Declaration

I, **Biswajit Das**, hereby declare that the present thesis, entitled "Modeling and Simulation of Extracellular Space and its Role in Signal Transmission", is the record of work done by me under the supervision of Prof. Soumik Roy, Professor, Department of Electronics and Communication Engineering, Tezpur University, Tezpur. The contents of the thesis represent my original works that have not been previously submitted for any Degree/Diploma/Certificate in any other University or Institutions of Higher Education.

This thesis is being submitted to Tezpur University for the Degree of Doctor of Philosophy in Electronics and Communication Engineering.

Place: Tezpur University, Tezpur

Date: 19/06/2025

Bixwayit Day

(Biswajit Das)

TEZPUR UNIVERSITY

(A Central University Established by an Act of Parliament) Napaam, Tezpur-784028, Sonitpur, Assam, India

Certificate

This is to certify that the thesis entitled, "Modeling and Simulation of Extracellular Space and its Role in Signal Transmission", submitted to the School of Engineering, Tezpur University in partial fulfillment for the award of the degree of Doctor of Philosophy in Electronics and Communication Engineering is a record of research work carried out by Mr. Biswajit Das under my supervision and guidance.

All help received by him from various sources have been duly acknowledged.

No part of this thesis has been submitted elsewhere for award of any other degree.

19/06/2025

(Supervisor)

Prof. Soumik Roy Professor Department of ECE School of Engineering, Tezpur University

TEZPUR UNIVERSITY

(A Central University Established by an Act of Parliament) Napaam, Tezpur-784028, Sonitpur, Assam, India

Certificate of the External Examiner

This is to certify that the thesis entitled "Modeling and Simulation of **Extracellular Space and its Role in Signal Transmission**" submitted by Mr. **Biswajit Das,** Department of Electronics & Communication Engineering, School of Engineering, Tezpur University in partial fulfilment for the award of the degree of **Doctor of Philosophy in Electronics & Communication Engineering has been** examined by us on $19.06 \cdot 2025$ and found to be satisfactory.

v

The committee recommends for the award of the degree of Doctor of Philosophy.

Supervisor

(Prof. Soumik Roy)

External Examiner

)

Date:____

Date:___

Acknowledgment

First and foremost, I express my deepest gratitude to my esteemed supervisor, **Prof. Soumik Roy**, for his unwavering support, expertise, and mentorship. His encouragement, insightful feedback, and patience have been instrumental in shaping the direction of this research and in fostering my growth as a scholar.

I extend my heartfelt appreciation to the members of my thesis committee, **Prof. Partha Pratim Sahu** and **Dr. Biplob Mondal**, for their valuable insights, constructive critiques, and thoughtful suggestions. Their rigorous examination and insightful comments have significantly enhanced the quality of this work. I am immensely grateful to all the individuals and institutions that have contributed to the completion of this doctoral thesis. Their support, guidance, and encouragement have been invaluable throughout this journey.

I am thankful to **Tezpur University** for providing me with the necessary resources, research facilities, and a stimulating academic environment that enabled me to conduct this research effectively. I extend my heartfelt appreciation to the **lab technician and staff** for their invaluable support, dedication, and expertise, which significantly contributed to the success of this thesis.

I would like to express my gratitude to **my family** for their unconditional love, unwavering support, and understanding throughout my academic journey. Their belief in my abilities has been a constant source of motivation and strength. I am grateful to my friends and colleagues for their camaraderie, encouragement, and countless stimulating discussions. Their diverse perspectives have broadened my horizons and enriched my research.

My sincere thanks go to my amazing friends and lab partners, whose cooperation and support have been crucial to finishing my thesis successfully. Your combined efforts have produced a stimulating and motivating atmosphere that has greatly improved the caliber of this study. My lab partners, **Dr. Satyabrat Malla Bujar Baruah, Mr. Uddipan Hazarika, Mr. Bidyut Bikash Borah, Mr. Rajkumar Joydev Borah, Ms. Sneha Singh and all other lab partners from M.Tech and B.Tech** deserve special recognition. Your commitment to the common goals of our study, your attitude of cooperation, and your readiness to share expertise have been helpful. Our lab's synergy has been a driving force, creating an atmosphere that encourages creative problem-solving and inventive thinking.

I would like to extend my deepest thanks to my companions **Reetom Borkotoky, Padum Chetry, Debarun Chakraborty, Vickey Sharma, Nivaj Gogoi, Ashish Kashyap, Subhankar Chakraborty, Awanish Singh, Souvick Roy** whose presence brought color and excitement to this journey. Without you, the path would have been dulled and monotonous, but your energy, humor, and unwavering camaraderie turned every moment into an adventure worth cherishing.

I would also like to thank my dear friends from the department **Sujay Amarprit, Ritayan, Suhriday, Deepamoni, Arpita, Anjana,** for your support and mutual amusement, the study process has become not just manageable but joyful.

It is often said that a hostel is a second home, and in this spirit, I would like to express my heartfelt gratitude to my **hostel mates from Saraighat C V Raman Men's Hostel**. Your unwavering support, camaraderie, and readiness to lend a helping hand have made this journey truly memorable. Thank you for always being there in times of need and for creating a sense of belonging that I will forever cherish.

Last but not least, I extend my heartfelt appreciation to all those whose names may not be mentioned here but have played a role in my academic and personal development. Completing this thesis would not have been possible without the combined efforts and support of all these individuals and institutions, and I am deeply grateful for their contributions, who bestowed all his blessings on me.

Biswajit Das

Dedicated to my

Parents and my Grandmother (Aita)......

List of Figures

Fig. 1.1 A Myelinated Neuron	2
Fig. 1.2 Different phases of an Action Potential	3
Fig. 2.1(a) Equivalent Circuit of an Active nerve Membrane Model	17
Fig. 2.1(b) Equivalent Circuit of a Passive nerve Membrane Model	17
Fig. 2.2 Cable representation of a nerve	18
Fig.3.1 Equivalent Circuit of Passive Membrane Model	29
Fig.3.1.1 Membrane capacitance when $\frac{dV_m}{dt}$ is unchanged	32
Fig.3.1.2 Membrane capacitance when $\frac{dV_m}{dt}$ is increased by 2 times	32
Fig.3.1.3 Membrane capacitance when $\frac{dV_m}{dt}$ is increased by 4 times	32
Fig.3.1.4 Membrane capacitance when $\frac{dV_m}{dt}$ is decreased by 0.1 times	33
Fig.3.1.5 Membrane capacitance when $\frac{dV_m}{dt}$ is decreased by 0.5 times	33
Fig.3.2 Cable model incorporating ECS parameters	41
Fig.3.2.1 Individual passive H-H circuit of the cable model	41
Fig.3.2.2 Tapered fiber with constant ECS	43
Fig.3.2.3 Flared fiber with constant ECS	43
Fig.3.2.4 Uniform Fiber with increasing ECS for each observation	43
Fig.4.1 Myelinated Neve fiber with Node of Ranvier at distinct locations	49
Fig.4.2 Representation of the Proposed Model	52

Fig.4.3 Electrical equivalent cable representation of the proposed model	52	
Fig.4.4 Initial Spike train	56	
Fig.4.5 Spike train at the myelinated segment		
Fig.4.6 Spike train at the next Node of Ranvier	56	
Fig.4.7 Overlaying plots of initial Spike train and Spike train at the next Node of Ranvier	56	
Fig.4.8 Initial Spike train	57	
Fig.4.9 Spike train at the myelinated segment	57	
Fig.4.10 Spike train at the next Node of Ranvier	57	
Fig.4.11 Overlaying plots of initial Spike train and Spike train at the next Node of Ranvier	57	
Fig.5.1 Representation of a nerve fiber by a cable	67	
Fig.5.2 Hodgkin-Huxley (H-H) active nerve	67	
Fig.5.3 Normal Spike Train	71	
Fig.5.4 Spike Train for a smaller ECS	71	
Fig.5.5 Spike Train for a larger ECS	71	
Fig.5.6 Spike Train when sodium channels are blocked, ECS= 10 nm	73	
Fig.5.7 Spike Train when sodium channels are blocked, ECS = 100 nm	73	
Fig.5.8 Spike Train when sodium channels are blocked, ECS=10 nm	73	
Fig.5.9 Spike Train when sodium ion concentration is increased due to injury, ECS = 50 nm	75	
Fig.5.10 Spike Train when potassium channels are blocked, ECS= 50nm	76	
Fig.5.11 Spike Train when potassium channels are blocked, ECS =100 nm	76	
Fig.5.12 Spike Train when potassium channels are blocked, ECS = 10 nm	76	

Fig.5.13 Spike Train when potassium conductance is increased, $ECS = 50 \text{ nm.}$	- 7	79
--	-----	----

- Fig.5.14 Spike Train when potassium conductance is increased, ECS = 100 79 nm.....
- Fig.5.15 Spike Train when potassium conductance is increased, ECS = 10 nm 79
- Fig.5.16 Non-mutated (original), mutated and Rescue ($k_{Rescue}=1$) membrane 86 potential over time for +10 mV voltage shift in rate constant.....
- Fig.5.17 Non-mutated (original), mutated and Rescue ($k_{Rescue}=1$) gating 87 variables over time for +10 mV voltage shift in rate constant.....
- Fig.5.18 Variation in ionic currents for non-mutated (original), mutated and 89 Rescue ($k_{Rescue}=1$) conditions over time for +10 mV voltage shift in rate constant (a). For Sodium current (b). For Potassium current (c). For Leakage current....
- Fig.5.19 Phase plane plot (V vs m) for +10 mV voltage shift in rate constant 90 for non-mutated (original), mutated and Rescue ($k_{Rescue}=1$) scenarios.....
- Fig.5.20 Non-mutated (original), mutated and Rescue ($k_{Rescue}=0$) membrane 91 potential over time for +10 mV voltage shift in rate constant.....
- Fig.5.21 Non-mutated (original), mutated and Rescue ($k_{Rescue}=0$) gating 92 variables over time for +10 mV voltage shift in rate constant.....
- Fig.5.22 Variation in ionic currents for non-mutated (original), mutated and 93 Rescue (k_{Rescue}=0) conditions over time for +10 mV voltage shift in rate constant (a). For Sodium current (b). For Potassium current (c). For Leakage current....
- Fig.5.23 Phase plane plot (V vs m) for +10 mV voltage shift in rate constant 94 for non-mutated (original), mutated and Rescue ($k_{Rescue}=0$) scenarios.....
- Fig.5.24 Non-mutated (original), mutated and Rescue ($k_{Rescue}=1$) membrane 95 potential over time for -10 mV voltage shift in rate constant.....
- Fig.5.25 Non-mutated (original), mutated and Rescue ($k_{Rescue}=1$) gating 96 variables over time for -10 mV voltage shift in rate constant.....

Fig.5.26 Variation in ionic currents for non-mutated (original), mutated and	98
Rescue ($k_{Rescue}=1$) conditions over time for -10 mV voltage shift in rate	
constant (a). For Sodium current (b). For Potassium current (c). For Leakage	
current	

Fig.5.27 Phase plane plot (V vs m) for -10 mV voltage shift in rate constant for 99 non-mutated (original), mutated and Rescue (k_{Rescue}=1) scenarios.....

Fig.5.28 Non-mutated (original), mutated and Rescue (k _{Rescue} =0) membrane	100
potential over time for -10 mV voltage shift in rate constant	

Fig.5.29 Non-mutated (original), mutated and Rescue (k_{Rescue}=0) gating 100 variables over time for -10 mV voltage shift in rate constant.....

Fig.5.30 Variation in ionic currents for non-mutated (original), mutated and 102 Rescue ($k_{Rescue}=0$) conditions over time for -10 mV voltage shift in rate constant (a). For Sodium current (b). For Potassium current (c). For Leakage current....

Fig.5.31 Phase plane plot (V vs m) for -10 mV voltage shift in rate constant for 103 non-mutated (original), mutated and Rescue (k_{Rescue}=0) scenarios.....

Fig.6.1 Equivalent Circuit of Passive Membrane Model.....113

- Fig.6.2 Hodgkin-Huxley (H-H) passive nerve.113Fig.6.3 Velocity profile for a fiber of constant diameter, constant length and116increasing Extracellular Space for each observation.
- Fig.6.4 Velocity profile for a fiber of constant diameter, constant length and 116 increasing Extracellular Space for each observation in Logarithmic scale......
- Fig.6.5 Velocity profile for a fiber of varying internal diameter, constant length 117 and a constant Extracellular Space.....

Fig.6.6 Velocity profile for a fiber of varying internal diameter, constant length 117 and a constant Extracellular Space in Logarithmic scale.....

```
Fig.6.7 Velocity profile for a fiber of constant internal diameter, constant ECS
118

and varying length of fiber.....
110

Eigen Constant internal diameter, constant ECS
110
```

Fig.6.8 Velocity profile for a fiber of constant internal diameter, constant ECS 118 and varying length of fiber in Logarithmic scale.....

Fig.6.9 Velocity profile for a fiber of varying internal diameter, varying length		
of a fiber, and a constant Extracellular Space		
Fig.6.10 Velocity vs Extracellular space with the velocity spiking at certain	120	
critical points		
Fig.6.11(a) Change in time constant with the variations in internal diameter	121	
and ECS size (b) Change in time constant with the variations in internal		
diameter and the size of ECS		

List of Tables

Table	3.1: Change in the Rate of change of membrane Potential with	34	
corresponding Maximum Capacitance value			
Table	3.2: Comparison Table for the current finding with the existing literatures	35	
Table	3.3: Comparison Table for the current finding with the existing	44	
	literatures		
Table	4.1: Comparison Table for the current finding with the existing	59	
literatures			
Table	5.1: Summary of the observations made from section 5.5.1	82	
Table	5.2: Comparison Table for the current finding with the existing	103	
	literatures		
Table	6.1: Different combinations of the fiber anatomy and the ECS used for	122	
	the study		

Nomenclature

Symbols:

Na ⁺	Sodium Ions	
\mathbf{K}^+	Potassium Ions	
Ca ²⁺	Calcium Ions	
Cl	Chlorine Ions	
C_m	Total Membrane Capacitance	
c _m	Characteristic Membrane Capacitance	
G _{Na}	Sodium Conductance	
G_k	Potassium Conductance	
Gı	Maximum Leakage Conductance	
g _{Na}	Maximum Sodium Conductance	
g_k	Maximum Potassium Conductance	
gı	Leakage Conductance	
E _{Na}	Equilibrium Potential of Sodium Ions	
E_k	Equilibrium Potential of Potassium Ions	

Eı	Equilibrium Potential of Leakage Ions
I _T	Transmembrane Current
I _{Na}	Sodium Current
I _k	Potassium Current
I_l	Leakage Current
I_i	Internal Current
Ie	External Current
Ia	Axial Current
R_{m}	Total Membrane Resistance
R _a	Total Axial Resistance
m ³ , h	Activation Variable of Sodium Ions
n^4	Activation Variable of Potassium Ions
α, β	Rate Constants
r _m	Characteristic Membrane Resistance
$R_{\rm i}$	Volumetric Internal Resistance of the Nerve Fiber
Re	Volumetric Extracellular Space Resistance
r _i	Characteristic Internal Resistance of the Nerve Fiber

Гe	Characteristic Extracellular Space Resistance
\mathbf{V}_{i}	Internal Potential of the Nerve Fiber
V_e	Potential of the Extracellular Space
V_{m}	Resting Membrane Potential
А	Area
d	Myelin Thickness
E	Permittivity of the Material
ϵ_0	Permittivity of Free Space
€r	Relative Permittivity
$\frac{dV_m}{dt}$	Rate of Change of Membrane Potential
D_i	Internal Diameter of the Nerve Fiber
De	Diameter of the Extracellular Space
1	Length of the Fiber / Physical length of the segment under consideration
V_{mnode1}	Membrane Potential of the Initial Node of Ranvier
V _{mnode2}	Membrane Potential of the Next Node of Ranvier
$I_{prop 1}$	Current Received at the Adjacent Myelinated Segment
Iprop2	Current Leaving the Myelinated Segment

$I_{delivered}$	Current Delivered at the Fiber's Outlet	
$\mathbf{I}_{\mathrm{inj}}$	Injected Current	
I_{loss}	Propagation Loss	
$R_p(V_m)$	Rescue Protein Voltage	
K _{Rescue}	Rescue Protein Coefficient	
$V_{m,Original}$	Membrane Potential for Non Mutated (Original) State	
$V_{m,mutated}$	Membrane Potential for Mutated State	

Abbreviation:

AP	Action Potential
CNS	Central Nervous System
PNS	Peripheral Nervous System
ATP	Adenosine Triphosphate
ECS	Extracellular Space
ECM	Extracellular Matrix
CSD	Cortical Spreading Depression
LFP	Local Field Potential
EEG	Electroencephalogram
EcoG	Electro-Corticogram
NCV	Nerve Conduction Velocity
Н-Н	Hodgkin-Huxley

MCV	Motor Nerve Conduction Velocity
MS	Multiple Sclerosis
CMV	Cytomegalovirus
OPCs	Oligodendrocyte Precursor Cells
BDNF	Brain Derived Neurotrophic Factor
GABA	Gamma-Aminobutyric Acid
BBB	Blood Brain Barrier
AIS	Axon Initial Segment
Nav	Voltage Gated Sodium Channel
CAMs	Cell Adhesion Molecules
SCN	Sodium Voltage Gated Genes
KCN	Potassium Voltage Gated Genes
MT2	Metallothionein-2
PM22	Peripheral Myelin Protein 22
ZBP1	Zipcode Binding Protein 1
GEFS+	Genetic Epilepsy with Febrile Seizure Plus