
CHAPTER 6

Existence and Exact Controllability of a Hybrid

Evolution Inclusion

6.1 Introduction

In 2000, Hilfer [65] introduced a new definition of fractional derivative, known as the Hilfer

fractional derivative, which generalizes the Riemann-Liouville fractional derivative and

acts as an interpolation between the Caputo and Riemann-Liouville derivatives. This

derivative has significant applications in various fields, including polymer science, vis-

coelasticity, rheological modelling, generalized anomalous diffusion, and financial mathe-

matics [37,51,57,90,133]. Gu and Trujillo [59] investigated an evolution equation involving

the Hilfer fractional derivative, deriving the mild solution using the Laplace transform

and density function, and established the existence of solutions using the noncompact

measures approach. Varun and Udhayakumar [127] studied the existence of solutions for

a Hilfer fractional differential inclusion by applying fixed point theorems in the context

of almost sectorial operators.

Recent advancements in controllability theory [52, 71, 81, 119, 120] have addressed

various forms, including approximate, null, and exact controllability etc. in both finite

and infinite-dimensional spaces. Wang and Zhou [131] provided a comprehensive analysis

of the exact controllability of a Caputo fractional differential inclusion via the fixed point

theorem. Similarly, Kumar et al. [80] investigated the controllability of Sobolev-type

Hilfer fractional integro-differential equations. Recently Priyadharshini and Vijayakumar

[101] investigated the approximate controllability of a fractional stochastic differential

equation with Hilfer fractional derivatives and non-dense domain in Hilbert spaces. The

results were derived using fractional calculus, semigroup theory, Wiener process, and

fixed point techniques.

In this work we consider the following semi-linear hybrid fractional differential inclu-
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sion with nonlocal condition

0Dε,ρt

(
ω(t)

F(t, ω(t))

)
∈ A

(
ω(t)

F(t, ω(t))

)
+ G(t, ω(t)), t ∈ (0,T ] = J ′,

I(1−ε)(1−ρ)

(
ω(0)

F(0, ω(0))

)
− H(ω) = ω0.

(6.1.1)

In this case, the Hilfer fractional derivative of type ρ ∈ [0, 1] and order ε ∈ (0, 1) is denoted

by 0Dε,ρt . For a bounded linear operator {T (t)}t≥0, let A be the infinitesimal generator

of a strongly continuous semigroup in a Banach space X . We denote the interval [0,T ]

as J . Consider F ∈ C(J × X ,X \ {0}), H : Ω → X be a continuous and compact

map. Additionally, G : J × X → 2X \ {φ} is a nonempty, closed, convex and bounded

multivalued map.

This chapter has been set up as: In Section 6.2, we introduce certain fundamental

concepts and Lemmas based on our requirements, as well as find out the corresponding

integral equation of (6.1.1). Section 6.3 is dedicated to proving the existence results for

the proposed system. In Section 6.4, we examine the controllability of the hybrid class

of fractional differential inclusions. Finally, in Section 6.5, we provide an illustrative

example to demonstrate and clarify the key findings of our study.

6.2 Preliminaries

In this context, let C̄ = C(J ′,X ) represents the spaces of continuous functions mapping

from J ′ to X and C = C(J ,X ) represents from J to X .

Now define the space Ω as

Ω =
{
ω ∈ C̄ : lim

t→0
t(1−ε)(1−ρ)ω(t) exists and finite

}
,

equipped with the norm ‖·‖Ω, where ‖ω‖Ω = sup
t∈J ′

{
t(1−ε)(1−ρ)‖ω(t)‖

}
. Thus Ω forms a

Banach space. Additionally, the following statements are accurate

1. For ρ = 1 we get that Ω = C and ‖ω‖Ω = sup
t∈J ′
‖ω(t)‖.

2. Let for t ∈ J ′, ω(t) = t(ρ−1)(1−ε)$(t). Then ω ∈ Ω if and only if $ ∈ C , also

‖ω‖Ω = ‖$‖.

Let us assume, Br(J ) = {υ ∈ C : ‖υ‖ ≤ r} and BΩ
r (J ′) = {ω ∈ Ω : ‖ω‖Ω ≤ r}.

Thus both of them are closed, convex and bounded subsets of C and Ω respectively.

Lemma 6.2.1. The equivalent integral inclusion of the considered hybrid fractional dif-

ferential inclusion (6.1.1) is the following
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ω(t) ∈ F(t, ω(t))

[
ω0 + H(ω)

Γ(ρ(1− ε) + ε)
t(ε−1)(1−ρ) +

1

Γ(ε)

∫ t

0

(t− s)ε−1

{
A

(
ω(s)

F(s, ω(s))

)

+ G(s, ω(s))

}
ds

]
. (6.2.1)

Proof. The proof of the result can be found in [57].

To construct a mild solution of the system (6.1.1) we present the Wright function

Mε(φ) and defined as

Mε(φ) =
∞∑
η=1

(−φ)η−1

(η − 1)!Γ(1− εη)
, 0 < ε < 1, φ ∈ C,

which satisfies ∫ ∞
0

φγMε(φ)dφ =
Γ(1 + γ)

Γ(1 + εγ)
, for φ ≥ 0.

Lemma 6.2.2. If the integral equation (6.2.1) satisfies and there exists a g ∈ L1(J ,X )

for all t ∈J , such that g(t) ∈ G(t, ω(t)), then we have

ω(t) = F(t, ω(t))
[
Sε,ρ(t)(ω0 + H(ω)) +

∫ t

0

Qε(t− s)g(s)ds
]
, t ∈J , (6.2.2)

where

Qε(t) = tε−1Pε(t), Pε(t) =

∫ ∞
0

εφMε(φ)T (tεφ)dφ, and Sε,ρ(t) = Iρ(1−ε)
0+ Qε(t).

Proof. The proof of the result can be found in [59].

In order to establish a few key remarks, we need the following assumption:

(A0) In the uniform operator topology, the family {T (t)}t≥0 is continuous for t ≥ 0 and

uniformly bounded. This implies the existence of a constant M > 1 such that

supt∈[0,∞)|T (t)| <M.

Remark 6.2.3. [59] Based on the presumption (A0), Pε(t) is continuous for t > 0 in

the uniform operator topology.

Remark 6.2.4. [59] Based on the presumption (A0), for any fixed t > 0, {Qε(t)}t>0

and {Sε,ρ(t)}t>0 are linear operators and for any given ω ∈ X ,

‖Qε(t)ω‖ ≤
Mtε−1

Γ(ε)
‖ω‖ and ‖Sε,ρ(t)ω‖ ≤

Mt(ρ−1)(1−ε)

Γ(ρ(1− ε) + ε)
‖ω‖.

Remark 6.2.5. [59] Based on the presumption (A0), {Qε(t)}t>0 and {Sε,ρ(t)}t>0 are

strongly continuous, i.e., for any ω ∈ X and 0 < ζ1 < ζ2 ≤ T we have

‖Qε(ζ1)ω −Qε(ζ2)ω‖ → 0 and ‖Sε,ρ(ζ1)ω − Sε,ρ(ζ2)ω‖ → 0, as ζ2 → ζ1.
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Lemma 6.2.6. [131] Assuming J to be a real interval that is compact, XBCC represents

the nonempty, bounded, closed and convex subset of X . For each fixed ω ∈ X , consider

the multivalued map G : J × X → XBCC is measurable to t, for each t ∈ J and

upper semi continuous with respect to ω. Additionally, the set SG,ω =
{
g ∈ L1(J ,X ) :

g(t) ∈ G(t, ω(t)), t ∈ J
}

for every ω ∈ C is nonempty. If ∆ : L1(J ,X ) → C is a

continuous and linear operator, then the operator

∆ ◦SG : C → CBCC , ω 7→ (∆ ◦SG)(ω) = ∆(SG,ω)

in C × C is a closed graph operator.

6.3 Existence Result

Definition 6.3.1. If, for all t ∈J there exists g ∈ L1(J ,X ) such that g(t) ∈ G(t, ω(t)),

then a function ω ∈ C̄ is a mild solution of the considered problem (6.1.1) that satisfies

ω(t) = F(t, ω(t))
[
Sε,ρ(t)(ω0 + H(ω)) +

∫ t

0

Qε(t− s)g(s)ds
]
, t ∈J ′. (6.3.1)

6.3.1 Hypotheses

We provide the following hypotheses before discussing and proving our main findings.

(A1) {T (t)}t>0 is the compact operator.

(A2) G : J ×X → XBCC , the multivalued map is such that it is measurable to t, for each

t ∈ J and exhibits upper semicontinuity with respect to ω. Define the selection

set corresponding to each ω ∈ C as

SG,ω =
{
g ∈ L1(J ,X ) : g(t) ∈ G(t, ω(t)), t ∈J

}
,

which is nonempty.

(A3) There exists a constant ε1 ∈ (0, ε) and Lg(·) belonging to the space L
1
ε1 (J ,R+)

such that

sup{‖g‖ : g(t) ∈ G(t, ω(t))} ≤ Lg(t)

for all ω(t) ∈ BΩ
r (J ′) and for almost all t ∈J also,

lim
t→0+

t(1−ε)(1−ρ)Iε0+Lg(t) = 0, for almost all t ∈J .

(A4) For bounded functions ϕ and % ∈ C with the bounds ‖ϕ‖ and ‖%‖ respectively,

the functions F : J ×X → X \ {0} and H : Ω→ X satisfy the following

‖F(t, ω1(t))− F(t, ω2(t))‖ ≤ ϕ(t)t(1−ε)(1−ρ)‖ω1(t)− ω2(t))‖
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for a.e. t ∈J , ω1, ω2 ∈ X and

‖H(ω)‖ ≤ %(t)

for a.e. t ∈J .

6.3.2 Main Result

Theorem 6.3.2. Suppose that the hypotheses (A1)-(A4) are valid. Then there exists a

mild solution for the hybrid system (6.1.1) on J provided that

R >
F0P

1−P‖ϕ‖
, (6.3.2)

where P =
M

Γ(ρ(1− ε) + ε)
(‖ω0‖+‖%‖)+

MT (1−ρ)(1−ε)

Γ(ε)

(
1− ε1
ε− ε1

)1−ε1
T ε−ε1‖Lg‖

L
1
ε1

, F0 =

‖F(t, 0)‖, and P‖ϕ‖ < 1.

Proof. Let us define an operator Ξ : C → 2C as Ξω, which is the set of Θ ∈ C such that

Θ(t) = F(t, ω(t))

[
Sε,ρ(t)(ω0 + H(ω)) +

∫ t

0

Qε(t− s)g(s)ds

]
for all t ∈J ′ and g ∈ SG,ω.

Now let us define an operator Λ for any $ ∈ C and assume that ω(t) = t(ρ−1)(1−ε)$(t)

as follows

(Λ$)(t) =


t(1−ρ)(1−ε)Θ(t), t ∈ (0,T ],

F0(ω0 + H(ω))

Γ(ρ(1− ε) + ε)
, t = 0,

(6.3.3)

where F0 = F(0, ω(0)). This means that ω is a mild solution of (6.1.1) in Ω if and only

if there exists a solution $ ∈ C for the operator equation $ = Λ$.

In order to show the fixed point of Λ, we consider two operators Λ1,Λ2 : Br(J ) →
Br(J ) as follows:

(Λ1$)(t) =

F(t, ω(t)), t ∈ (0,T ],

F0, t = 0,

(6.3.4)

(Λ2$)(t) =


t(1−ρ)(1−ε)[Sε,ρ(t)(ω0 + H(ω)) +

∫ t
0
Qε(t− s)g(s)ds

]
, t ∈ (0,T ],

ω0 + H(ω)

Γ(ρ(1− ε) + ε)
, t = 0.

(6.3.5)

Therefore,

(Λ$)(t) = (Λ1$)(t)× (Λ2$)(t) for t ∈J .
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Now we have to establish that both the operators Λ1 and Λ2 meet all requirements of

Theorem 1.6.22.

Step I: To prove that on Br(J ), Λ1 is Lipschitz.

Assume that $1, $2 ∈ Br(J ) and ωι(t) = t(ρ−1)(1−ε)$ι(t), t ∈ J ′ for ι = 1, 2.

Hence ωι ∈ BΩ
r (J ′) for ι = 1, 2. Now

‖Λ1$1(t)− Λ1$2(t)‖ = ‖F(t, ω1(t))− F(t, ω2(t))‖

≤ ϕ(t)t(1−ρ)(1−ε)‖ω1(t)− ω2(t)‖

= ϕ(t)‖$1(t)−$2(t)‖.

By considering the supremum over t, we obtain

‖Λ1$1 − Λ2$2‖ ≤ ‖ϕ‖‖$1 −$2‖.

This shows that Λ1 is Lipschitz on Br(J ) with a Lipschitz constant ‖ϕ‖.
Step II: We have to show on Br(J ), Λ2 is compact and upper semi-continuous.

Claim A: Assume that $ ∈ Br(J ), for t ∈ J ′, ω(t) = t(ρ−1)(1−ε)$(t). Therefore,

ω ∈ BΩ
r (J ′). For all $ ∈ Br(J ) to show that Λ2$ is convex.

Let λ1, λ2 ∈ {Λ2$(t)} and for t ∈J there exist g1, g2 ∈ SG,ω such that

λι(t) = t(1−ρ)(1−ε)
[
Sε,ρ(t)(ω0 + H(ω)) +

∫ t

0

Qε(t− s)gι(s)ds
]
, ι = 1, 2.

For any δ ∈ [0, 1] and t ∈J we have

δλ1(t) + (1− δ)λ2(t) =t(1−ρ)(1−ε)
[
Sε,ρ(t)(ω0 + H(ω))

+

∫ t

0

Qε(t− s)
{
δg1(s) + (1− δ)g2(s)

}
ds
]
.

As G is convex, thus for each t ∈J , δλ1(t) + (1− δ)λ2(t) ∈ G(t, ω(t)). Therefore,

δλ1(t) + (1− δ)λ2(t) ∈ SG,ω.

Hence δλ1(t) + (1− δ)λ2(t) ∈ {Λ2$(t)} which implies that Λ2 is convex.

Claim B: To establish that Λ2 maps bounded sets into bounded sets in Br(J ).

For $ ∈ Br(J ), assume ω(t) = t(ρ−1)(1−ε)$(t), t ∈ J ′. Hence, ω ∈ BΩ
r (J ′).

Consequently we have the following: for t ∈J

‖Λ2$(t)‖ =
∥∥∥t(1−ρ)(1−ε)[Sε,ρ(t)(ω0 + H(ω)) +

∫ t

0

Qε(t− s)g(s)ds
]∥∥∥

≤t(1−ρ)(1−ε)
[
Mt(ρ−1)(1−ε)

Γ(ρ(1− ε) + ε)
(‖ω0‖+ ‖%‖) +

M
Γ(ε)

∫ t

0

(t− s)ε−1g(s)ds

]
≤ M

Γ(ρ(1− ε) + ε)
(‖ω0‖+ ‖%‖)
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+
MT (1−ρ)(1−ε)

Γ(ε)

[(∫ t

0

(t− s)
ε−1
1−ε1 ds

)1−ε1(∫ t

0

|g(s)|
1
ε1 ds

)ε1]

≤ M
Γ(ρ(1− ε) + ε)

(‖ω0‖+ ‖%‖) +
MT (1−ρ)(1−ε)

Γ(ε)

(
1− ε1
ε− ε1

)1−ε1
T ε−ε1‖Lg‖

L
1
ε1
.

Therefore it is bounded.

Claim C: Next, we need to demonstrate that Λ2 maps bounded sets into equicontinuous

sets of Br(J ). For $ ∈ Br(J ), define ω(t) = t(ρ−1)(1−ε)$(t), where t ∈ J ′. For any

ζ1, ζ2 ∈J ′ with ζ1 < ζ2 and ω ∈ BΩ
r (J ′). For g ∈ SG,ω we have

‖Λ2$(ζ2)− Λ2$(ζ1)‖ =

∥∥∥∥ζ(1−ρ)(1−ε)
2

[
Sε,ρ(ζ2)(ω0 + H(ω)) +

∫ ζ2

0

Qε(ζ2 − s)g(s)ds
]

− ζ(1−ρ)(1−ε)
1

[
Sε,ρ(ζ1)(ω0 + H(ω)) +

∫ ζ1

0

Qε(ζ1 − s)g(s)ds
]∥∥∥∥

≤
∥∥∥ζ(1−ρ)(1−ε)

2 Sε,ρ(ζ2)(ω0 + H(ω))− ζ(1−ρ)(1−ε)
1 Sε,ρ(ζ1)(ω0 + H(ω))

∥∥∥
+ ζ

(1−ρ)(1−ε)
2

∥∥∥∥∫ ζ2

ζ1

(ζ2 − s)ε−1Pε(ζ2 − s)g(s)ds

∥∥∥∥
+

∥∥∥∥∫ ζ1

0

[
ζ

(1−ρ)(1−ε)
2 (ζ2 − s)ε−1 − ζ(1−ρ)(1−ε)

1 (ζ1 − s)ε−1
]

× Pε(ζ2 − s)g(s)ds

∥∥∥∥+ ζ
(1−ρ)(1−ε)
1

∥∥∥∥∫ ζ1

0

(ζ1 − s)ε−1
[
Pε(ζ2 − s)

− Pε(ζ1 − s)
]
g(s)ds

∥∥∥∥
=

4∑
ι=1

Iι.

Here,

I1 =
∥∥∥ζ(1−ρ)(1−ε)

2 Sε,ρ(ζ2)(ω0 + H(ω))− ζ(1−ρ)(1−ε)
1 Sε,ρ(ζ1)(ω0 + H(ω))

∥∥∥
≤ M

Γ(ρ(1− ε))Γ(ε)

[
ζ

(1−ρ)(1−ε)
2

∥∥∥∫ ζ2

ζ1

(ζ2 − s)ρ(1−ε)−1sε−1(ω0 + H(ω))ds
∥∥∥

+ζ
(1−ρ)(1−ε)
2

∥∥∥∫ ζ1

0

{
(ζ2 − s)ρ(1−ε)−1 − (ζ1 − s)ρ(1−ε)−1

}
sε−1(ω0 + H(ω))ds

∥∥∥
+
(
ζ

(1−ρ)(1−ε)
2 − ζ(1−ρ)(1−ε)

1

)∥∥∥∫ ζ1

0

(ζ1 − s)ρ(1−ε)−1sε−1(ω0 + H(ω))ds
∥∥∥]

=
M

Γ(ρ(1− ε))Γ(ε)
×

3∑
ι=1

I1ι,

where

I11 =ζ
(1−ρ)(1−ε)
2

∥∥∥∫ ζ2

ζ1

(ζ2 − s)ρ(1−ε)−1sε−1(ω0 + H(ω))ds
∥∥∥
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≤T (1−ρ)(1−ε)ζε−1
1

ρ(1− ε)
(|ω0|+ ‖%‖)(ζ2 − ζ1)ρ(1−ε)

→ 0 as ζ2 → ζ1.

I12 =ζ
(1−ρ)(1−ε)
2

∥∥∥∫ ζ1

0

{
(ζ2 − s)ρ(1−ε)−1 − (ζ1 − s)ρ(1−ε)−1

}
sε−1(ω0 + H(ω))ds

∥∥∥
≤T (1−ρ)(1−ε)(|ω0|+ ‖%‖)

∥∥∥∫ ζ1

0

{
(ζ2 − s)ρ(1−ε)−1 − (ζ1 − s)ρ(1−ε)−1

}
sε−1ds

∥∥∥.
As, ∥∥∥∫ ζ1

0

{
(ζ2 − s)ρ(1−ε)−1 − (ζ1 − s)ρ(1−ε)−1

}
sε−1ds

∥∥∥ ≤ 2

∫ ζ1

0

(ζ1 − s)ρ(1−ε)−1sε−1ds

exists, then by applying Lebesgue’s dominated convergence theorem we obtain that∥∥∥∫ ζ1

0

{
(ζ2 − s)ρ(1−ε)−1 − (ζ1 − s)ρ(1−ε)−1

}
sε−1ds

∥∥∥→ 0 as ζ2 → ζ1.

And

I13 =
(
ζ

(1−ρ)(1−ε)
2 − ζ(1−ρ)(1−ε)

1

)∥∥∥∫ ζ1

0

(ζ1 − s)ρ(1−ε)−1sε−1(ω0 + H(ω))ds
∥∥∥.

As,

ζ
(1−ρ)(1−ε)
2 − ζ(1−ρ)(1−ε)

1 ≤ (ζ2 − ζ1)(1−ρ)(1−ε),

thus I13 → 0 whenever ζ2 → ζ1.

Combining all the results we get that I1 → 0 as ζ2 → ζ1.

Next

I2 =ζ
(1−ρ)(1−ε)
2

∥∥∥∥∫ ζ2

ζ1

(ζ2 − s)ε−1Pε(ζ2 − s)g(s)ds

∥∥∥∥
≤MT (1−ρ)(1−ε)

Γ(ε)

(
1− ε1
ε− ε1

)[(
ζ2 − ζ1

) ε−ε1
1−ε1

]1−ε1
‖Lg‖

L
1
ε1
→ 0 as ζ2 → ζ1.

I3 =

∥∥∥∥∫ ζ1

0

[
ζ

(1−ρ)(1−ε)
2 (ζ2 − s)ε−1 − ζ(1−ρ)(1−ε)

1 (ζ1 − s)ε−1
]
Pε(ζ2 − s)g(s)ds

∥∥∥∥
≤ M

Γ(ε)

[∥∥∥∥ ∫ ζ1

0

ζ
(1−ρ)(1−ε)
2

{
(ζ2 − s)ε−1 − (ζ1 − s)ε−1

}
g(s)ds

∥∥∥∥
+
(
ζ

(1−ρ)(1−ε)
2 − ζ(1−ρ)(1−ε)

1

)∥∥∥∥∫ ζ1

0

(ζ1 − s)ε−1g(s)ds

∥∥∥∥]
≤ M

Γ(ε)

[
T (1−ρ)(1−ε)

(∫ ζ1

0

∥∥∥(ζ2 − s)ε−1 − (ζ1 − s)ε−1
∥∥∥ 1

1−ε1 ds

)1−ε1(∫ ζ1

0

∥∥g(s)
∥∥ 1
ε1 ds

)ε1
+
(
ζ2 − ζ1

)(1−ρ)(1−ε)
∥∥∥∥∫ ζ1

0

(ζ1 − s)ε−1g(s)ds

∥∥∥∥]
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≤ M
Γ(ε)

[
T (1−ρ)(1−ε)

(
1− ε1
ε− ε1

)1−ε1{(
ζ2 − ζ1

) ε−ε1
1−ε1 −

(
ζ
ε−ε1
1−ε1
2 − ζ

ε−ε1
1−ε1
1

)}1−ε1
‖Lg‖ 1

ε1

+
(
ζ2 − ζ1

)(1−ρ)(1−ε)
∥∥∥∥∫ ζ1

0

(ζ1 − s)ε−1g(s)ds

∥∥∥∥]
→0 as ζ2 → ζ1.

And

I4 = ζ
(1−ρ)(1−ε)
1

∥∥∥∥∫ ζ1

0

(ζ1 − s)ε−1
[
Pε(ζ2 − s)− Pε(ζ1 − s)

]
g(s)ds

∥∥∥∥.
From the continuity of Pε(t) in the uniform operator topology it can be easily shown

that I4 → 0 as ζ2 → ζ1.

Combining all the results we get that ‖Λ2$(ζ2)− Λ2$(ζ1)‖ → 0 as ζ2 → ζ1 indepen-

dent of $. Since t(1−ρ)(1−ε)Sε,ρ is uniformly continuous on J , thus Λ2 is equicontinuous

on Br(J ).

Claim D: To proof that Λ maps Br(J ) into itself. Assume that $ ∈ Br(J ), for

t ∈J ′, ω(t) = t(ρ−1)(1−ε)$(t). Hence, ω ∈ BΩ
r (J ′). For t ∈J we have that

‖Λ$(t)‖ ≤t(1−ρ)(1−ε)F(t, ω(t))
[
Sε,ρ(t)(ω0 + H(ω)) +

∫ t

0

Qε(t− s)g(s)ds
]

≤
[
‖F(t, ω(t))− F(t, 0)‖+ ‖F(t, 0)‖

]
×
[

M
Γ(ρ(1− ε) + ε)

(‖ω0‖+ ‖%‖) +
MT (1−ρ)(1−ε)

Γ(ε)

(
1− ε1
ε− ε1

)1−ε1
T ε−ε1‖Lg‖

L
1
ε1

]
≤
[
‖ϕ‖‖$‖+ F0

]
P

≤
[
‖ϕ‖r + F0

]
P

≤r.

Hence ‖Λ$‖ ≤ r for any $ ∈ Br(J ).

Claim E: To establish that Λ2 is completely continuous. For that we assume$ ∈ Br(J ),

for any t ∈J ′, let ω(t) = t(ρ−1)(1−ε)$(t). Therefore, ω ∈ BΩ
r (J ′).

Now, define V(t) = {Λ2$(t) : $ ∈ Br(J )}. This set is relatively compact in X for

any t ∈J . It is clear that V(0) is relatively compact in X . Let t ∈J ′ be fixed. As we

already have

Λ2$(t) =t(1−ρ)(1−ε)
[
Sε,ρ(t)(ω0 + H(ω)) +

∫ t

0

Qε(t− s)g(s)ds
]

=t(1−ρ)(1−ε)
[

1

Γ
(
ρ(1− ε)

) ∫ t

0

(t− s)ρ(1−ε)−1sε−1

∫ ∞
0

εφMε(φ)T (sεφ)

×(ω0 + H(ω))dφds+

∫ t

0

(t− s)ε−1

∫ ∞
0

εφMε(φ)T
(
(t− s)εφ

)
g(s)dφds

]
,

then for all µ ∈ (0, t) and for all η > 0, define

Λµ,η
2 $(t) = t(1−ρ)(1−ε)

[
1

Γ
(
ρ(1− ε)

) ∫ t−µ

0

(t− s)ρ(1−ε)−1sε−1

∫ ∞
η

εφMε(φ)T (sεφ)
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× (ω0 + H(ω))dφds+

∫ t−µ

0

(t− s)ε−1

∫ ∞
η

εφMε(φ)T
(
(t− s)εφ

)
g(s)dφds

]
= t(1−ρ)(1−ε)

[
1

Γ
(
ρ(1− ε)

) ∫ t−µ

0

(t− s)ρ(1−ε)−1sε−1

∫ ∞
η

εφMε(φ)T (sεφ)

× (ω0 + H(ω))dφds+ T (µεφ)

∫ t−µ

0

∫ ∞
η

εφ(t− s)ε−1Mε(φ)T
(
(t− s)εφ− µεφ

)
× g(s)dφds

]
.

Given that T (µεφ) is compact for µε > 0, it follows that the set Vµ,η(t) = {Λµ,η
2 $(t) :

$ ∈ Br(J )} is relatively compact in X for every µ ∈ (0, t) and η > 0. From this

observation, we can deduce

‖Λ2$(t)− Λµ,η
2 $(t)‖

≤
∥∥∥∥t(1−ρ)(1−ε)

[
1

Γ
(
ρ(1− ε)

) ∫ t

0

(t− s)ρ(1−ε)−1sε−1

∫ η

0

εφMε(φ)T (sεφ)

×(ω0 + H(ω))dφds

]∥∥∥∥+

∥∥∥∥t(1−ρ)(1−ε)
[

1

Γ
(
ρ(1− ε)

) ∫ t

t−µ
(t− s)ρ(1−ε)−1sε−1

×
∫ ∞
η

εφMε(φ)T (sεφ)(ω0 + H(ω))dφds

]∥∥∥∥+

∥∥∥∥t(1−ρ)(1−ε)
[ ∫ t

0

∫ η

0

εφ(t− s)ε−1Mε(φ)

×T
(
(t− s)εφ

)
g(s)dφds

]∥∥∥∥+

∥∥∥∥t(1−ρ)(1−ε)
[ ∫ t

t−µ

∫ ∞
η

εφ(t− s)ε−1Mε(φ)T
(
(t− s)εφ

)
g(s)dφds

]∥∥∥∥
≤ M

Γ(ρ(1− ε))
B
(
ρ(1− ε), ε

)(
‖ω0‖+ ‖%‖

) ∫ η

0

εφMε(φ)dφ

+
Mε

Γ(ρ(1− ε))Γ(1 + ε)

(
‖ω0‖+ ‖%‖

)
T (1−ρ)(1−ε)

∫ t

t−µ
(t− s)ρ(1−ε)−1sε−1ds

+MT (1−ρ)(1−ε)
∫ t

0

∫ η

0

εφ(t− s)ε−1Mε(φ)Lg(s)dφds

+MT (1−ρ)(1−ε) ε

Γ(1 + ε)

∫ t

t−µ
(t− s)ε−1Lg(s)ds.

By using the absolute continuity of the Lebesgue integral, we can determine that the

RHS of the above inequality tends to 0 as µ, η → 0. Therefore, Vµ,η(t) are arbitrarily

close to the set V(t). From Arzelá-Ascoli theorem we can conclude that V(t) is relatively

compact. Thus, Λ2 is a completely continuous operator obtained from the continuity of

Λ2 (with the help of [59]) and the relatively compactness of V(t).

Claim F: To show that Λ2 is closed graph.

Let ωn → ω∗ as n → ∞, Λ2,n ∈ Ξ(ωn) and Λ2,n → Λ2,∗ as n → ∞. We need to show

that Λ2,∗ ∈ Ξ(ω∗). As Λ2,n ∈ Ξ(ωn), then there exists a function gn ∈ SG,ωn such that

Λ2,n$(t) = t(1−ρ)(1−ε)[Sε,ρ(t)(ω0 + H(ωn)) +

∫ t

0

Qε(t− s)gn(s)ds
]
.
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Now we have to prove that there exists a g∗ ∈ SG,ω∗ such that

Λ2,∗$(t) = t(1−ρ)(1−ε)[Sε,ρ(t)(ω0 + H(ω∗)) +

∫ t

0

Qε(t− s)g∗(s)ds
]
.

Clearly∥∥∥{Λ2,n$(t)−t(1−ρ)(1−ε)[Sε,ρ(t)(ω0 + H(ωn))
]}

−
{

Λ2,∗$(t)− t(1−ρ)(1−ε)[Sε,ρ(t)(ω0 + H(ω∗))
]}∥∥∥→ 0 as n→∞.

Next we define a operator ∆ : L1(J ,X )→ C as

∆g(t) =

∫ t

0

Qε(t− s)g(s)ds.

Thus from Lemma 6.2.6 we get that ∆◦SG is a closed graph operator. Hence, by referring

to ∆ we have

Λ2,n$(t)− t(1−ρ)(1−ε)[Sε,ρ(t)(ω0 + H(ωn))
]
∈ ∆(SG,ωn).

Since ωn → ω∗, gn → g∗ as n→∞, follows from Lemma 6.2.6 we get that

Λ2,∗$(t)− t(1−ρ)(1−ε)[Sε,ρ(t)(ω0 + H(ω∗))
]
∈ ∆(SG,ω∗).

Therefore Λ2 is closed graph.

Hence the proof of Step II is completed.

Step III: Assume that $ ∈ Br(J ), for t ∈ J ′, ω(t) = t(ρ−1)(1−ε)$(t). Hence,

ω ∈ BΩ
r (J ′).

We have to show that αΥ < 1 i.e., (iii) of Theorem 1.6.22.

Clearly this comes from (6.3.2). As we have

Υ = ‖Λ2(Br(J ))‖ = sup{‖Λ2$‖ : $ ∈ Br(J )}

≤ M
Γ(ρ(1− ε) + ε)

(‖ω0‖+ ‖%‖) +
MT (1−ρ)(1−ε)

Γ(ε)

(
1− ε1
ε− ε1

)1−ε1
T ε−ε1‖Lg‖

L
1
ε1

and α = ‖ϕ‖.
Thus all the conditions of Theorem 1.6.22 are satisfisfied. Therefore either (a) or (b)

is possible.

Step IV: Next we have to show that (b) of 1.6.22 is not true.

Let χ̄(t) ∈ Br(J ) is arbitrary. Assume that χ(t) = t(ρ−1)(1−ε)χ̄(t), t ∈ J ′, hence

χ ∈ BΩ
r (J ′). Also σχ̄ ∈ Λ1χ̄(t)× Λ2χ̄(t). There exists g ∈ SG,χ and for σ > 1 we have

χ̄(t) ≤σ−1

[
t(1−ρ)(1−ε)F(t, χ(t))

{
Sε,ρ(t)(ω0 + H(χ)) +

∫ t

0

Qε(t− s)g(s)ds
}]

≤
[
‖F(t, χ(t))− F(t, 0)‖+ ‖F(t, 0)‖

]
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×
[

M
Γ(ρ(1− ε) + ε)

(‖ω0‖+ ‖%‖) +
MT (1−ρ)(1−ε)

Γ(ε)

(
1− ε1
ε− ε1

)1−ε1
T ε−ε1‖Lg‖

L
1
ε1

]
=⇒ χ̄(t) ≤

[
‖ϕ‖‖χ̄‖+ F0

]
P

=⇒ ‖χ̄‖ ≤ F0P

1−P‖ϕ‖
≤ R,

where we consider F0 = supt∈J ‖F(t, 0)‖. Thus condition (b) of Theorem 1.6.22 does not

hold by 6.3.2. Therefore the operator equation Λ$ = Λ1$×Λ2$ has a fixed point $ in

Br(J ). Thus the considered problem (6.1.1) has a mild solution.

6.4 Controllability Result

In this section we study the exact controllability of the following hybrid fractional differ-

ential inclusion

0Dε,ρt

(
ω(t)

F(t, ω(t))

)
∈ A

(
ω(t)

F(t, ω(t))

)
+ G(t, ω(t)) + Bz(t), t ∈ (0,T ] = J ′,

I(1−ε)(1−ρ)

(
ω(0)

F(0, ω(0))

)
− H(ω) = ω0.

(6.4.1)

In this problem, the operators A, F, G, and H are defined as in the previous problem.

Let z(·) be the control function, which belongs to L2(J ,Z), where Z is a Banach space.

The operator B : Z → X is assumed to be bounded and linear. In this section, we do

not assume the compactness of the semigroup operator {T (t)}t>0.

Definition 6.4.1. A function ω ∈ C̄ is termed as a mild solution of the equation (6.4.1)

if, for each t ∈ J , there exists a function g ∈ L1(J ,X ) such that g(t) ∈ G(t, ω(t)).

Moreover, ω ∈ C̄ must satisfy the following integral equation

ω(t) = F(t, ω(t))
[
Sε,ρ(t)(ω0+H(ω))+

∫ t

0

Qε(t−s)g(s)ds+

∫ t

0

Qε(t−s)Bz(s)ds
]
, t ∈J ′.

(6.4.2)

Definition 6.4.2. The system (6.4.1) is said to be controllable on J = [0,T ] if, for

every ω0, ω1 ∈ X , there exist a control z ∈ L2(J ,Z) such that the mild solution ω(t) of

the system (6.4.1) satisfies I(1−ε)(1−ρ)
(

ω(0)
F(0,ω(0))

)
− H(ω) = ω0 and ω(T ) = ω1.

Besides the hypotheses (A2)-(A4), also we need the following hypotheses to prove our

result:

(A5) g : J → X is compact.
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(A6) The operator B : L2(J ,Z) → L1(J ,X ) is both linear and bounded. Moreover,

the operator Y : L2(J ,Z)→ X is linear and defined by the expression

Yz =

∫ T

0

Qε(T − s)Bz(s) ds.

This operator Y has an inverse Y−1, that maps to L2(J ,Z)/ker(Y), and there

exists a constant LY > 0 such that

‖Y−1‖L2 ≤ LY .

For each ω1 ∈ X, by using hypothesis (A6) we define the control as

zω(t) = Y−1

[
ω1

F(T , ω1)
− Sε,ρ(t)(ω0 + H(ω))−

∫ T

0

Qε(T − s)g(s)ds

]
(t), (6.4.3)

where g ∈ SG,ω, ω ∈ C̄ .

Theorem 6.4.3. Suppose that the assumptions (A2)-(A6) hold. Then the system (6.4.1)

is controllable on J provided that

R̃ >
F0P̃

1− P̃‖ϕ‖
, (6.4.4)

where P̃ =
M

Γ(ρ(1− ε) + ε)
(‖ω0‖ + ‖%‖) +

MT (1−ρ)(1−ε)

Γ(ε)

(
1− ε1
ε− ε1

)1−ε1
T ε−ε1‖Lg‖

L
1
ε1

+

MT ε(1−ρ)(1−ε)

Γ(ε+ 1)
‖B‖Lz, F0 = ‖F(t, 0)‖, and P̃‖ϕ‖ < 1.

Proof. Using control let us define an operator Ξ̃ : C → 2C as Ξ̃ω, which is the set of

Θ̃ ∈ C such that

Θ̃(t) = F(t, ω(t))

[
Sε,ρ(t)(ω0 + H(ω)) +

∫ t

0

Qε(t− s)g(s)ds+

∫ t

0

Qε(t− s)Bzω(s)ds

]
for all t ∈J ′ and g ∈ SG,ω.

Like the previous problem now let us define an operator Λ̃ for any $ ∈ C and assume

that ω(t) = t(ρ−1)(1−ε)$(t) as follows

(Λ̃$)(t) =


t(1−ρ)(1−ε)Θ̃(t), t ∈ (0,T ],

F0(ω0 + H(ω))

Γ(ρ(1− ε) + ε)
, t = 0.

(6.4.5)

This implies that ω is a mild solution of (6.1.1) in Ω if and only if the operator equation

$ = Λ$ has a solution $ ∈ C . Moreover, if ω is a mild solution of (6.1.1) with the

control given by (6.4.3), then ω(T ) = ω1.

95



Chapter 6. Existence and Exact Controllability of a Hybrid Evolution Inclusion

To show that the operator Λ̃ has a fixed point, similarly we consider two operators

Λ̃1, Λ̃2 : Br(J )→ Br(J ) such that Λ̃1 is same as (6.3.4) and Λ̃2 is as follows:

(Λ̃2$)(t) =


t(1−ρ)(1−ε)[Sε,ρ(t)(ω0 + H(ω)) +

∫ t
0
Qε(t− s)g(s)ds

+
∫ t

0
Qε(t− s)Bzω(s)ds

]
, t ∈ (0,T ],

ω0 + H(ω)

Γ(ρ(1− ε) + ε)
, t = 0.

(6.4.6)

Therefore,

(Λ̃$)(t) = (Λ̃1$)(t)× (Λ̃2$)(t) for t ∈J .

Now we have to establish that both the operators Λ1 and Λ2 meet all the requirements

of Theorem 1.6.22.

Note that

‖zω(t)‖ ≤ LY

[∥∥∥∥ ω1

F(T , ω1)

∥∥∥∥+
MT (ρ−1)(1−ε)

Γ(ρ(1− ε) + ε)

(
‖ω0‖+ ‖%‖

)
+
M

Γ(ε)

(
1− ε1
ε− ε1

)1−ε1
T ε−ε1‖Lg‖

L
1
ε1

]
= Lz.

We can proceed Step I and Claim A - Claim C of Step II like the previous way. Now

Claim D: To proof that Λ̃ maps Br(J ) into itself. Assume that $ ∈ Br(J ), for

t ∈J ′, ω(t) = t(ρ−1)(1−ε)$(t). Thus, ω ∈ BΩ
r (J ′). For t ∈J we have that

‖Λ̃$(t)‖ ≤ t(1−ρ)(1−ε)F(t, ω(t))
[
Sε,ρ(t)(ω0 + H(ω)) +

∫ t

0

Qε(t− s)g(s)ds

+

∫ t

0

Qε(t− s)Bzω(s)ds
]

≤
[
‖F(t, ω(t))− F(t, 0)‖+ ‖F(t, 0)‖

]
×
[

M
Γ(ρ(1− ε) + ε)

(‖ω0‖+ ‖%‖) +
MT (1−ρ)(1−ε)

Γ(ε)

(
1− ε1
ε− ε1

)1−ε1
T ε−ε1‖Lg‖

L
1
ε1

+
MT ε(1−ρ)(1−ε)

Γ(ε+ 1)
‖B‖Lz

]
≤
[
‖ϕ‖r + F0

]
P̃

≤ r.

Hence ‖Λ̃$‖ ≤ r for any $ ∈ Br(J ).

Claim E: To establish that the operator Λ̃2 is completely continuous, we start by assum-

ing that $ ∈ Br(J ). For t ∈J ′, let ω(t) = t(ρ−1)(1−ε)$(t). Consequently, ω belongs to

BΩ
r (J ′).
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We then analyse the set Ṽ(t) = {Λ̃2$(t) : $ ∈ Br(J )}. It is clear that Ṽ(0) is

relatively compact in X . For any fixed t ∈J ′, we need to demonstrate that Ṽ(t) is also

relatively compact in X .

By applying assumption (A5) and Remark 6.2.5, we can infer that the set

S =
{
t(1−ρ)(1−ε)Qε(t− s)g(s) : t ∈J ′, s ∈ [0, t]

}
is relatively compact in X . Consequently,

S ′ =

{
t(1−ρ)(1−ε)

∫ t

0

Qε(t− s)g(s) ds

}
⊂ tCH(S )

is also relatively compact in X , where CH(S ) denotes the closure of the convex hull of

S in X .

Furthermore, by assumption (A6), we have that

S ′′ =

{
zω = Y−1

[
ω1

F(T , ω1)
− Sε,ρ(t)(ω0 + H(ω))−

∫ t

0

Qε(t− s)g(s) ds

]
: ω ∈ BΩ

r

}
is relatively compact in L2(J ,Z). Since B : L2(J ,Z) → L1(J ,X ) is a bounded

operator, the set BS ′′ is relatively compact in L1(J ,X ). Thus, the set

S ′′′ =

{
t(1−ρ)(1−ε)

∫ t

0

Qε(t− s)Bu(s) ds : u ∈ S ′′
}

is relatively compact in X , as the mapping

U → t(1−ρ)(1−ε)
∫ t

0

Qε(t− s)U (s) ds

is continuous from L1(J ,X ) to X .

Combining these results, we obtain that

Ṽ(t) ⊂ t(1−ρ)(1−ε) [Sε,ρ(t)(ω0 + H(ω))] + S ′ + S ′′′

is relatively compact in X for t ∈ J ′. Therefore, Λ̃2 is shown to be a completely

continuous operator due to its continuity and the relatively compact nature of Ṽ(t).

Claim F: To show that Λ̃2 is closed graph.

Let ωn → ω∗ as n → ∞, Λ̃2,n ∈ Ξ̃(ωn) and Λ̃2,n → Λ̃2,∗ as n → ∞. We need to show

that Λ̃2,∗ ∈ Ξ̃(ω∗). As Λ̃2,n ∈ Ξ̃(ωn), then there exists a function gn ∈ SG,ωn such that

Λ2,n$(t) =t(1−ρ)(1−ε)
[
Sε,ρ(t)(ω0 + H(ωn)) +

∫ t

0

Qε(t− s)gn(s)ds

+

∫ t

0

Qε(t− s)BY−1

{
ω1

F(T , ω1)
− Sε,ρ(t)(ω0 + H(ωn))

−
∫ T

0

Qε(T − τ)gn(τ)dτ

}
(s)ds

]
.
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Now we have to prove that there exists a g∗ ∈ SG,ω such that

Λ2,∗$(t) =t(1−ρ)(1−ε)
[
Sε,ρ(t)(ω0 + H(ω∗)) +

∫ t

0

Qε(t− s)g∗(s)ds

+

∫ t

0

Qε(t− s)BY−1

{
ω1

F(T , ω1)
− Sε,ρ(t)(ω0 + H(ω∗))

−
∫ T

0

Qε(T − τ)g∗(τ)dτ

}
(s)ds

]
.

Set

z̃ω(t) = Y−1

[
ω1

F(T , ω1)
− Sε,ρ(t)(ω0 + H(ω))

]
.

As Y−1 is continuous, then z̃ωn(t)→ z̃ω∗(t) as n→∞. Hence it is clear that∥∥∥∥[Λ2,n$(t)− t(1−ρ)(1−ε)
{
Sε,ρ(t)(ω0 + H(ωn))−

∫ t

0

Qε(t− s)Bz̃ωn(s)ds
}]

−
[
Λ2,∗$(t)− t(1−ρ)(1−ε)

{
Sε,ρ(t)(ω0 + H(ω∗))−

∫ t

0

Qε(t− s)Bz̃ω∗(s)ds
}]∥∥∥∥

→ 0 as n→∞.

Next we define a operator ∆̃ : L1(J ,X )→ C as

∆̃g(t) =

∫ t

0

Qε(t− s)
[
g(s)−BY−1

{∫ T

0

Qε(T − τ)g(τ)dτ

}
(s)

]
ds.

Thus from Lemma 6.2.6 we get that ∆ ◦ SG is a closed graph operator. Therefore by

referring to ∆ we have

Λ2,n$(t)− t(1−ρ)(1−ε)
[
Sε,ρ(t)(ω0 + H(ωn))−

∫ t

0

Qε(t− s)Bz̃ωn(s)ds

]
∈ ∆(SG,ωn).

Since ωn → ω∗, gn → g∗ as n→∞, follows from Lemma 6.2.6 we get that

Λ2,∗$(t)− t(1−ρ)(1−ε)
[
Sε,ρ(t)(ω0 + H(ω∗))−

∫ t

0

Qε(t− s)Bz̃ω∗(s)ds

]
∈ ∆(SG,ω∗).

Therefore Λ2 is closed graph.

Hence the proof of Step II is completed. Also Step III can be obtained from (6.4.4).

Step IV: Next we have to show that (b) of 1.6.22 is not true.

Let χ̄(t) ∈ Br(J ) is arbitrary. Assume that χ(t) = t(ρ−1)(1−ε)χ̄(t), t ∈ J ′. Hence,

χ ∈ BΩ
r (J ′). Also σχ̄ ∈ Λ1χ̄(t)× Λ2χ̄(t). There exists g ∈ SG,χ and for σ > 1 we have

χ̄(t) ≤σ−1

[
t(1−ρ)(1−ε)F(t, χ(t))

{
Sε,ρ(t)(ω0 + H(χ)) +

∫ t

0

Qε(t− s)g(s)ds

+

∫ t

0

Qε(t− s)Bzω(s)ds

}]
=⇒ χ̄(t) ≤

[
‖ϕ‖‖χ̄‖+ F0

]
P̃
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=⇒ ‖χ̄‖ ≤ F0P̃

1− P̃‖ϕ‖
≤ R̃,

where we consider F0 = supt∈J ‖F(t, 0)‖. Thus condition (b) of Theorem 1.6.22 does not

hold by 6.4.4. Therefore the operator equation Λ̃$ = Λ̃1$× Λ̃2$ has a fixed point $ in

Br(J ). Thus the system (6.4.1) is controllable.

6.5 Example

As an application we provide the following example

0D
2
3
, 3
4

t

(
η(τ, z)

1
20π

(
tan−1 η(τ, z) + π

2

)) ∈ ∆

(
η(τ, z)

1
20π

(
tan−1 η(τ, z)) + π

2

))+ G(τ, η(τ, z)),

τ ∈ (0, 1], z ∈ [0, π],

I(1− 2
3

)(1− 3
4

)

(
η(0, z)

F(0, η(0, z))

)
− 4

∫ 1

0

sin
(
η(s, z)

)
ds =

1

15
, z ∈ [0, π],

η(τ, 0) = η(τ, π) = 0, τ ∈ (0, 1).

(6.5.1)

A : D(A) ⊂ X → X is defined by A = ∆ with domain D(A) =
{
η ∈ H2(0, π) :

η(0) = η(π) = 0
}

and the semigroup T (t) generated by A = ∆ is contractive, i.e

‖T (t)‖ ≤ 1, ∀ t ≥ 0. The multivalued map G is defined as

(τ, z) 7→ G(τ, η(τ, z)) =

[
1

30

(
2 tanh η(τ, z) + 1

)
,

| cos η(τ, z)|
20
(
| sin η(τ, z)|+ 1

) +
1

30

]
.

Considered system (6.5.1) satisfies all the assumptions (A1)-(A4). Putting all the values

in (6.3.2) we get that P‖ϕ‖ = 0.063183 < 1.

Thus the system (6.5.1) has at least a mild solution by Theorem 1.6.22.
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