
CHAPTER 3

Study of a Nonlinear Volterra-Fredholm Type

Hybrid Fractional Differential Equation

3.1 Introduction

Volterra-Fredholm differential equations are a special class of integral-differential equa-

tions that combine characteristics of both Volterra and Fredholm integral operators.

These equations are named after the mathematicians Vito Volterra and Erik Ivar Fred-

holm, who made significant contributions to the study of integral equations. These equa-

tions typically involve an unknown function that appears both under a derivative and

within integral terms of different types [61, 68, 95, 97, 103]. The Volterra integral is usu-

ally defined with variable upper limits of integration, reflecting causal dependencies in

physical and biological systems. In contrast, the Fredholm integral term involves fixed

limits, capturing global interactions over a given domain. Such equations arise in various

applications, including viscoelasticity, fluid dynamics, population dynamics, and thermal

diffusion processes etc.

In this chapter we study the existence of solution for the following nonlinear nonlocal

hybrid Volterra-Fredholm pantograph type fractional differential equation

C
0 D

q
t

[
u(t)− G(t, u(t), u(λt))

F(t, u(t),
∫ t

0
k1(t, τ)h1(τ, u(τ))dτ,

∫ T
0
k2(t, τ)h2(τ, u(τ))dτ)

]
=W(t, u(t), u(λt)),

t ∈J = [0, T ],

u(0) = φ(u), u(T ) = a.

(3.1.1)

Here, C
0 D

q
t denotes the Caputo fractional derivative of order 1 < q < 2 and 0 < λ < 1.

Assume, F ∈ C(J × R × R × R,R \ {0}) ; G,W ∈ C(J × R × R,R) and for i = 1, 2,

the functions hi : J × R → R are continuous, also φ : C(J ,R) → R be a continuous

This chapter is based on the published work in Indian Journal of Pure and Applied Mathematics [43].
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and bounded function.

The pantograph equation is a functional differential equation with a proportional de-

lay, where the delay varies with the current time instead of remaining constant. This

key feature differentiates it from traditional delay differential equations, introducing non-

linear behaviour and added complexity, which makes finding analytical solutions more

challenging. Over time, its applications have expanded to diverse fields, including elec-

trodynamics, quantum dot lasers, material modelling, and control systems. In mathe-

matics and physics, pantograph equations play a crucial role in areas such as number

theory, probability, and quantum mechanics. Due to their significance, researchers have

generalized these equations into various forms, exploring their solvability using both the-

oretical and numerical methods. While extensive work has been conducted on classical

pantograph equations, fractional versions remain relatively unexplored, with only a few

contributions addressing their properties and solutions. In 2013, Balachandran et al. [24]

initiated a comprehensive overview of various types of pantograph equations and explored

their existence by using fractional calculus and fixed point theorems. Nisar [96] exam-

ined the existence and uniqueness of integral solutions for a Hilfer pantograph model

with a nonlocal integral condition. He employed the Leray-Schauder fixed point the-

orem to establish the existence of solutions and the Banach contraction principle to to

study the uniqueness. Numerous researchers have contributed to the study of pantograph

equations, exploring various aspects and methodologies [4, 5, 18,116,122].

We organise the chapter as follows: In Section 3.2, we focuse on deriving the integral

solution. In Section 3.3, the existence of a solution for the boundary value problem

(3.1.1) is examined using a fixed point theorem under mixed Lipschitz and Carathéodory

conditions. Finally, in Section 3.4, we present an illustrative example to support the main

result.

3.2 Preliminaries

Lemma 3.2.1. Let W ∈ C(J ,R) then for 1 < q < 2 the fractional hybrid differential

equation

C
0 D

q
t

[
u(t)− G((t, u(t), u(λt))

F
(
t, u(t),

∫ t
0
k1(t, τ)h1(τ, u(τ))dτ,

∫ T
0
k2(t, τ)h2(τ, u(τ))dτ

)] =W(t), t ∈J ,

u(0) = φ(u), u(T ) = a

(3.2.1)

has an integral solution
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u(t) = F
(
t, u(t),

∫ t

0

k1(t, τ)h1(τ, u(τ))dτ,

∫ T

0

k2(t, τ)h2(τ, u(τ))dτ
)

×

[
1

Γ(q)

t∫
0

(t− s)q−1W(s)ds+
φ(u)− G((0, φ(u), φ(u))

F
(
0, φ(u), 0,

∫ T
0
k2(0, τ)h2(τ, u(τ))dτ

)
+

1

T

{
a− G((T, a, u(λT ))

F
(
T, a,

∫ T
0
k1(T, τ)h1(τ, u(τ))dτ,

∫ T
0
k2(T, τ)h2(τ, u(τ))dτ

)
− φ(u)− G((0, φ(u), φ(u))

F
(
0, φ(u), 0,

∫ T
0
k2(0, τ)h2(τ, u(τ))dτ

) − 1

Γ(q)

T∫
0

(T − s)q−1W(s)ds

}
t

]

+ G((t, u(t), u(λt)), t ∈J .

(3.2.2)

Proof. The equivalent integral form of (3.2.1) is obtained by applying Lemma 2.2.1.

u(t) = F
(
t, u(t),

∫ t

0

k1(t, τ)h1(τ, u(τ))dτ,

∫ T

0

k2(t, τ)h2(τ, u(τ))dτ
)

×
[

1

Γ(q)

t∫
0

(t− s)q−1W(s)ds+ c1 + c2t

]
+ G(t, u(t), u(λt)),

(3.2.3)

where c1 and c2 ∈ R.

By applying the conditions of the problem (3.2.1) into (3.2.3), we obtain

c1 =
φ(u)− G(0, φ(u), φ(u))

F
(
0, φ(u), 0,

∫ T
0
k2(0, τ)h2(τ, u(τ))dτ

)
and

c2 =
1

T

{
a− G((T, a, u(λT ))

F
(
T, a,

∫ T
0
k1(T, τ)h1(τ, u(τ))dτ,

∫ T
0
k2(T, τ)h2(τ, u(τ))dτ

)
− φ(u)− G((0, φ(u), φ(u))

F
(
0, φ(u), 0,

∫ T
0
k2(0, τ)h2(τ, u(τ))dτ

) − 1

Γ(q)

T∫
0

(T − s)q−1W(s)ds

}
.

Substituting the values of c1 and c2 into (3.2.3), we obtain

u(t) = F
(
t, u(t),

∫ t

0

k1(t, τ)h1(τ, u(τ))dτ,

∫ T

0

k2(t, τ)h2(τ, u(τ))dτ
)

×

[
1

Γ(q)

t∫
0

(t− s)q−1W(s)ds+
φ(u)− G((0, φ(u), φ(u))

F(0, φ(u), 0,
∫ T

0
k2(0, τ)h2(τ, u(τ))dτ)

+
1

T

{
a− G((T, a, u(λT ))

F(T, a,
∫ T

0
k1(T, τ)h1(τ, u(τ))dτ,

∫ T
0
k2(T, τ)h2(τ, u(τ))dτ)

− φ(u)− G((0, φ(u), φ(u))

F(0, φ(u), 0,
∫ T

0
k2(0, τ)h2(τ, u(τ))dτ)

− 1

Γ(q)

T∫
0

(T − s)q−1W(s)ds

}
t

]

+ G((t, u(t), u(λt)), t ∈J .
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3.3 Existence Result

Consider the space of continuous real-valued functions X = C(J ,R) defined on J =

[0, T ], equipped with the supremum norm

‖y‖ = sup
t∈J
|y(t)|.

Additionally, a multiplication operation in X is defined as

(xy)(t) = x(t)y(t), ∀t ∈J .

It is clear that X , under the given norm and multiplication, forms a Banach algebra.

In the proof of our main result, we employ Dhage’s fixed point theorem for three

operators (Theorem 1.6.21) within this Banach algebra framework.

3.3.1 Hypotheses

Now, we introduce a set of hypotheses that will be utilized in proving the main result.

(H1) For all t ∈J and x1, y1, z1, x2, y2, z2 ∈ R there exists a constant LF > 0 such that

the function F : J × R× R× R→ R \ {0} satisfies

|F(t, x1, y1, z1)− F(t, x2, y2, z2)| ≤ LF(|x1 − x2|+ |y1 − y2|+ |z1 − z2|).

(H2) For each i = 1, 2, there exists a constant Lhi > 0 such that, for all t ∈ J and

x, y ∈ R the function hi : J × R→ R satisfies

|hi(t, x)− hi(t, y)| ≤ Lhi |x− y|.

(H3) There exists a constant K > 0 such that

max
t,τ∈J

{
|k1(t, τ)|, |k2(t, τ)|

}
≤ K.

(H4) There exists a constant LG > 0 such that, for all t ∈ J and x1, y1, x2, y2 ∈ R the

function G : J × R× R→ R satisfies

|G((t, x1, y1)− G((t, x2, y2)| ≤ LG
(
|x1 − x2|+ |y1 − y2|

)
.

(H5) There exist constants X0,X1 > 0 such that∣∣∣∣ φ(u)− G((0, φ(u), φ(u))

F(0, φ(u), 0,
∫ T

0
k2(0, τ)h2(τ, u(τ))dτ)

∣∣∣∣ ≤ X0,∣∣∣∣ a− G((T, a, u(λT ))

F(T, a,
∫ T

0
k1(T, τ)h1(τ, u(τ))dτ,

∫ T
0
k2(T, τ)h2(τ, u(τ))dτ)

∣∣∣∣ ≤ X1.

(H6) For all t ∈J and x ∈ R there exist a continuous function η : J → (0,+∞) and

a non-decreasing continuous function Ψ : R+ → R+ such that

|W(t, x(t), x(λt))| ≤ η(t)Ψ(‖x‖) and 0I
q
t η ∈ C(J,R+).
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3.3.2 Main Result

Theorem 3.3.1. Assume that the considered problem (3.1.1) satisfies the hypotheses

(H1)-(H6). Further, if

F0

[
2X0 + X1 + 2‖η‖Ψ(r)

Γ(q+1)
T q
]

+G0

1− LF(1 +KLh1T +KLh2T )
[
2X0 + X1 + 2‖η‖Ψ(r)

Γ(q+1)
T q
]
− 2LG

≤ r, (3.3.1)

where,

LF(1 +KLh1T +KLh2T )
[
2X0 + X1 +

2‖η‖Ψ(r)

Γ(q + 1)
T q
]

+ 2LG < 1, (3.3.2)

also r > 0 and F0 = sup
t∈J

∣∣∣∣F(t, 0,

∫ t

0

k1(t, τ)h1(τ, 0)dτ,

∫ T

0

k2(t, τ)h2(τ, 0)dτ)

∣∣∣∣, G0 = sup
t∈J
|G((t, 0, 0)|

then (3.1.1) has a solution defined on J .

Proof. Define the subset S of X as

S = {x ∈ X | ‖x‖ ≤ r},

where r satisfies condition (3.3.1).

It is clear that S is a closed, convex, and bounded subset of the Banach algebra X .

Applying Lemma 3.2.1, we obtain the following equivalent integral equation corre-

sponding to (3.1.1)

u(t) = F
(
t, u(t),

∫ t

0

k1(t, τ)h1(τ, u(τ))dτ,

∫ T

0

k2(t, τ)h2(τ, u(τ))dτ
)

×

[
1

Γ(q)

t∫
0

(t− s)q−1W(s, u(s), u(λs))ds+
φ(u)− G((0, φ(u), φ(u))

F(0, φ(u), 0,
∫ T

0
k2(0, τ)h2(τ, u(τ))dτ)

+
1

T

{
a− G((T, a, u(λT ))

F(T, a,
∫ T

0
k1(T, τ)h1(τ, u(τ))dτ,

∫ T
0
k2(T, τ)h2(τ, u(τ))dτ)

− φ(u)− G((0, φ(u), φ(u))

F(0, φ(u), 0,
∫ T

0
k2(0, τ)h2(τ, u(τ))dτ)

− 1

Γ(q)

T∫
0

(T − s)q−1W(s, u(s), u(λs))ds

}
t

]

+ G((t, u(t), u(λt)), t ∈J .

(3.3.3)

Now we consider three operators A : X → X , B : S → X and C : X → X such that,

Au(t) = F
(
t, u(t),

∫ t

0

k1(t, τ)h1(τ, u(τ))dτ,

∫ T

0

k2(t, τ)h2(τ, u(τ))dτ
)
, t ∈J , (3.3.4)
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Bu(t) =
1

Γ(q)

t∫
0

(t− s)q−1W(s, u(s), u(λs))ds+
φ(u)− G((0, φ(u), φ(u))

F(0, φ(u), 0,
∫ T

0
k2(0, τ)h2(τ, u(τ))dτ)

+
1

T

{
a− G((T, a, u(λT ))

F(T, a,
∫ T

0
k1(T, τ)h1(τ, u(τ))dτ,

∫ T
0
k2(T, τ)h2(τ, u(τ))dτ)

− φ(u)− G((0, φ(u), φ(u))

F(0, φ(u), 0,
∫ T

0
k2(0, τ)h2(τ, u(τ))dτ)

− 1

Γ(q)

T∫
0

(T − s)q−1W(s, u(s), u(λs))ds

}
t,

t ∈J ,

(3.3.5)

and

Cu(t) = G((t, u(t), u(λt)), t ∈J . (3.3.6)

Therefore, (3.3.3) can be written as,

u(t) = Au(t)Bu(t) + Cu(t), t ∈J .

The next objective is to prove that the operators A, B, and C fulfill the requirements

of Theorem 1.6.21.

Step 1: We begin by establishing that the operators A and C are Lipschitzian on X
with a specific Lipschitz constant.

Consider u, v ∈ X , for all t ∈J from (3.3.4) and (H1)-(H3) we get,

|Au(t)− Av(t)| =
∣∣∣F(t, u(t),

∫ t

0

k1(t, τ)h1(τ, u(τ))dτ,

∫ T

0

k2(t, τ)h2(τ, u(τ))dτ
)

− F
(
t, v(t),

∫ t

0

k1(t, τ)h1(τ, v(τ))dτ,

∫ T

0

k2(t, τ)h2(τ, v(τ))dτ
)∣∣∣

≤ LF{‖u− v‖+KLh1‖u− v‖T +KLh2‖u− v‖T}

= LF(1 +KLh1T +KLh2T )‖u− v‖.

After taking supremum over J we obtain,

‖Au− Av‖ ≤ LF(1 +KLh1T +KLh2T )‖u− v‖.

Thus, A is Lipschitzian on X with a Lipschitz constant LF(1 +KLh1T +KLh2T ).

Likewise, for any u, v ∈ X and t ∈J , applying (3.3.6) along with assumption (H4),

we obtain

|Cu(t)− Cv(t)| = |G((t, u(t), u(λt))− G((t, v(t), v(λt))|

≤ LG{|u(t)− v(t)|+ |u(λt)− v(λt)|}.

After taking supremum over J we get,

‖Cu− Cv‖ ≤ 2LG‖u− v‖.
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Therefore, C is Lipschitzian on X with a Lipschitz constant 2LG.

Step 2: Next, we aim to show that B is completely continuous on S. To achieve this,

we first establish the continuity of the operator B on S. Let {un} be a sequence in S that

converges to a point u ∈ S. Then, for all t ∈ J , applying the Lebesgue’s dominated

convergence theorem, we obtain

lim
n→∞

Bun(t)

= lim
n→∞

[
1

Γ(q)

t∫
0

(t− s)q−1W(s, un(s), un(λs))ds

+
φ(un)− G((0, φ(un), φ(un))

F(0, φ(un), 0,
∫ T

0
k2(0, τ)h2(τ, un(τ))dτ)

+
1

T

{
a− G((T, a, un(λT ))

F(T, a,
∫ T

0
k1(T, τ)h1(τ, un(τ))dτ,

∫ T
0
k2(T, τ)h2(τ, un(τ))dτ)

− φ(un)− G((0, φ(un), φ(un))

F(0, φ(un), 0,
∫ T

0
k2(0, τ)h2(τ, un(τ))dτ)

− 1

Γ(q)

T∫
0

(T − s)q−1W(s, un(s), un(λs))ds

}
t

]

=
1

Γ(q)

t∫
0

(t− s)q−1 lim
n→∞

W(s, un(s), un(λs))ds

+
φ(u)− G((0, φ(u), φ(u))

F(0, φ(u), 0,
∫ T

0
k2(0, τ) lim

n→∞
h2(τ, un(τ))dτ)

+
1

T

{
a− G((T, a, u(λT ))

F(T, a,
∫ T

0
k1(T, τ) lim

n→∞
h1(τ, un(τ))dτ,

∫ T

0

k2(T, τ) lim
n→∞

h2(τ, un(τ))dτ)

− φ(u)− G((0, φ(u), φ(u))

F(0, φ(u), 0,
∫ T

0
k2(0, τ) lim

n→∞
h2(τ, un(τ))dτ)

− 1

Γ(q)

T∫
0

(T − s)q−1 lim
n→∞

W(s, un(s), un(λs))ds

}
t

=
1

Γ(q)

t∫
0

(t− s)q−1W(s, u(s), u(λs))ds+
φ(u)− G((0, φ(u), φ(u))

F(0, φ(u), 0,
∫ T

0
k2(0, τ)h2(τ, u(τ))dτ)

+
1

T

{
a− G((T, a, u(λT ))

F(T, a,
∫ T

0
k1(T, τ)h1(τ, u(τ))dτ,

∫ T
0
k2(T, τ)h2(τ, u(τ))dτ)

− φ(u)− G((0, φ(u), φ(u))

F(0, φ(u), 0,
∫ T

0
k2(0, τ)h2(τ, u(τ))dτ)

− 1

Γ(q)

T∫
0

(T − s)q−1W(s, u(s), u(λs))ds

}
t

= Bu(t).

Thus, the operator B is continuous on S.
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To establish the compactness of the operator B on S, it is necessary to demonstrate

that B(S) is both uniformly bounded and equicontinuous in X . By applying assumptions

(H5) and (H6), we obtain the following for all t ∈J .

|Bu(t)| =

∣∣∣∣∣ 1

Γ(q)

t∫
0

(t− s)q−1W(s, u(s), u(λs))ds+
φ(u)− G((0, φ(u), φ(u))

F(0, φ(u), 0,
∫ T

0
k2(0, τ)h2(τ, u(τ))dτ)

+
1

T

{
a− G((T, a, u(λT ))

F(T, a,
∫ T

0
k1(T, τ)h1(τ, u(τ))dτ,

∫ T
0
k2(T, τ)h2(τ, u(τ))dτ)

− φ(u)− G((0, φ(u), φ(u))

F(0, φ(u), 0,
∫ T

0
k2(0, τ)h2(τ, u(τ))dτ)

− 1

Γ(q)

T∫
0

(T − s)q−1W(s, u(s), u(λs))ds

}
t

∣∣∣∣∣
≤ 2X0 + X1 +

‖η‖Ψ(r)

Γ(q)

∣∣∣∣
t∫

0

(t− s)q−1ds

∣∣∣∣+
‖η‖Ψ(r)

Γ(q)

∣∣∣∣
T∫

0

(T − s)q−1ds

∣∣∣∣
≤ 2X0 + X1 +

2‖η‖Ψ(r)

Γ(q + 1)
T q.

For all u ∈ S taking supremum over J we get,

‖Bu‖ ≤ 2X0 + X1 +
2‖η‖Ψ(r)

Γ(q + 1)
T q.

Hence, B is uniformly bounded on S.

Next, for any u ∈ S and t1, t2 ∈J such that t1 < t2 we get,

|Bu(t2)−Bu(t1)| =

∣∣∣∣∣ 1

Γ(q)

t2∫
0

(t2 − s)q−1W(s, u(s), u(λs))ds

− 1

Γ(q)

t1∫
0

(t1 − s)q−1W(s, u(s), u(λs))ds

+
1

T

{
a− G((T, a, u(λT ))

F(T, a,
∫ T

0
k1(T, τ)h1(τ, u(τ))dτ,

∫ T
0
k2(T, τ)h2(τ, u(τ))dτ)

− φ(u)− G((0, φ(u), φ(u))

F(0, φ(u), 0,
∫ T

0
k2(0, τ)h2(τ, u(τ))dτ)

− 1

Γ(q)

T∫
0

(T − s)q−1W(s, u(s), u(λs))ds

}
(t2 − t1)

∣∣∣∣∣
≤ ‖η‖Ψ(r)

Γ(q)

∣∣∣∣
t1∫

0

[(t2 − s)q−1 − (t1 − s)q−1]ds

∣∣∣∣+
‖η‖Ψ(r)

Γ(q)

∣∣∣∣
t2∫
t1

(t2 − s)q−1ds

∣∣∣∣
+

∣∣∣∣∣ 1

T

{
a− G((T, a, u(λT ))

F(T, a,
∫ T

0
k1(T, τ)h1(τ, u(τ))dτ,

∫ T
0
k2(T, τ)h2(τ, u(τ))dτ)
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− φ(u)− G((0, φ(u), φ(u))

F(0, φ(u), 0,
∫ T

0
k2(0, τ)h2(τ, u(τ))dτ)

− 1

Γ(q)

T∫
0

(T − s)q−1W(s, u(s), u(λs))ds

}
(t2 − t1)

∣∣∣∣∣.
The RHS of the above inequality tends to 0 whenever t2 − t1 → 0 without depending on

u ∈ S. This confirms that, B(S) is an equicontinuous set in X .

Since B is both uniformly bounded and equicontinuous, the Arzelá-Ascoli theorem

ensures that B is a compact operator on S.

Step 3: Next, we establish condition (iii) of Theorem 1.6.21. Let u ∈ X and v ∈ S
be arbitrary elements such that u = AuBv + Cu. By applying the given hypotheses, we

obtain the following result.

|u(t)| = |Au(t)||Bv(t)|+ |Cu(t)|

=

∣∣∣∣F(t, u(t),

∫ t

0

k1(t, τ)h1(τ, u(τ))dτ,

∫ T

0

k2(t, τ)h2(τ, u(τ))dτ
)∣∣∣∣

×

∣∣∣∣∣ 1

Γ(q)

t∫
0

(t− s)q−1W(s, v(s), v(λs))ds+
φ(v)− G((0, φ(v), φ(v))

F(0, φ(v), 0,
∫ T

0
k2(0, τ)h2(τ, v(τ))dτ)

+
1

T

{
a− G((T, a, v(λT ))

F(T, a,
∫ T

0
k1(T, τ)h1(τ, u(τ))dτ,

∫ T
0
k2(T, τ)h2(τ, v(τ))dτ)

− 1

Γ(q)

T∫
0

(T − s)q−1W(s, v(s), v(λs))ds

− φ(v)− G((0, φ(v), φ(v))

F(0, φ(v), 0,
∫ T

0
k2(0, τ)h2(τ, v(τ))dτ)

}
t

∣∣∣∣∣+ |G((t, u(t), u(λt))|

≤
[∣∣∣F(t, u(t),

∫ t

0

k1(t, τ)h1(τ, u(τ))dτ,

∫ T

0

k2(t, τ)h2(τ, u(τ))dτ
)

− F
(
t, 0,

∫ t

0

k1(t, τ)h1(τ, 0)dτ,

∫ T

0

k2(t, τ)h2(τ, 0)dτ
)∣∣∣∣

+
∣∣∣F(t, 0, ∫ t

0

k1(t, τ)h1(τ, 0)dτ,

∫ T

0

k2(t, τ)h2(τ, 0)dτ
)∣∣∣]

×
[
2X0 + X1 +

‖η‖Ψ(r)

Γ(q)

∣∣∣ t∫
0

(t− s)q−1ds
∣∣∣+
‖η‖Ψ(r)

Γ(q)

∣∣∣ T∫
0

(T − s)q−1ds
∣∣∣]

+
[
|G((t, u(t), u(λt))− G((t, 0, 0) + G((t, 0, 0)|

]
≤ [LF(1 +KLh1T +KLh2T )‖u‖+ F0]

[
2X0 + X1 +

2‖η‖Ψ(r)

Γ(q + 1)
T q
]

+ 2LG‖u‖+G0.

Thus taking supremum over t we get,

‖u‖
{

1− LF(1 +KLh1T +KLh2T )
[
2X0 + X1 +

2‖η‖Ψ(r)

Γ(q + 1)
T q
]
− 2LG

}
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≤ F0

[
2X0 + X1 +

2‖η‖Ψ(r)

Γ(q + 1)
T q
]

+G0.

Therefore,

‖u‖ ≤
F0

[
2X0 + X1 + 2‖η‖Ψ(r)

Γ(q+1)
T q
]

+G0

1− LF(1 +KLh1T +KLh2T )
[
2X0 + X1 + 2‖η‖Ψ(r)

Γ(q+1)
T q
]
− 2LG

≤ r.

Hence, u ∈ S. This completes the proof.

Step 4: To prove the last condition of the Theorem 1.6.21 we have,

M = ‖B(S)‖ = sup{‖Bx‖ : x ∈ S} ≤ 2X0 + X1 +
2‖η‖Ψ(r)

Γ(q + 1)
T q.

By (3.3.2) we have, αM+ β < 1 where, α = LF(1 +KLh1T +KLh2T ) and β = 2LG.

This satisfies the last condition of the Theorem 1.6.21.

Therefore, all the conditions of Theorem 1.6.21 are fulfilled. Consequently, it follows

that the operator equation u = AuBu + Cu has a solution in S. Hence, the problem

(3.1.1) has a solution defined on J , thereby completing the proof.

3.4 Example

In this section, we consider the following example to illustrate the main result

C
0 D

3/2
t

 u(t)− 1

104
{sinu(t) + sinu(λt)}

2t+
u(t)

102
+

∫ t

0

et+τ

102(2 + | sinu(τ)|)
dτ +

∫ 1

0

et−τ

102(2 + | cosu(τ)|)
dτ


=

1

103
(cosu(t) + cosu(λt)) , t ∈ [0, 1],

u(0) =
1

104
(1 + cosu(γ)) , γ ∈ (0, 1),

u(1) =
1

103
.

(3.4.1)

Assume q = 3
2
∈ (1, 2) and λ ∈ (0, 1).

Here,

F

(
t, u(t),

∫ t

0

k1(t, τ)h1(τ, u(τ))dτ,

∫ 1

0

k2(t, τ)h2(τ, u(τ))dτ

)
= 2t+

u(t)

102
+

∫ t

0

et+τ

102(2 + | sinu(τ)|)
dτ +

∫ 1

0

et−τ

102(2 + | cosu(τ)|)
dτ.

And from hypothesis (H3)

max
t,τ∈[0,1]

{|k1(t, τ)|, |k2(t, τ)|} = max
t,τ∈[0,1]

{∣∣∣et+τ
102

∣∣∣, ∣∣∣et−τ
102

∣∣∣} ≤ e2

102
= K.
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Now, ∣∣∣∣F(t, u(t),

∫ t

0

k1(t, τ)h1(τ, u(τ))dτ,

∫ 1

0

k2(t, τ)h2(τ, u(τ))dτ

)
− F

(
t, v(t),

∫ t

0

k1(t, τ)h1(τ, v(τ))dτ,

∫ 1

0

k2(t, τ)h2(τ, v(τ))dτ

) ∣∣∣∣
≤
∣∣∣∣u(t)− v(t)

102
+

e2

102

∫ t

0

{
1

(2 + | sinu(τ)|)
− 1

(2 + | sin v(τ)|)

}
dτ

+
e2

102

∫ 1

0

{
1

(2 + | cosu(τ)|)
− 1

(2 + | cos v(τ)|)

}
dτ

∣∣∣∣
≤ 1

102
‖u− v‖+

e2

102

∫ t

0

∣∣∣ | sin v(τ)| − | sinu(τ)|
(2 + | sinu(τ)|)(2 + | sin v(τ)|)

∣∣∣dτ
+

e2

102

∫ 1

0

∣∣∣∣ | cos v(τ)| − | cosu(τ)|
(2 + | cosu(τ)|)(2 + | cos v(τ)|)

∣∣∣∣dτ
≤ 1

102
‖u− v‖+

e2

102 × 2
‖u− v‖

=

(
1

102
+

e2

102 × 2

)
‖u− v‖ = 0.0469‖u− v‖.

Hence the hypotheses (H1) and (H2) are satisfied.

Next, in (3.4.1), G((t, u(t), u(λt)) =
1

104
{sinu(t) + sinu(λt)}. This implies,

|G((t, u(t), u(λt))− G((t, v(t), v(λt))|

=
∣∣∣ 1

104
{sinu(t) + sinu(λt)− sin v(t)− sin v(λt)}

∣∣∣ ≤ 2

104
‖u− v‖ = 0.0002‖u− v‖.

Thus, the hypothesis (H4) is satisfied. Next we have to do the following steps to show

that the hypothesis (H5) holds.

Now, |u(0)− G((0, u(0), u(0))| ≤ 2

104
+

2

104
=

4

104
= 0.0004,

∣∣∣∣F(0, u(0), 0,

∫ 1

0

k2(0, τ)h2(τ, u(τ))dτ

∣∣∣∣
=

∣∣∣∣u(0)

102
+

∫ 1

0

e−τ

102(2 + | cosu(τ)|)
dτ

∣∣∣∣
≥
∣∣∣ 1

106
(1 + cosu(α)) +

∫ 1

0

1

3× 102
e−τdτ

∣∣∣ ≥ 1

3× 102

(
1− 1

e

)
= 0.0021.

This implies,
1

|F(0, u(0), 0,
∫ 1

0
k2(0, τ)h2(τ, u(τ))dτ |

≤ 1

0.0021
.

Hence, ∣∣∣∣∣ u(0)− G((0, u(0), u(0))

F(0, u(0), 0,
∫ 1

0
k2(0, τ)h2(τ, u(τ))dτ

∣∣∣∣∣ ≤ 0.0004

0.0021
= 0.1905 = X0.
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Similarly,

|u(1)− G((1, u(1), u(λ))| ≤ 1

103
+

2

104
= 0.0012,

∣∣∣∣F(1, u(1),

∫ 1

0

k1(1, τ)h1(τ, u(τ))dτ,

∫ 1

0

k2(1, τ)h2(τ, u(τ)
)
dτ

∣∣∣∣
≥ 1 +

1

105
+

1

102 × 3

∣∣∣∣ ∫ 1

0

e1+τdτ +

∫ 1

0

e1−τdτ

∣∣∣∣ = 2.0213.

Hence,∣∣∣∣∣ u(1)− G((1, u(1), u(λ))

F(1, u(1),
∫ 1

0
k1(1, τ)h1(τ, u(τ))dτ,

∫ 1

0
k2(1, τ)h2(τ, u(τ))dτ

∣∣∣∣∣ ≤ 0.0012

2.0213
= 0.0006 = X1.

Therefore, hypothesis (H5) is satisfied.

Again in (3.4.1), W(t, u(t), u(λt)) =
1

103
(cosu(t) + cosu(λt)).

So, |W(t, u(t), u(λt))| ≤ 2

103
= 0.002 = ‖η‖Ψ(r).

Thus, hypothesis (H6) is satisfied.

So from the above calculations we get,

LF(1 +KLh1T +KLh2T )
[
2X0 + X1 +

2‖η‖Ψ(r)

Γ(q + 1)
T q
]

+ 2LG = 0.0184 < 1.

As (3.4.1) satisfies all the hypotheses, we can conclude from the Theorem 3.3.1 that the

boundary value problem (3.4.1) has a solution.
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