

ing parameter fixed. The modes predicted by Eq. 4.29 and 4.30 are superposition

of longitudinal and transverse vibrations. One of these have more longitudinal

character thus agreeing with the longitudinal current correlation spectra of Fig.

4.7(a). On increasing the magnetic field up to Ω′
c = 11.33 the frequency of the

upper branch of the spectra becomes of the order of the cyclotron frequency.

The vibrational mode with lower frequency gets quenched at the cost of cyclotron

mode.

The transverse phonon spectrum is shown in Fig. 4.8 at four different magnetic

field strengths. It is seen that the spectra resembles quite well with the theoretical

dispersion curves. The pure longitudinal and transverse modes of magnetized dust

cluster can be thought of as the superposition of thermally excited vibrational

modes and magnetic field induced cyclotron mode.
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d)

Figure 4.7: Current correlation spectra for longitudinal modes for different values

of magnetic field strengths, a) Ω′
c = 0, b) Ω′

c = 0.11, c) Ω′
c = 5.67 and

d) Ω′
c = 11.33 at Γ = 7274 and κ = 4.7. The white dashed curve de-

notes the higher frequency branch and the dash-dotted curve denotes

the lower frequency branch obtained from analytical calculation.
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d)

Figure 4.8: Transverse current autocorrelation spectra for different values of mag-

netic field strengths, a) Ω′
c = 0, b) Ω′

c = 0.11, c) Ω′
c = 5.67 and d)

Ω′
c = 11.33 at Γ = 7274 and κ = 4.7. The white dashed curve denotes

the higher frequency branch and the dash-dotted curve denotes the

lower frequency branch obtained from analytical calculation.
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Figure 4.9: Current autocorrelation spectra for longitudinal modes for different

values of magnetic field strengths, a) Ω′
c = 0, b) Ω′

c = 0.11, c) Ω′
c =

5.67 and d) Ω′
c = 11.33 at Γ = 145.48 and κ = 4.7 respectively.

The white dashed curve denotes the higher frequency branch and

the dash-dotted curve denotes the lower frequency branch.
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Figure 4.10: Transverse current autocorrelation spectra for different values of

magnetic field strengths, a) Ω′
c = 0, b) Ω′

c = 0.11, c) Ω′
c = 5.67

and d) Ω′
c = 11.33 at Γ = 145.48 and κ = 4.7 respectively. The

white dashed curve denotes the higher frequency branch and the

dash-dotted curve denotes the lower frequency branch.
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To understand the effect of variation of coupling strength the longitudinal and

transverse phonon spectra have been obtained and shown in Fig. 4.9 and 4.10

respectively for Γ = 145.48 by keeping screening parameter fixed as κ = 4.7. It is

evident from the limits on color scales in these figures that the maximum values

of CL(k, ω) and CT (k, ω) increases with decreasing coupling strength which is

due to the increase in thermal velocity of the particles with decreasing coupling

strength or increase in dust kinetic temperature.

Zhdanov et al. experimentally studied the wave spectra of a dusty plasma mono-

layer considering the particles to be Yukawa interacting [171]. They observed two

branches in the spectrum with mixed transverse and longitudinal polarization for

waves propagating in different directions with respect to the crystal axis. We

observe two branches in the spectrum too, both in theory and simulation. It is

seen that, with increase in the magnetic field strength the frequency of the higher

frequency branch approaches cyclotron frequency. This happens in both the lon-

gitudinal and transverse spectra as the magnetic field is applied in the z-direction

which does not introduce any preferred direction into the 2D system. Uchida et

al. investigated the wave spectra of a strongly coupled bulk 2D plasma crystal

in the presence of an external magnetic field [158]. They found the spectra to

consist of high and low frequency branches each having both longitudinal and

transverse character.

The observed magnetic field effects can be viewed as a result of competition

between cyclotron and interaction timescales. When the external magnetic field

strength is zero, the spectrum is mainly dominated by the interaction timescale

(τint) defined by the dust plasma frequency (panel (a) in Fig. 4.7 - 4.10). At

a non-zero but smaller magnetic field strength (panel (b) in Fig. 4.7 - 4.10)

the spectrum is still dominated by the interaction timescale. Only at a suffi-

ciently large value of the field strength the spectrum is governed by the cyclotron

timescale. To better understand this fact, the longitudinal phonon spectra ob-

tained from the simulation along with the dispersion curves obtained from analyt-

ical calculation are shown in Fig. 4.11 at four different magnetic field strengths.

It is seen that when the magnetic field strength is smaller such that Ωc < ωpd [Fig.

4.11(a) and (b)] the modes are distributed over a continuous range of frequencies.
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A distinct change in the spectra can be seen when Ωc ∼ ωpd [Fig. 4.11(c)] and

the spectra becomes separated into two distinct branches when Ωc > ωpd [Fig.

4.11(d)]. This, therefore, indicates the presence of two different timescale regimes

in the cluster at low neutral friction: the interaction dominated regime charac-

terized by ωpd > Ωc and the magnetic field dominated regime characterized by

Ωc > ωpd. However, the distinct phonon spectra are found to disappear when

d)

Figure 4.11: Longitudinal current correlation spectra at different values of mag-

netic field strengths, a) Ωc
ωpd

= 0.05, b) Ωc
ωpd

= 0.50, c) Ωc
ωpd

= 1.01,

d) Ωc
ωpd

= 2.52. The coupling and screening parameters are fixed as

Γ = 7274 and κ = 4.7 respectively.

the friction coefficient ν becomes greater than the dust plasma frequency ωpd as

shown in Fig. 4.12.

To understand the effect of variation of particle number in the cluster, the longitu-

dinal and transverse phonon spectra have been plotted for three different particle

numbers N = 50, 100 and 300 as shown in Fig. 4.13. It is seen that with increase

in the number of particles the peak frequency increases. The snapshots of particle
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Figure 4.12: Longitudinal and transverse current correlation spectra at dimen-

sionless friction coefficients ν ′ = 0.12 [a) and b)] and ν ′ = 3.84 [c)

and d)] at fixed value of magnetic field strength Ω′
c = 5.67. The cor-

responding values of friction coefficients when scaled by dust plasma

frequency becomes ν
ωpd

= 0.05 [a) and b)] and ν
ωpd

= 1.71 [c) and

d)]. The color scales have been scaled by the maximum values of

CL(k, ω) and CT (k, ω) so that they become uniform. The coupling

and screening strengths are fixed at Γ = 7274 and κ = 4.7 respec-

tively.
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Figure 4.13: Longitudinal and transverse current correlation spectra for different

total number of particles, N = 50 [a) and b)], N = 100 [c) and d)],

N = 300 [e) and f)] . The dimensionless magnetic field strength,

coupling parameter and screening parameters are fixed as Ω′
c = 5.67,

Γ = 145.48 and κ = 4.7 respectively.
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positions have been shown in Fig. 4.14 for different total number of particles in

the cluster. Clusters with small number of particles are characterized by nested

circular shells whereas with increase in the number of particles hexagonal struc-

ture starts appearing in the inner region of the cluster. However, near the outer

boundary of the cluster the particles still arrange themselves into circular shells

[172].
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Figure 4.14: Snapshot of particle positions taken at the final timestep of the

simualation at different values of total number of particles, a) N =

34, b) N = 50, c) N = 100 and d) N = 300 with Γ = 145.48,

κ = 4.7 and Ω′
c = 5.67.

The Fourier transform of the velocity autocorrelation function is shown in Fig.

4.15 at four different magnetic field strengths. This gives the vibrational Density

of States (DoS) [119]. In our simulation, the velocity aucorrelation function is

defined as 1
N

〈∑N
i=1 vi(t) · vi(0)

〉
, where

〈
..
〉

denotes average over time origins.

At a lower value of magnetic field strength (say, Ω′
c = 0.11) the phonon states

are distributed over a continuous range of frequencies. But as the magnetic field
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Figure 4.15: The Fourier transformed velocity autocorrelation function is plotted

at different values of magnetic field strengths, a) Ω′
c = 0.0, b) Ω′

c =

0.11, c) Ω′
c = 5.67 and d) Ω′

c = 11.33 at Γ = 7274 and κ = 4.7.
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strength is increased, the phonon states can be seen to be distributed around two

distinct frequencies. This trend also resembles the trend observed in the current

autocorrelation spectra (Fig. 4.7 and 4.8) where, with the increase of the magnetic

field strength the phonon spectra can be seen to be clearly separated into two

distinct branches. The density of states function Z(ω) has some characteristic

features corresponding to solid, liquid and gaseous states. In case of gaseous state,

Z(ω = 0) > 0 which indicates the presence of diffusive modes at longer timescales

and it decays monotonically for ω > 0. For liquid states, Z(ω = 0) > 0 and then

Z(ω) becomes maximum at a certain value of ω and then decays monotonically

afterwards. For solid states, Z(ω = 0) = 0 and it goes through a maximum at an

intermediate value of ω before decaying monotonically [173]. The plots of Z(ω)

shown in Fig. 4.15 suggest the presence of diffusive modes at longer timescales.

Mean squared displacement

In order to gain further insight into the self-diffusion of particles in the cluster we

obtain the mean squared displacement of the cluster of particles. In our simulation

the Mean Squared Displacement(MSD) is calculated according to,

MSD(t) =
1

Nτmax

τmax∑
τ=1

N∑
j=1

[
rj(t+ τ)− rj(τ)

]2
, (4.31)

where, τmax denotes the maximum number of time origins, t denotes delay time

and rj(t) denotes the position vector of the jth dust particle at time t.

In general, the MSD as a function of time can be expressed as [174],〈
r2(t)

〉
=

2dDα

γ(α+ 1)
tα, (4.32)

where, d is dimensionality, Dα is diffusion coefficient, α is diffusion exponent and

γ(x) denotes gamma function. MSD gives idea about the diffusive behaviour of

the system of particles. By setting α = 1 and d = 2 in Eq. 4.32 one can retrieve

the scaling law for normal diffusion in a 2D system,〈
r2(t)

〉
= 4D1t. (4.33)

In our simulation, MSD is obtained according to Eq. 4.31 and the calculation

was repeated for 80 initial conditions before performing ensemble average. MSDs
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for a 2D cluster at different magnetic field strengths are shown in Fig. 4.16 at

Γ = 7274 and κ = 4.7. It is clear from the log-log plot (Fig. 4.16(b)) that the

motion of the particles initially remain superdiffusive and the time interval for

which it remain superdiffusive reduces as magnetic field strength increases. In

the log-log plot the oscillations that are seen at smaller delay times are due to

Larmour oscillation of the dust particles. A dip can be seen in the log-log plot of

MSD at the time period of cyclotron motion (τc) and subsequent dips at integral

multiples of τc. However, the origin of the oscillations that occur at larger delay

times is not immediately obvious. It is seen from Fig. 4.17 that the cluster

0 2500 5000 7500 10000
ω0xt

0.0

0.1

0.2

0.3

0.4

M
SD

/r2 0

a)

Ω′
c=0.00

Ω′
c=1.13

Ω′
c=2.27

Ω′
c=3.40

Ω′
c=4.53

Ω′
c=5.67

Ω′
c=6.80

Ω′
c=7.93

Ω′
c=9.07

Ω′
c=10.20

Ω′
c=11.33

−2 0 2 4
log10(t/τc)

−5

−4

−3

−2

−1
lo
g 1

0(
M
SD

/r2 0)

α=
1

b)

Ω′
c=1.13

Ω′
c=2.27

Ω′
c=3.40

Ω′
c=4.53

Ω′
c=5.67

Ω′
c=6.80

Ω′
c=7.93

Ω′
c=9.07

Ω′
c=10.20

Ω′
c=11.33

Figure 4.16: a) Mean squared displacement as a function of time at different

magnetic field strengths. b) Log-log plot of MSD as a function of

time. For both the figures the coupling and screening parameters

are fixed as Γ = 7274 and κ = 4.7 respectively. The time axis in

the log-log plot is scaled by the time period of cyclotron motion

τc =
2π
Ωc

as indicated.

goes to a superdiffusive regime on increasing the magnetic field strength beyond

a certain value. It has been previously observed in bulk 2D dusty plasma that

magnetic field leads to superdiffusion [119]. However, it is seen from Fig. 4.17

that the difusion exponents are scattered around the line α = 1 upto a certain

magnetic field (Ω′
c = 5.67) and then on further increasing the field strength the

points lie consistently above α = 1. This means that the system shows normal

diffusion as the magnetic field strength is increased from zero upto Ω′
c = 5.67 and
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Figure 4.17: Diffusion exponent as a function of magnetic field strength. The

values of α are obtained by fitting Eq. 4.32 to the MSD time series

for the duration 125.89 < ω0xt < 10383.23. The red dashed line is

drawn through α = 1 to enable the reader compare the values of

α in our case to that of normal diffusion. Coupling and screening

parameters are fixed as Γ = 7274 and κ = 4.7 respectively for these

results.
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then it becomes superdiffusive. This behaviour is observed due to a competition

between two time scales present in our system : the cyclotron time period and

the time scale associated with the confinement potential. From Fig. 4.17 it is seen

that the crossover from normal diffusion to superdiffusion occurs around Ω′
c ∼ 6.8.

It is interesting to note that for Ω′
c ≳ 6.8 the relation τc ≲ τh beween cyclotron

time period τc and harmonic confinement time period τh (inverse of confinement

frequency) holds true. That is a particle exhibits larmor oscillation before being

affected by the harmonic confinement force.

In order to see whether this is a general trend, MSD is obtained also for a lower

value of coupling parameter, i.e, Γ = 145.48. The results are shown in Fig. 4.18.
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Figure 4.18: a) MSD plotted as a function of time at different magnetic field

strengths. b) Log-log plot of MSD as a function of time. For

both the figures the coupling and screening parameters are fixed as

Γ = 145.48 and κ = 4.7 respectively. The time axis in the log-log

plot is scaled by the time period of cyclotron motion τc = 2π
Ωc

as

indicated.

It has been shown that the MSD approaches a value A0 =
2kBTd

mω2
0x

for a delay time

ω0xt >> 1/ν ′ when the amplitude of driving continuous oscillations become much

smaller than A0 [175]. For a system with dimensionality d, the equlibrium value of

total MSD approaches dA0. For a harmonically confined cluster of Yukawa inter-
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Figure 4.19: Diffusion exponent as a function of magnetic field strength. The

values of α are obtained by fitting Eq. 4.32 to the MSD time series

for the duration 2511.89 < ω0xt < 10383.23. Coupling and screening

parameters are fixed as Γ = 145.48 and κ = 4.7 respectively for

these results.

acting particles, this will happen when, the dust kinetic temperature Td becomes

sufficiently large or equivalently Γ becomes sufficiently small (in our simulation

Γ is changed by changing Td) at a fixed value of confinement strength. In Fig.

4.18(a) this doesn’t happen because the dust kinetic temperature corresponding to

this figure is much lower (Td = 2500 K). It can be seen that for the considered

duration, the cluster remains subdiffusive at all magnetic field strengths (see Fig.

4.19).

4.5 Summary and Conclusions
In summary, the collective as well as single particle dynamics of 2D Yukawa

clusters are investigated as a function of magnetic field strength using Langevin

dynamics simulation. The phonon spectra arising due to thermal fluctuations are

investigated in the case of a linear dust chain and a 2D dust cluster in the

presence of an externally applied perpendicular magnetic field. The spectra are
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obtained from the values of Current Autocorrelation Function (CAF) evaluated

at different wavenumbers. The particle velocities and positions are sampled from

Langevin Dynamics Simulations which can be used to compute CAF and other

relevant quantities studied here. The dust particles interacting via the Yukawa

potential are confined by harmonic potential which can be applied in laboratory

dusty plasma experiments. An analytical model is developed to obtain the disper-

sion relation of normal modes arising in such systems and the results are found to

agree well with that of simulation for the range of parameters studied here. The

normal mode of magnetized linear chain is found to consist of two branches. One

low frequency acoustic like mode having longitudinal character and the other high

frequency optic branch having mixed longitudinal and transverse character. The

longitudinal optic branch is characteristic of magnetic field and disappears com-

pletely in the absence of magnetic field. The frequency of transverse mode at zero

magnetic field decreases with increase in wavenumber and at zero wavenumber the

frequency of this mode is attributed to confinement frequency along y−direction.

The frequency remains almost constant with wavenumbers at larger magnetic field

strengths. On the other hand the frequency of the longitudinal acoustic branch

is found to increase with wavenumber at all field strengths.

Similar analysis has been performed in 2D dust cluster. The dispersion relation in

this case, clearly admits two branches as in a linear chain. Previously, researchers

have performed similar analysis in much larger 2D systems both for bulk plasma

crystal in the presence or absence of external magnetic field and in harmonically

confined system of particles in the absence of external magnetic fields. Zhdanov et

al. studied the polarization of wave modes in Yukawa monolayer via experiment,

simulation and theory and found that the polarization alternates between longi-

tudinal and transverse modes [171]. Farokhi and Shukla did a theoretical normal

mode analysis in a 2D bulk plasma crystal in the presence of a perpendicular

magnetic field where they observed two branches due to the coupling between

the longitudinal and transverse lattice vibrations because of the presence of the

Lorentz force [170]. In the present work, the analysis has been performed in a

much smaller harmonically trapped system consisting of 34 particles in the pres-

ence of an external magnetic field applied perpendicularly. It is observed that
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with the increase in the magnetic field strength, the frequency of the upper fre-

quency branch approaches cyclotron frequency. The study further reveals that

both longitudinal and transverse modes disappear when damping due to neutral

particles approaches cyclotron frequency. It is seen in the present work that when

the coupling parameter is large, the system shows normal diffusion at a smaller

value of the field strength and then for the higher values of the field strength

it becomes superdiffusive. This is contrary to the observation made in the sim-

ulation of bulk 2D liquid dusty plasma where the system shows superdiffusion

(α = 1.1) for stronger magnetic fields and weak superdiffusion (1 < α < 1.1) for

weaker magnetic fields. [119].

The present analysis shows that several novel features of the phonon spectra

emerge both in linear chain and 2D dust cluster once the strength of the trans-

verse magnetic field attains a certain value. Combined action of Yukawa interac-

tion, harmonic confinement as well as the Lorentz force brings out new normal

modes of such system. Strong magnetic field is manifested as splitting of en-

ergy associated with the modes for particular wavenumber into two states. In the

present system, the nature of the normal modes are controlled by four different

time scales i.e, the collision time scale, harmonic time scale, the cyclotron time

scale and the time scale associated with interaction among dust grains. It is the

competition among these time scales that gives rise to the interesting collective

and single particle dynamics reported here. The magnetized phonon spectra stud-

ied in this paper can be realized in strongly coupled dusty plasma in the presence

of a magnetic field such that the cyclotron time scale (τc) is comparable to the

interaction time scale (τint).
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