
CHAPTER 7

Results on a Hybrid Type of Multipoint BVP using

Topological Degree Theory

7.1 Introduction

The ψ-Caputo fractional derivative is a generalized form of the classical fractional deriva-

tive. It extends the concept of fractional calculus by incorporating a ψ-function, which

allows for greater flexibility and adaptability in modelling complex systems, particularly

in mathematical physics, engineering, and applied sciences. As fractional calculus grew in

popularity, researchers explored ways to generalize classical derivatives to address diverse

problems. The ψ-Caputo [6,14,17,27,34,40] derivative came as part of these generaliza-

tions, where the ψ-function plays a central role in redefining the differential operator.

To simplify the various definitions of fractional operators, one approach is to use

general operators with specific kernels to recover classical fractional derivatives and in-

tegrals. For example, choosing k(x, t) = x − t and the differential operator d
dx

yields

the Riemann-Liouville derivative, while k(x, t) = ln(x/t) and the differential operator

x d
dx

gives the Hadamard derivative. However, the arbitrary nature of the kernel restricts

the ability to derive fundamental properties. Almeida [13] suggested a more effective

approach by considering a special case where k(x, t) = ψ(x)−ψ(t) and the derivative op-

erator is 1
ψ′(x)

d
dx

, which generalizes both the Riemann-Liouville and Hadamard derivatives

by putting ψ(x) = x and ψ(x) = ln(x) respectively and present some key properties. Ad-

jimi et al. [6] studied a neutral hybrid nonlinear differential equation with the ψ-Caputo

operator, using noncompactness measures and Darbo’s criterion to extend existing re-

sults. Recently, Chabane et al. [34] studied a generalized impulsive ψ-Caputo differential

equation with a p−Laplacian operator, proving existence and uniqueness of solutions via

fixed point theorems.
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Boundary value problems play a pivotal role in advancing the theory and applications

of fractional differential equations and represent a key area of research in this field. While

extensive studies have focused on two-point boundary value problems for fractional ordi-

nary differential equations [33,86,113,123], multipoint boundary value problems provide

a broader framework. These involve boundary conditions specified at multiple points

within an interval, rather than only at its endpoints, thereby generalizing traditional

boundary value problems. Such problems arise in various physical and engineering ap-

plications where system behaviour is influenced by conditions at several locations rather

than just two.

Despite numerous significance of multipoint boundary value problem, study on these

types of problems for fractional differential equations remains relatively limited [8,23,66,

114,130]. To bridge this gap, further study is important to establish broader results, de-

velop efficient numerical methods, and investigate new applications in emerging scientific

and engineering fields.

In this work, we aim to study the following perturbed fractional differential equation

involving ψ−Caputo fractional derivative with multipoint boundary condition

0Dσ,ψm
[
ω(τ)− F(τ, ω(τ))

]
= G(τ, ω(τ)), τ ∈J = [m,n], (7.1.1)

ω(m) = 0, (7.1.2)

α
[
ω(τ)− F(τ, ω(τ))

]
τ=n

= β
[
ω(τ)− F(τ, ω(τ))

]
τ=ζ

. (7.1.3)

Here, 0Dσ,ψm stands for σ order ψ−Caputo fractional derivative with σ ∈ (1, 2]. Let

F,G ∈ C(J × R,R) also α, β ∈ R and ζ ∈ (m,n).

For many years, fixed point theory has been a fundamental tool in demonstrating the

existence of solutions to differential equations, as highlighted by the numerous studies

referenced in the literature above. One key development in this field was the application

of topological degree theory by Mawhin [92], who was among the first to use it to solve

integral equations, marking a notable progress in mathematical methods. Following this,

Isaia [67] further advanced the use of topological degree theory, applying it in a theoret-

ical framework to analyse various integral equations. This progression underscores the

growing significance of topological degree theory in addressing complex problems across

different areas of mathematics [16,20,56,117].

This paper is organized as follows: In Section 7.2, we derive the integral equation

corresponding to the considered problem, outline the necessary assumptions, and provide

the proof of the main result. In Section 7.3, we include an analytical example and

in Section 7.4, an example with numerical results is provided as an application of the

considered problem.
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7.2 Existence Result

Lemma 7.2.1. The considered problem (7.1.1)-(7.1.3) has a solution ω ∈ C(J ,R) of

the following integral form

ω(τ) = F(τ, ω(τ)) +
1

Γ(σ)

∫ τ

m

ψ′(s)
(
ψ(τ)− ψ(s)

)σ−1G(s, ω(s))ds− F(m, 0)

+
ψ(τ)− ψ(m)

Θ

[
(α− β)F(m, 0)− α

Γ(σ)

∫ n

m

ψ′(s)
(
ψ(n)− ψ(s)

)σ−1G(s, ω(s))ds

+
β

Γ(σ)

∫ ζ

m

ψ′(s)
(
ψ(ζ)− ψ(s)

)σ−1G(s, ω(s))ds

]
,

(7.2.1)

where

Θ = α
(
ψ(n)− ψ(m)

)
− β

(
ψ(ζ)− ψ(m)

)
6= 0. (7.2.2)

Proof.

ω(τ)− F(τ, ω(τ)) = Iσ,ψm+G(τ, ω(τ)) + C0 + C1

(
ψ(τ)− ψ(m)

)
, (7.2.3)

where C0 and C1 ∈ R.

Applying (7.1.2) we obtain that C0 = −Fm, where Fm = F(m, 0).

Again from the condition (7.1.3) we get that

α
[
Iσ,ψm+G(n, ω(n))− Fm + C1

(
ψ(n)− ψ(m)

)]
= β

[
Iσ,ψm+G(ζ, ω(ζ))− Fm + C1

(
ψ(ζ)− ψ(m)

)]
.

Then,

C1 =
1

Θ

[
(α− β)Fm − αIσ,ψm+G(n, ω(n)) + βIσ,ψm+G(ζ, ω(ζ))

]
,

where

Θ = α
(
ψ(n)− ψ(m)

)
− β

(
ψ(ζ)− ψ(m)

)
6= 0.

Substituting the values of C0 and C1 in (7.2.3) then we get the following integral solution

ω(τ) = F(τ, ω(τ)) + Iσ,ψm+G(τ, ω(τ))− Fm +
ψ(τ)− ψ(m)

Θ

[
(α− β)Fm

− αIσ,ψm+G(n, ω(n)) + βIσ,ψm+G(ζ, ω(ζ))
]
, τ ∈J .

7.2.1 Hypotheses

The following are the assumptions we consider in order to prove our main results.
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(H1) There exist constants Lf ,Lg > 0 such that τ ∈ J and for each ω,$ ∈ R, the

continuous functions F : J × R→ R and G : J × R→ R satisfy

|F(τ, ω)− F(τ,$)| ≤ Lf |ω −$|

and

|G(τ, ω)− G(τ,$)| ≤ Lg|ω −$|.

(H2) There exist constants Mf ,Mg,Nf ,Ng > 0 and µ, ν ∈ (0, 1) then the continuous

functions F : J × R → R and G : J × R → R satisfy the following growth

conditions

|F(τ, ω)| ≤Mf |ω|µ + Nf

and

|G(τ, ω)| ≤Mg|ω|ν + Ng.

7.2.2 Main Results

For the further calculations we consider that

φ =
|ψ(n)− ψ(m)|
|Θ|Γ(σ + 1)

[
α
{
ψ(n)− ψ(m)

}σ
+ β

{
ψ(ζ)− ψ(m)

}σ]
. (7.2.4)

Now, we define the operator Λ on C(J ,R) as

Λω(τ) = F(τ, ω(τ)) +
1

Γ(σ)

∫ τ

m

ψ′(s)
(
ψ(τ)− ψ(s)

)σ−1G(s, ω(s))ds− F(m, 0)

+
ψ(τ)− ψ(m)

Θ

[
(α− β)F(m, 0)− α

Γ(σ)

∫ n

m

ψ′(s)
(
ψ(n)− ψ(s)

)σ−1G(s, ω(s))ds

+
β

Γ(σ)

∫ ζ

m

ψ′(s)
(
ψ(ζ)− ψ(s)

)σ−1G(s, ω(s))ds

]
, τ ∈J .

(7.2.5)

We define two operators Λ1,Λ2 : C(J ,R)→ C(J ,R) as:

Λ1ω(τ) = F(τ, ω(τ)) +
1

Γ(σ)

∫ τ

m

ψ′(s)
(
ψ(τ)− ψ(s)

)σ−1G(s, ω(s))ds− F(m, 0), τ ∈J ,

and

Λ2ω(τ) =
ψ(τ)− ψ(m)

Θ

[
(α− β)F(m, 0)− α

Γ(σ)

∫ n

m

ψ′(s)
(
ψ(n)− ψ(s)

)σ−1G(s, ω(s))ds

+
β

Γ(σ)

∫ ζ

m

ψ′(s)
(
ψ(ζ)− ψ(s)

)σ−1G(s, ω(s))ds

]
, τ ∈J .

Then the operator equation (7.2.5) can be written as

Λω(τ) = Λ1ω(τ) + Λ2ω(τ), τ ∈J .

103



Chapter 7. Results on a Hybrid Type of Multipoint BVP using Topological Degree
Theory

Lemma 7.2.2. The operator Λ2 is Lipschitz with a Lipschitz constant Lgφ also satisfies

the following

‖Λ2ω‖ ≤
(
Mg‖ω‖ν + Ng

)
φ+
|ψ(τ)− ψ(m)|

|Θ|
|(α− β)F(m, 0)|.

Proof. To show that the operator Λ2 is Lipschitz. Let us consider ω,$ ∈ C(J ,R) and

for all τ ∈J we have

|Λ2ω(τ)− Λ2$(τ)| ≤ |ψ(τ)− ψ(m)|
|Θ|

×
[

α

Γ(σ)

∫ n

m

ψ′(s)
(
ψ(n)− ψ(s)

)σ−1∣∣G(s, ω(s))− G(s,$(s))
∣∣ds

+
β

Γ(σ)

∫ ζ

m

ψ′(s)
(
ψ(ζ)− ψ(s)

)σ−1∣∣G(s, ω(s))− G(s,$(s))
∣∣ds]

≤ Lg|ψ(τ)− ψ(m)|
|Θ|

[
α

Γ(σ)

∫ n

m

ψ′(s)
(
ψ(n)− ψ(s)

)σ−1‖ω −$‖ds

+
β

Γ(σ)

∫ ζ

m

ψ′(s)
(
ψ(ζ)− ψ(s)

)σ−1‖ω −$‖ds
]

≤ Lg‖ω −$‖|ψ(n)− ψ(m)|
|Θ|Γ(σ + 1)

[
α
{
ψ(n)− ψ(m)

}σ
+ β

{
ψ(ζ)− ψ(m)

}σ]
≤ Lgφ‖ω −$‖.

Taking supremum over τ we get that

‖Λ2ω − Λ2$‖ ≤ Lgφ‖ω −$‖.

Hence, Λ2 : C(J ,R)→ C(J ,R) is a Lipschitzian with a Lipschitz constant Lgφ.

By Proposition 1.6.15, Λ2 is M -Lipschitz with constant Lgφ.

Also

|Λ2ω(τ)| ≤ |ψ(τ)− ψ(m)|
|Θ|

[
|(α− β)F(m, 0)|+ α

Γ(σ)

∫ n

m

ψ′(s)
(
ψ(n)− ψ(s)

)σ−1∣∣G(s, ω(s))
∣∣ds

+
β

Γ(σ)

∫ ζ

m

ψ′(s)
(
ψ(ζ)− ψ(s)

)σ−1∣∣G(s, ω(s))
∣∣ds]

≤
(
Mg‖ω‖ν + Ng

)
|ψ(τ)− ψ(m)|

|Θ|

[
α

Γ(σ)

∫ n

m

ψ′(s)
(
ψ(n)− ψ(s)

)σ−1
ds

+
β

Γ(σ)

∫ ζ

m

ψ′(s)
(
ψ(ζ)− ψ(s)

)σ−1
ds

]
+
|ψ(τ)− ψ(m)|

|Θ|
|(α− β)F(m, 0)|

≤
(
Mg‖ω‖ν + Ng

)
|ψ(n)− ψ(m)|

|Θ|Γ(σ + 1)

[
α
{
ψ(n)− ψ(m)

}σ
+ β

{
ψ(ζ)− ψ(m)

}σ]
+
|ψ(τ)− ψ(m)|

|Θ|
|(α− β)F(m, 0)|

≤
(
Mg‖ω‖ν + Ng

)
φ+
|ψ(n)− ψ(m)|

|Θ|
|(α− β)F(m, 0)|.
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Taking supremum over τ we get that the operator Λ2 satisfies the following growth con-

dition

‖Λ2ω‖ ≤
(
Mg‖ω‖ν + Ng

)
φ+
|ψ(n)− ψ(m)|

|Θ|
|(α− β)F(m, 0)|. (7.2.6)

Lemma 7.2.3. Λ1 is continuous and satisfies the following growth condition

‖Λ1ω‖ ≤Mf‖ω‖µ + Nf + |F(m, 0)|+ (Mg‖ω‖ν + Ng)

Γ(σ + 1)

(
ψ(n)− ψ(m)

)σ
.

Proof. To prove that Λ1 is continuous, let us assume ωl, ω ∈ C(J ,R) such that lim
l→∞
‖ωl−

ω‖ → 0. Thus {ωl} is a bounded subset of C(J ,R). As a result we get that there

exists a constant r > 0 such that ‖ωl‖ ≤ r for all l ≥ 1. After taking limit we get

that ‖ω‖ ≤ r. Since F and G are continuous functions thus, F(τ, ωl(τ))→ F(τ, ω(τ)) and

G(s, ωl(s))→ G(s, ω(s)) as l→∞. Also by using (H2) we get that

1

Γ(σ)
ψ′(s)

(
ψ(τ)− ψ(s)

)σ−1‖G(s, ωl(s))− G(s, ω(s))‖

≤ 2

Γ(σ)
ψ′(s)

(
ψ(τ)− ψ(s)

)σ−1
(Mgr

ν + Ng).

Since the function s 7→ 2
Γ(σ)

ψ′(s)
(
ψ(τ)−ψ(s)

)σ−1
(Mgr

ν +Ng) is Lebesgue integrable over

[m, τ ]. Thus by using Lebesgue’s dominated convergence theorem together with this fact

we get that∫ τ

m

1

Γ(σ)
ψ′(s)

(
ψ(τ)− ψ(s)

)σ−1‖G(s, ωl(s))− G(s, ω(s))‖ → 0 as l→∞.

Thus, we get that ‖Λ1ωl −Λ1ω‖ → 0 as l→∞. It implies the continuity of the operator

Λ1.

For the second proof using the hypothesis (H2) we get

|Λ1ω(τ)| ≤Mf‖ω‖µ + Nf + |F(m, 0)|+ (Mg‖ω‖ν + Ng)

Γ(σ)

∫ τ

m

ψ′(s)
(
ψ(τ)− ψ(s)

)σ−1
ds

≤Mf‖ω‖µ + Nf + |F(m, 0)|+ (Mg‖ω‖ν + Ng)

Γ(σ + 1)

(
ψ(n)− ψ(m)

)σ
.

Thus after taking the supremum we get that

‖Λ1ω‖ ≤Mf‖ω‖µ + Nf + |F(m, 0)|+ (Mg‖ω‖ν + Ng)

Γ(σ + 1)

(
ψ(n)− ψ(m)

)σ
. (7.2.7)

Lemma 7.2.4. The operator Λ1 : C(J ,R)→ C(J ,R) is compact. Consequently, Λ1 is

M-Lipschitz with zero constant.
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Proof. To show that Λ1 is compact. Consider a bounded set A ⊂ Br. We have to show

that Λ1(A) is relatively compact in C(J ,R). For arbitrary ω ∈ A ⊂ Br, using (7.2.7) we

get the following

‖Λ1ω‖ ≤Mfr
µ + Nf + |F(m, 0)|+ (Mgr

ν + Ng)

Γ(σ + 1)

(
ψ(n)− ψ(m)

)σ
,

which shows that Λ1(A) is uniformly bounded.

Now, to prove the equi-continuity of Λ1 let us consider for any ω ∈ A and τ1, τ2 ∈J

such that τ1 < τ2 we get

|Λ1ω(τ2)− Λ1ω(τ2)| ≤ |F(τ2, ω(τ2))− F(τ1, ω(τ1))|

+
(Mgr

ν + Ng)

Γ(σ + 1)

[(
ψ(τ2)− ψ(m)

)σ − (ψ(τ1)− ψ(m)
)σ]

.

The RHS of the above inequality tends to 0 whenever τ2 → τ1 without depending on

ω ∈ A. Therefore, Λ1 is equi-continuous.

Since Λ1 is uniformly bounded and equi-continuous thus, from Arzelá-Ascoli theorem

we can say that it is a compact operator. Therefore by Proposition 1.6.14 Λ1 is M -

Lipschitz with zero constant.

Theorem 7.2.5. If the BVP (7.1.1)-(7.1.3) satisfies the assumptions (H1) and (H2)

then (7.1.1)-(7.1.3) has atleast one solution ω ∈ C(J ,R) provided that Lgφ < 1 and the

solution set is bounded in C(J ,R).

Proof. Let Λ1,Λ2,Λ : C(J ,R)→ C(J ,R) be the operators as we defined in the begin-

ning of this section. These are the continuous and bounded operators. From the Lemma

7.2.2 and Lemma 7.2.4 we get that Λ2 and Λ1 are M -Lipschitz with constants Lgφ and

0 respectively. Thus Λ is strict M -Lipschitz with constant Lgφ. As Lgφ < 1, hence Λ is

M -condensing.

Set Υ =
{
ω ∈ C(J ,R) : ∃ γ ∈ [0, 1] such that ω = γΛω

}
.

We have to show that Υ is bounded in C(J ,R). Consider, ω ∈ Υ and γ ∈ [0, 1] such

that ω = γΛω. From (7.2.6) and (7.2.7) we get that

‖ω‖ = ‖γΛω‖ ≤ γ
(
‖Λ1ω‖+ ‖Λ2ω‖

)
≤
(
Mg‖ω‖ν + Ng

)[
φ+

(
ψ(n)− ψ(m)

)σ
Γ(σ + 1)

]
+
|ψ(n)− ψ(m)|

|Θ|
|(α− β)F(m, 0)|

+ Mf‖ω‖µ + Nf + |F(m, 0)|,

where φ is same as (7.2.4). Thus we can conclude the boundedness of Υ from the above

inequality. If it is not bounded, then dividing the above inequality by considering ‖ω‖ =

P such that P→∞ implies that

1 ≤

[
φ+

(
ψ(n)− ψ(m)

)σ
Γ(σ + 1)

]
lim
P→∞

(
MgP

ν + Ng

)
P

+ lim
P→∞

|ψ(n)− ψ(m)|
P|Θ|

|(α− β)F(m, 0)|
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+ lim
P→∞

MfP
µ + Nf + |F(m, 0)|

P
= 0,

which is a contradiction. Thus the set Υ is bounded and by Theorem 1.6.16, Λ has at

least one fixed point which represents the solution of (7.1.1)-(7.1.3) and the set of the

fixed points of Λ is bounded in C(J ,R).

Remark 7.2.6. Following are conclusions obtained from the Theorem 7.2.5:

(i) If we put µ = 1 in the assumption (H2) then Theorem 7.2.5 remain valid provided

that, Mf < 1.

(ii) If ν = 1 in the assumption (H2) then Theorem 7.2.5 remain valid provided that,

Mg

[
φ+

(
ψ(n)−ψ(m)

)σ
Γ(σ+1)

]
< 1.

(iii) If both µ = ν = 1 in the assumption (H2) then Theorem 7.2.5 remain valid provided

that, Mf + Mg

[
φ+

(
ψ(n)−ψ(m)

)σ
Γ(σ+1)

]
< 1.

Theorem 7.2.7. If the BVP (7.1.1)-(7.1.3) satisfies (H1) then it will have a unique

solution provided that

Lf +
Lg

(
ψ(n)− ψ(m)

)σ
Γ(σ + 1)

+ Lgφ < 1. (7.2.8)

Proof. Let for τ ∈J , ω,$ ∈ C(J ,R) we have

|Λω(τ)− Λ$(τ)|

≤ |F(τ, ω(τ))− F(τ,$(τ))|

+
1

Γ(σ)

∫ τ

m

ψ′(s)
(
ψ(τ)− ψ(s)

)σ−1|G(s, ω(s))− G(s,$(s))|ds+
|ψ(τ)− ψ(m)|

|Θ|

×
[

α

Γ(σ)

∫ n

m

ψ′(s)
(
ψ(n)− ψ(s)

)σ−1∣∣G(s, ω(s))− G(s,$(s))
∣∣ds

+
β

Γ(σ)

∫ ζ

m

ψ′(s)
(
ψ(ζ)− ψ(s)

)σ−1∣∣G(s, ω(s))− G(s,$(s))
∣∣ds]

≤ Lf‖ω −$‖+
Lg‖ω −$‖

Γ(σ)

∫ τ

m

ψ′(s)
(
ψ(τ)− ψ(s)

)σ−1
ds

+
Lg|ψ(τ)− ψ(m)|‖ω −$‖

|Θ|

[
α

Γ(σ)

∫ n

m

ψ′(s)
(
ψ(n)− ψ(s)

)σ−1
ds

+
β

Γ(σ)

∫ ζ

m

ψ′(s)
(
ψ(ζ)− ψ(s)

)σ−1
ds

]
≤ Lf‖ω −$‖+

Lg‖ω −$‖
Γ(σ + 1)

(
ψ(τ)− ψ(m)

)σ
+

Lg‖ω −$‖|ψ(n)− ψ(m)|
|Θ|Γ(σ + 1)

[
α
(
ψ(n)− ψ(m)

)σ
+ β

(
ψ(ζ)− ψ(m)

)σ]
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≤
[
Lf +

Lg
(
ψ(n)− ψ(m)

)σ
Γ(σ + 1)

+ Lgφ

]
‖ω −$‖.

By using (7.2.8) we get that Λ is a contraction. Thus Banach contraction principle

concludes that Λ has a unique fixed point which will be the unique solution of the BVP

(7.1.1)-(7.1.3). This completes the proof.

7.3 Analytical Example

Let us consider a system of hybrid BVP involving a ψ−Caputo fractional derivative

0D1.5,ψ
1

[
ω(τ)− 1

20(1 + τ)2

(
ω(τ) + 1

)]
=

1

|sin τ |+ 100

(
1 +

|ω(τ)|
1 + |ω(τ)|

)
, τ ∈J = [1, 3],

ω(1) = 0,

2
[
ω(τ)− F(τ, ω(τ))

]
τ=3

=
[
ω(τ)− F(τ, ω(τ))

]
τ=2

.

(7.3.1)

If we compare (7.3.1) with our considered problem (7.1.1)-(7.1.3) then we get the

following data:

σ = 1.5, m = 1, n = 3, ζ = 2, α = 2, and β = 1.

Also, F(τ, ω(τ)) =
1

20(1 + τ)2

(
ω(τ) + 1

)
and G(τ, ω(τ)) =

1

|sin τ |+ 100

(
1 +

|ω(τ)|
1 + |ω(τ)|

)
.

Now,

|F(τ, ω)− F(τ,$)| ≤
∣∣∣∣ 1

20(1 + τ)2

(
ω −$

)∣∣∣∣
≤ 1

80
|ω −$|.

And

|G(τ, ω)− G(τ,$)| ≤
∣∣∣∣ 1

|sin τ |+ 100

{(
1 +

|ω|
1 + |ω|

)
−
(

1 +
|$|

1 + |$|

)}∣∣∣∣
≤ 1

100

{
|ω −$|(

1 + |ω|
)(

1 + |$|
)}

≤ 1

100
|ω −$|.

Thus F(τ, ω) and G(τ, ω) satisfy the assumption (H1) with Lf = 1
80

and Lg = 1
100
. Again

|F(τ, ω)| ≤ 1

80

(
1 + |ω|

)
and

|G(τ, ω)| ≤ 1

100

(
1 + 2|ω|
1 + |ω|

)
≤ 1

100

(
1 + 2|ω|

)
.
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Therefore, F(τ, ω) and G(τ, ω) satisfy the assumption (H1) with Mf = 1
80
, Nf = 1

80
and

Mg = 1
50
, Ng = 1

100
. Let ψ(τ) = τ.

Now,

Θ = α
(
ψ(n)− ψ(m)

)
− β

(
ψ(ζ)− ψ(m)

)
= 3 6= 0,

φ =
|ψ(n)− ψ(m)|
|Θ|Γ(σ + 1)

[
α
{
ψ(n)− ψ(m)

}σ
+ β

{
ψ(ζ)− ψ(m)

}σ]
=

2

3× Γ(2.5)
[2× 2.82843 + 1] = 3.33778.

In view of Theorem 7.2.5,

Υ =
{
ω ∈ C(J ,R) : ∃ γ ∈ [0, 1] such that ω = γΛω

}
is the set of solution, then

‖ω‖ ≤
Ng

[
φ+

(
ψ(n)−ψ(m)

)σ
Γ(σ+1)

]
+ |ψ(n)−ψ(m)|

|Θ| |(α− β)F(m, 0)|+ Nf + |F(m, 0)|

1−Mg

[
φ+

(
ψ(n)−ψ(m)

)σ
Γ(σ+1)

]
+ Mf

= 0.100186.

Since µ = ν = 1 and

Mf + Mg

[
φ+

(
ψ(n)− ψ(m)

)σ
Γ(σ + 1)

]
=

1

80
+

1

50

[
3.33778 + 2.12728

]
= 0.1218 < 1.

Thus it satisfies the condition (iii) of Remark 7.2.6.

Also

Lgφ = 0.0333778 < 1.

Therefore Theorem 7.2.5 guarantees the existence of atleast one solution of the BVP

(7.3.1). Furthermore,

Lf +
Lg
(
ψ(n)− ψ(m)

)σ
Γ(σ + 1)

+ Lgφ = 0.067078 < 1.

Therefore Theorem 7.2.7 concludes that the BVP (7.3.1) has an unique solution.

7.4 Example with Numerical Results

In this section we study an example for different ψ functions and different boundary

points.

109



Chapter 7. Results on a Hybrid Type of Multipoint BVP using Topological Degree
Theory

Example 7.4.1. For that let us consider the following functions

F(τ, ω(τ)) =
1

20

(
sin τ + ω(τ)

)
,

and G(τ, ω(τ)) =
1

103

(
τ + ω(τ)

)
.

Therefore we get that Lf = 1
20

and Lg = 1
103
.

Let us assume the following data

σ = 1.5, m = 1, n = 3.8, α = 2 and β = 1.

Also we denote the term

Lf +
Lg
(
ψ(n)− ψ(m)

)σ
Γ(σ + 1)

+ Lgφ = Ω.

Case 1: Let ψ(τ) is linear, i.e ψ(τ) = τ.

We get the following numerical solution by using (7.2.1) for our Example 7.4.1

Figure 7.1: Numerical solution of ω(τ) for various ζ values where ψ(τ) = τ .
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Table 7.1: Numerical results of Θ, φ and Ω for ψ(τ) = τ and ζ ∈ [1, 3.8]

ζ Θ φ Ω < 1

1.000000 5.600000 3.524527 0.057049<1

1.147368 5.452632 3.676357 0.057201<1

1.294737 5.305263 3.880346 0.057405<1

1.442105 5.157895 4.120590 0.057645<1

1.589474 5.010526 4.391759 0.057916<1

1.736842 4.863158 4.691048 0.058216<1

1.884211 4.715789 5.016821 0.058541<1

2.031579 4.568421 5.368128 0.058893<1

2.178947 4.421053 5.744494 0.059269<1

2.326316 4.273684 6.145808 0.059670<1

2.473684 4.126316 6.572271 0.060097<1

2.621053 3.978947 7.024379 0.060549<1

2.768421 3.831579 7.502913 0.061027<1

2.915789 3.684211 8.008965 0.061533<1

3.063158 3.536842 8.543959 0.062068<1

3.210526 3.389474 9.109707 0.062634<1

3.357895 3.242105 9.708470 0.063233<1

3.505263 3.094737 10.343052 0.063868<1

3.652632 2.947368 11.016916 0.064541<1

3.800000 2.800000 11.734350 0.065259<1
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Note:

These figures are obtained

from the Table 7.1. It

shows how Θ, φ and Ω

varies for a linear function

ψ(τ) = τ while ζ varies in

between [1, 3.8]. Each plot

corresponds to specific

parameter values

discussed in the text.

Figure 7.2: Numerical results of Θ, φ and Ω for ζ ∈ [1, 3.8] and ψ(τ) = τ. Each subfigure

corresponds to different parameter values.
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Case 2: Let ψ(τ) = 2τ .

We get the following numerical solution by using (7.2.1) for our Example 7.4.1

Figure 7.3: Numerical solution of ω(τ) for various ζ values where ψ(τ) = 2τ .
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Table 7.2: Numerical results of Θ, φ and Ω for ψ(τ) = 2τ and ζ ∈ [1, 3.8]

ζ Θ φ Ω < 1

1.000000 23.857618 30.992701 0.111985 <1

1.133333 23.663968 31.331541 0.112324<1

1.266667 23.451568 31.788065 0.112781<1

1.400000 23.218602 32.356493 0.113349<1

1.533333 22.963080 33.046092 0.114039<1

1.666667 22.682816 33.871242 0.114864<1

1.800000 22.375416 34.850251 0.115843<1

1.933333 22.038252 36.005334 0.116998<1

2.066667 21.668442 37.362990 0.118356<1

2.200000 21.262825 38.954660 0.119947<1

2.333333 20.817934 40.817627 0.121810<1

2.466667 20.329967 42.996198 0.123989<1

2.600000 19.794752 45.543281 0.126536<1

2.733333 19.207715 48.522456 0.129515<1

2.866667 18.563838 52.010816 0.133004<1

3.000000 17.857618 56.102910 0.137096<1

3.133333 17.083018 60.916424 0.141909<1

3.266667 16.233418 66.600666 0.147593<1

3.400000 15.301555 73.349799 0.154343<1

3.533333 14.279464 81.424535 0.162417<1

3.666667 13.158410 91.189845 0.172183<1

3.800000 11.928809 103.185252 0.184178<1
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Note:

These figures are obtained

from the Table 7.2. It

shows how Θ, φ and Ω

varies for a power function

ψ(τ) = 2τ while ζ varies

in between [1, 3.8]. Each

plot corresponds to

specific parameter values

discussed in the text.

Figure 7.4: Numerical results of Θ, φ and Ω for ζ ∈ [1, 3.8] and ψ(τ) = 2τ . Each subfigure

corresponds to different parameter values.
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Case 3: ψ is an exponential function i.e. ψ(τ) = eτ . We get the following numerical

solution by using (7.2.1) for our Example 7.4.1

Figure 7.5: Numerical solution of ω(τ) for various ζ values where ψ(τ) = eτ .
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Table 7.3: Numerical results of Θ, φ and Ω for ψ(τ) = eτ and ζ ∈ [1, 3.8]

ζ Θ φ Ω < 1

1.000000 83.965805 204.631503 0.459263<1

1.133333 83.578095 205.822182 0.460454<1

1.266667 83.135084 207.433419 0.462065<1

1.400000 82.628887 209.488212 0.464120< 1

1.533333 82.050491 212.058938 0.466690< 1

1.666667 81.389597 215.243623 0.469875< 1

1.800000 80.634440 219.166154 0.473798< 1

1.933333 79.771574 223.980336 0.478612< 1

2.066667 78.785636 229.876117 0.484508< 1

2.200000 77.659074 237.087954 0.491719< 1

2.333333 76.371829 245.905737 0.500537< 1

2.466667 74.900983 256.689068 0.511321< 1

2.600000 73.220349 269.886097 0.524518< 1

2.733333 71.300005 286.058806 0.540690<1

2.866667 69.105761 305.917683 0.560549<1

3.000000 66.598550 330.370705 0.585002<1

3.133333 63.733734 360.595133 0.615227<1

3.266667 60.460306 398.147728 0.652779<1

3.400000 56.719987 445.144022 0.699776<1

3.533333 52.446183 504.571483 0.759203<1

3.666667 47.562803 580.886863 0.835518<1

3.800000 41.982903 681.287926 0.935919<1
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Note:

These figures are obtained

from the Table 7.3. It

shows how Θ, φ and Ω

varies for a exponential

function ψ(τ) = eτ while ζ

varies in between [1, 3.8].

Each plot corresponds to

specific parameter values

discussed in the text.

Figure 7.6: Numerical results of Θ, φ and Ω for ζ ∈ [1, 3.8] and ψ(τ) = eτ . Each subfigure

corresponds to different parameter values.
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Case 4: ψ is an logarithmic function i.e. ψ(τ) = log(τ).

For ψ(τ) = log(τ) we consider that m = 1, n = e and ζ ∈ [1, e].

We get the following numerical solution by using (7.2.1) for our Example 7.4.1

Figure 7.7: Numerical solution of ω(τ) for various ζ values where ψ(τ) = log(τ).
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Table 7.4: Numerical results of Θ, φ and Ω for ψ(τ) = log(τ) and ζ ∈ [1, e]

ζ Θ φ Ω < 1

1.000000 2.000000 0.752253 0.051505<1

1.090436 1.913422 0.811765 0.051564<1

1.180872 1.833747 0.888242 0.051640<1

1.271308 1.759954 0.972464 0.051725<1

1.361744 1.691234 1.061161 0.051813<1

1.452179 1.626935 1.152614 0.051905<1

1.542615 1.566521 1.245811 0.051998<1

1.633051 1.509550 1.340131 0.052092<1

1.723487 1.455650 1.435184 0.052187<1

1.813923 1.404508 1.530727 0.052283<1

1.904359 1.355855 1.626619 0.052379<1

1.994795 1.309459 1.722784 0.052475<1

2.085231 1.265121 1.819195 0.052571<1

2.175667 1.222665 1.915863 0.052668<1

2.266102 1.181939 2.012823 0.052765<1

2.356538 1.142806 2.110132 0.052862<1

2.446974 1.105148 2.207861 0.052960<1

2.537410 1.068856 2.306099 0.053058<1

2.627846 1.033836 2.404944 0.053157<1

2.718282 1.000000 2.504506 0.053257<1

120



Chapter 7. Results on a Hybrid Type of Multipoint BVP using Topological Degree
Theory

Note:

These figures are obtained

from the Table 7.4. It

shows how Θ, φ and Ω

varies for a exponential

function ψ(τ) = log(τ)

while ζ varies in between

[1, e]. Each plot

corresponds to specific

parameter values

discussed in the text.

Figure 7.8: Numerical results of Θ, φ and Ω for ζ ∈ [1, e] and ψ(τ) = log(τ). Each subfigure

corresponds to different parameter values.
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7.5 Observation

A significant aspect of this study is the examination of how different ψ−functions influence

the behaviour of key parameters, namely, Θ, φ, and Ω. For this purpose, we consider

four distinct increasing, continuous and differentiable ψ-functions: ψ(τ) = τ , ψ(τ) = 2τ ,

ψ(τ) = eτ , and ψ(τ) = log(τ). Numerical solutions are computed for these functions

across various values of ζ ∈ (m,n), providing insights into how the choice of ψ affects the

values of Θ, φ and Ω as ζ varies within the interval.

Furthermore, the results encompass special cases of fractional boundary value prob-

lems, such as the Caputo-type problem (ψ(τ) = τ) and the Caputo-Hadamard-type

problem (ψ(τ) = log(τ)). This work provides a framework for analysing perturbed

fractional differential equations and can be extended in future research to incorporate

impulsive cases or to explore the characteristics of other generalized derivatives, such as

the ψ−Hilfer derivative, for a variety of ψ−functions.
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