CHAPTER 4

A Study on an Implicit Hybrid Fractional
Differential Equation with p—Laplacian Operator

4.1 Introduction

Implicit type fractional differential equations naturally arise in various applications, in-
cluding physics, control theory, bioengineering, and finance. These equations play a
crucial role in describing, analysing, and simulating physical and mathematical systems
with nonlinear or complex behaviour. Implicit differential equations form a class where
the relationship between the unknown function and its derivatives is not explicitly solved
for the highest-order derivative. When fractional derivatives are involved, the depen-
dent variable appears in an implicit form, making their analysis more intricate than
explicit fractional differential equations. On the other hand, the study of the existence
and stability of solutions to implicit fractional differential equations has become a signif-
icant area of research within fractional calculus, attracting rigorous mathematical atten-
tion [2,26,32,121,128]. Gul et al. [60] studied the existence, uniqueness, and stability
of a class of implicit fractional differential equations involving the Caputo-Fabrizio frac-
tional derivative under Dirichlet boundary conditions using classical fixed point theory
techniques. Recently, Rahman et al. investigated multi-term fractional differential equa-
tions with variable type delay, employing fixed point theorems to establish existence,
uniqueness, and stability results [126].

In this chapter, we study the following hybrid fractional differential equations of im-
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plicit form with the p—Laplacian operator

u(t) - Z IwiXi(tv u<t))>]

a Cp i=1
ODt [¢p <0 Dt S(t U(t))

m

u(t) — Z[“’ixi(t,u(t))
_ g(t,u(t),th“ [@, (g‘pf %—(w(t)) )D te #=10,T], T>1,

u(t) = 3 Pt u)
S (8@5 ) >t:o =0,
u(t) =3 Pt u)
p(gpf 56 0) )hlzo’
W) =S Pt ) -3 el ulo)
sea LT s |
)= S Ftu), ) -3 k),
) A3y

(4.1.1)

Here, ¢D¢ denotes the Riemann-Liouville fractional derivative and § Df is the Caputo
fractional derivative of order 1 < «, 8 < 2 and the functions § € C(_Z x R,R\ {0}),
G € C(Z xR xR,R). Furthermore /I represents the Riemann-Liouville fractional
integral. Additionally, let x; : C(_#,R) = R, i=1,---,m be continuous and bounded
functions. The p—Laplacian operator, ¢,(x) is defined as ¢,(x) = |z[P"2z, p > 1 and
gb;l = ¢4, where 1—1) + % =1

The concept of the p—Laplacian differential equations, pioneered by Leibenson [84],
has become a key in the analysis of complex physical phenomena, particularly in mod-
elling turbulent flow in porous media. Its applications span a wide range of fields, includ-
ing viscoelasticity, heat conduction, biology, finance, and control systems. Additionally,
the p—Laplacian is extensively used in modelling physical phenomena, image processing,
and material science, demonstrating its versatility and importance. A critical aspect
of studying p—Laplacian equations lies in understanding how the solutions’ behaviour
evolves with changes in the parameter p, providing valuable insights into the dynamics of
complex systems. Recent advancements in the theory of fractional differential equations
involving the p—Laplacian operator have focused on the existence and uniqueness and

stability of solutions. For instance, Devi and Kumar [41] investigated the existence of
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solutions for a first type hybrid fractional differential equations with the p—Laplacian
operator using Dhage’s fixed point theorem and Green’s function, while Khan et al. [76]
explored the second type hybrid fractional differential equation by applying the Leray-
Schauder fixed point theorem. In [75] authors investigated the existence and uniqueness
of solutions using the Guo-Krasnoselskii fixed point theorem, as well as the Hyers-Ulam
stability, for an Atangana-Baleanu-Caputo (ABC) fractional differential equation involv-
ing the p—Laplacian operator. These studies show the importance of advanced analytical
methods in solving nonlinear fractional differential equations and emphasize the increas-
ing role of the p—Laplacian in both theory and applications.

The study of implicit hybrid fractional differential equations with p—Laplacian oper-
ator has not been explored yet. Motivated by the existing literature, we formulate and
investigate our own problem.

This chapter is organised as follows: In Section 4.2 we present the necessary pre-
liminaries required for the subsequent analysis. In Section [4.3] we derive the equivalent
integral formulation of and establish the existence and uniqueness of its solutions.
Section is dedicated to analysing the Hyers-Ulam stability of (£.1.I). Finally, in
Section [4.5, we provide an illustrative example to demonstrate the applicability of our

theoretical findings.

4.2 Preliminaries

Lemma 4.2.1. [77] Let « > 0, n = [a] + 1 and let u,_o(t) = olt("_a)u(t). Then, for
u e LY[0,T],RY) and u,_ € AC™([0,T],RY)

n

oI [ DRut)] = ult) = 3 et

=1

for some ¢; € R.
Lemma 4.2.2. [}1] The p—Laplacian operator ¢, satisfy the following conditions.

(i) If ||,y > A(>0) and 1 <p <2 then
|6p(2) — Ep(y)] < (p — DA |z —y].
(i3) If |z],|y] < A(>0) and p > 2 then

|dp(2) — dp(y)] < (p— AP 2|z —y].
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4.3 Existence and Uniqueness Result

The space of continuous functions from _# into R denoted by C'(_#,R) is a Banach space

equipped with the following norm
lyll = suply(t)].
te 7

Lemma 4.3.1. Assume that G € C(_# ,R) then the hybrid fractional differential equation

u(t) = 3 Fxilt ult)
on[p(SDE D) )]::g@» (43.1)
u(t) = 3 ot ul)
p (5275 %:&’ el >t_0 —0, (4.3.2)
ut) = 3 It ul)
by (ng ’*(t’u @) )H =0, (4.3.3)
W) =S ul) w3 Foltu()
seowy | T seamy | 4
at) =3 Fotul) . u) - Y Pl a),
sew | LT seemy | U3

has an integral solution of the form

ult) = §.u(0) 57 [ (0= 0, (A)ds = g [ =90y (A
IR S AR g 1 L a2 )
o [, 0 A - g [ -9 Ay

+ Z IWiXi(ta u<t))7

where
1 ’ a—1 o ]' ! Safl T a—1 Ndr
A= _F(a)/o (s —7)*'G(T)dr —F(a)/o (1 —7)*"G(r)dr.

Proof. Using Lemma [4.2.1]in (4.3.1)) we have

u(t) =Y I (t,u(t))

bp (ng %:& o) ) = F(l&) /0 (t —5)*7'G(s)ds + ert* ™! + ot 2

(4.3.6)
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Applying the condition (4.3.2) in (4.3.6]) we get co = 0.
Also using the condition (4.3.3)) in (4.3.6) we get
= _ /1(1 —5)*71G(s)ds.
I'(a) Jo

Substituting the values of ¢; and c,, obtained from the computations above, into (4.3.6)),

we obtain

m

u(t) = Y Ix(t ult))

i—1 1 K o1
%G@f Ty ):HMA@‘Q gt

! la_l — 5)271G(s)ds
—m/ot (1= s)*"G(s)ds.

This implies

- ra)
3 i=1 _ a-l
Dy = %l J, ¢~ g (4.3.7)
1 ! a—1 o1
_ m/0 t* 11 —s) g(s)ds].

Again from (4.3.7)) we get

u(t) = Y " I0x(t u(t))

17 | ol [ e (g

— ﬁ /01 5711 — r)‘klg(r)dr}] ds + c3 + cat.

Applying the condition (4.3.4) in (4.3.6]) we get

5 = —%@/01(1 - s)ﬁl[%{ﬁ/j(s—f)alg(ﬂm
— ﬁ /01 5271 - r)‘Hg(r)dT}] ds — %C4,

and by using the condition (4.3.5) in (4.3.6) we get

cvm g || 0= o [ gtmar
_ ﬁ /01 So‘_l(l - T)a—lg(r)drH ds.

Substituting the values of ¢3 and ¢4, obtained from the above calculations, into (4.3.8)),

we obtain
u(t) — Z Ixa(t, u(t)) . 1 1
i=1 _ _Sﬂ—l 6 —35_1 <
T ), ) e A = gy [ -9 a4
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R S AR NS
T, A -

1
x/ t(1— )" 2¢,(A)ds.
0
This implies that

ult) = §u(0) (57 [ (0= 0, (A)ds = g [ 10— 90y (A
1

MY /0 (L= )" (A)ds — m/o (1 = )72, (A)ds|
+ leixi(t,u(t)),

where
1

° a—1 1 ' Safl — T a—1 Ndr
A= /0 (s = 7' — s /0 (1= 751G (r)dr
]

It is not possible to find the exact solution for every function. In this context, we

construct two simple examples by setting p = 2, and derive the exact solutions using

Lemma 311
Example 1. Let us consider an example of type (4.3.1)-(4.3.5) with § = sint, G =
4

3
t, x1=1logt, xa=¢€', a= Y g = 3 W= 2, wy = 3. Lemma |4.3.1 implies that

By doing some calculations, from Lemma we get the following exact solution of the

considered problem

t*(2logt — 3)

u(t) = sint[0.053389 x t5 — 0.15463 x ¢© + 0.039415 x ¢ — 0.181288] + ;

1
+ 5(2& —t* =2t —2).

u(t)

05}
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This ¢ vs u(t) graph gives the trajectory of the solution for ¢t € [0, 2].

Example 2. Let us consider another example of type (4.3.1)-(4.3.5) such that § =

el, G=t> yxy1=1t, xo=sint, ys=cost, a=2, =5 w =2 w =3, wy3=4.

3 5
From Lemma [£.3.1] we obtain

2 11 2
— (53 —s3).
r'(3)

A:

The exact solution of the considered problem can be obtained from Lemma [4.3.1

3

2 t
u(t) = ¢'[0.020889 x 15 — 0.069145 x 15 + 0.0137072 x ¢ + 0.017276] + S

+

N~ D

1
(2cost + 1% —2) + 6(6COSt+3t2 —6).
uft)

a0l
a0l
200

10

L i T 1 L ! L ! 1 ! L L 1 | L 1 L 1 l
05 1.0 15 20 25 3.0

This ¢ vs u(t) graph gives the trajectory of the solution for ¢ € [0, 3].

4.3.1 Hypotheses
We introduce the following hypotheses, which will be used to prove the main results.

(Hy) For all t € ¢ and u,v € R, there exists a constant £ > 0 such that §: # xR —
R\ {0} satisfies

15 (t,u) — F(t,v)| < Llu—vl.

(Hy) Forallt € ¢ and uy, vy, usz,v2 € R, there exist constants £, > 0, 0 < £, < 1 such
that G : _# x R x R — R satisfies

|G (t,ur,v1) — G(t,ug, v9)| < Ly]uy — us| + £,|v1 — va.

(H3) Forallt € ¢ and u,v € R there exists a constant x; > 0 such that x; : _# xR — R,

1=1,2,...,m satisfies

it w) = xi(t 0)| < kilu = o],
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(Hy) Forallt € ¢ and u,v € R there exist non-negative functions &, u, v € C(_#,R)
such that

|Gt u, 0)| < &) + p)u] +v(B)]v].
(Hs) For allt € # and u € R there exists a function n € C(_#,R") such that
[§(t, W) < n(t).

(Hg) For allt € # and u € R there exists a function \; € C(_#,R*) fori =1,2,...,m
such that

Ixi(t, w)| < Ai(t).

4.3.2 Main Results

In this section, we establish and prove the main results of our study.

To prove the existence and uniqueness of (4.1.1)) assume that

_ _ (g—2)
O = £(®; + &yl[ul]) + [Inll(g — DA (1_£2> 2 T e Sl (439)

l

In this chapter, from now onwards let us consider

A

d =(q — 1)A? H—A,

== DA T
Nar

By =(q — A [ AL A

2 =( T[]

and
TaJrB Ta+,371 1 1 1
= + + + +
Fla+p+1) aol'(a+8) 2l(a+p5+1) 22(a+p) 4I'(a+pB)
1 T T

T laTa+s-1) 2Matp)  2al(atf-1)

Theorem 4.3.2. Let (4.1.1) satisfies the assumptions (Hy)-(Hg) and (4.3.9). Then the
problem (4.1.1)) has at least one solution on Z provided that,

]| @1 + Z |A I

= ||77||<1>

<R, [nf®: < 1.

Proof. Set, sup|¢(t)] = [I€]l, sup|u(t)| = [lull, suplv(t)] = |lv|, sup|n(t)] = [nl,
te s te.s te s ey
supge 7| M) = Al i=1,2,...,m
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Let us consider X =C(_7, R) and S = {z € X : ||z|| < MR} be a subset of X.
From Lemma , equation (4 can be written as

u(t) = §(t,u(t) [ﬁ / (=0 (Auo)ds = g [ (=970, (A
+ 4F(61_ 1) /0 (1 - S>5_2¢Q(~Au(8))d‘9 - m/o t(l — 8)6_2¢p(¢4u(5))d8}
+ Z I (t, u(t))
- (4.3.10)

where

. ) u(r) — E I? (T u(T))
_ s— 1T a—1 7 ulr el CB i=1 -
A = g7 |, =7 g( . )’D°+[¢ ( P T (i) )Dd

1 illez 7— u
_ L Sa_l 7 a—1 T ulr o C i =1 -
F(a) /0 (1 ) g( ) ( )7D0+ [pr( D0+ S:(T U(T)) >] )d .

For t € ¢, we define the operators R : X — &, T : S — X as

Ru(t) = F(t, u(t)),

Tult) = 5 | (4= 910, (Au)ds = g [ (1= 97716, (Auo) s

! -2 1 —2
+ m/o (1- 3)5 ¢q(Au(s))d5 — m/o t(1— S)’B ¢q(¢4u(s))d8.

Now we define two operators P : X - X and Q : § — X as follows

Pu(t) = Ru(t). Tu(t), te 7,
and

- ZIMXi(t7U(t))7 te 7.

So, becomes
u(t) = Pu(t) + Qu(t).

Next we have to show that the operator P and Q satisfy the conditions of Lemma 1.6.19.

Step 1:

The following inequality is essential for subsequent calculations

q—2 1 ° a—1
b (Auis))| < (g — )AL m/0 (s —7)
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u(r) = Y I%xq(r,u(r))
T, Uu(T o “Dy =
g(’ ( >a”ﬁ*{¢”< ot (7, u(n) >}>

+ ﬁ /01 s — )t

u(T) — waixi(r,u(T))
7, u(T), DY °Dy =
g( u )’DO*{qbp( P §(r.u(r)) >}>

e dr

X

dT] :
By (Hy) we have,

u(T) — I¥ i (T, u(T))
Q(T’U(T),D&{%(CD& 2 )})i o e+ el

(7, u(r)) 1wl
Hence,
a2 (el lelllull N 1 o e
[bq(Augs))| < (g — AU ( Tl Jar@® T b.
Therefore,
~yata [ HE TedllTul] Tos Tetit 1
|Tu(t)] < (¢g—1)A ( - NCEESY + SR + N EEWNEY
1 1 1 T T
* 2ol (a + B) * AT (a + B) * 4al(a+ B —1) * 2 (o + ) * 20 (a + f — 1)

Now for any v € § we have,

ue) = [Pult) + Qo8] < RuOITu(O] + Y- s [ (¢ = 9° h(ssolo)lds
< @1 + @alll) + 3 s -

=1

Taking supremum over ¢ we have,

m Twi
91+ > =——==II\ll

1 —{Inf|®2

lull < <N

Hence, u € S. Tt gives the proof of (iii) of Lemma 1.6.19.
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Step 2:
Next, we establish that the operator Q satisfies the condition (i7) of Lemma 1.6.19. The
operator Q is continuous and || Qu|| < ZZI WHAZH Hence Q is uniformly bounded

on S.
Let us assume for any v € S and ¢,,%, € _# such that ¢, < ¢; we have,

|Qu(ty) — Qu(ts)| Z ! / (t1 — 8)* I xa(s, u(s))ds

(w:)

i t2 — $)¥ (s, u(s))ds

1
< Al[[t5 =t
<> wo M

=1

)

which tends to 0 without depending on u € S as t; — t5. Thus, Q is equi-continuous.
Since Q is both uniformly bounded and equi-continuous, it follows from the Arzela-

Ascoli theorem that Q is a compact operator on S.

Step 3:

For this step, the following inequality is required

|¢Q(~Au(s)> - qu(AU(s))‘ < (q — 1)A(q*2)
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v(T) — Z[%Xz'(TvU(T»
— T, 0\ T 6 “Dy =
el E )

Hence,

£ 1
[dg(Augs)) = Gg(Aue)| < (g = 1A (1 _122> aT() (5% + 5w — vl

Therefore,

[ Tu(t) — To(t)| < (¢ — 1)AE? (%)Auu — ).

Now we have to show that P is a contraction mapping. Assume u,v € S forallt € ¢

we have
|Pu(t) — Po(t)] = |Ru(t). Tu(t) — Ru(t).Tu(t)|
= |Ru(t). Tu(t) — Ro(t). Tu(t) + Ro(t). Tu(t) — Ru(t).Tu(t)]
< |Tu()||Ru(t) — Ru(t)| + |Ru(®)||Tu(t) — Tu(t)]

_ £
< (1 + @oful) Ellu = vl + [Inll(q — DA (1 _1£2> Allu =

£
— (@ + Balll) + g - DA (2 abju— o],
1— 25

Thus by P is a contraction mapping. Hence condition (i) of Lemma 1.6.19 is
satisfied.

Thus, all the conditions of Lemma 1.6.19 are satisfied. Consequently, we can conclude
that the considered implicit hybrid fractional differential equation has at least one
solution on _#. This completes the proof.

O

Theorem 4.3.3. If the considered problem (4.1.1)) satisfies the conditions (Hy)-(Hg) and
(4.3.9) then (4.1.1)) has a unique solution in C'(_# ,R).

Proof. Define, Pu = Pu+ Qu : X — X.
For any w,v € § and for all t € _# we have

|Zu(t) — Zu(t)] =Pu(t) + Qu(t) — Pu(t) — Qu(t)| < [Pu(t) — Po(t)| + |Qu(t) — Qu(t)|

£
S{S(% + ®aflul) + [l — DA (1 _1£2> A}Hu ~ o
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+ZZI F(;) /0 (t - S)wi_l‘Xi(S,u(S)) Xz s, v |ds

By using (H3) we get,

|Pu(t) = Do(t)]

£ T
< — (q—2) —1 _—
_lma+@mwwwwm DA &_2)A+§;H%+U@

By taking supremum over ¢ we get,

_ £
Hﬁu—ﬁwlé[2@n+¢ﬂum+MMKm—UN””< : ) EZF ﬁ4nu—m«

Thus, by (4.3.9)), Z is a contraction. Thus, with the help of Banach contraction mapping
principle, we conclude that & has a unique fixed point, which corresponds to the unique
solution of the considered problem (4.1.1]). This completes the proof. H

4.4 Hyers-Ulam Stability

Definition 4.4.1. The integral equation (4.3.10) is said to be Hyers-Ulam stable if there

exists a constant © > 0 and for every € > 0 if the following inequality

) =1t [ [ (0= 9000 (Auo)ts = s [ 1= 97710, (A s

1 ! L 1 1 ,
+m/0 (1-s)’ cbq(Au(s))dS—m/o t(1—5)"2¢,(A u(s)ds}

— Z[”ixi(t,u(t))

holds, then there ezists a continuous function u(t) satisfying the following

<e,

alt) = §(670) * [y | =9 0uao)ds = g [0 =0 (Au s
1 ! L 1 1 .
NPTy /0 (1= 5)"60 (Auo ) ds - m/o (1 — )7726, (Au ) ds]

£ (k)

such that
lu(t) —u(t)| < Oe¢, te z.
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Theorem 4.4.2. Let the considered problem (4.1.1) satisfies the assumptions (Hy)-(Hg),
then (4.1.1) s Hyers-Ulam stable.

Proof. Let u(t) be the unique solution of (4.1.1)) and @(t) is the approximate solution of
(4.1.1)) satisfying (4.4.1)), then we get the following by using considered assumptions,

()i [ €= 9" ol uo)ds = g [ (1= 90 (Ao

NG T0)
+ m /0 (1= 5726, (Auy ) ds — m /0 - 97726, (Ao ) ds|
s[5 [ 0= s - g [ 0= 0
+ m /0 (1 )26, (Auge))ds — m /0 - $)726, (Aus)) ds|
+iwmwm—iwmwm
< £@ﬁ+¢MmD+me—DA“”(T?5>A+§;F£;%5mHu—M
= Olfu— 1.

where

[y N T
— DA [ = ,
6 = (@ + afjul]) + Inll (g — DA® ( >A+§Zm. i

Thus the implicit hybrid fractional differential equation with p—Laplacian operator (4.1.1))
is Hyres-Ulam stable.

O
4.5 Example
Let us consider the following functions. For t € [0, 1],
3t u(t) = 1i02 sin u(t),
u(t) — Z I (t, u(t))
g (ta u(t), Dg, [@ (CD€+ %:&7 u(t)) )] ) (4.5.1)
u(t) — I9 ;i (t, u(t
et ), 1 (g [, fen (0= 3 ()
BT TIER TON Gl el W S(t u(t)) ’
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1
X1 = —(t2 + sinu(t)),

103
= sinu()
Xo = oz sinu(?).
Here, assume w; = 3, wr =3, m=2, p=2.
Thus from the assumptions (H;)-(Hg) we have,

1 1 1 1 1 cost t
£=— '21:_7 '2’2:_7 = T30 = Th9 t:_7 t:_a t) =
oo 107 10 RN T ? oo S0 =g A= g 0

t +1
— H=—, M{t)=—r, Nt)=—.
T 102 (1) 107 2()1 102 ) , 1
Hence, ||| = 105’ el = 10t vl = 10 Inll = 102’ [ Al = 103 [ Ao = 102

Now let us check the values of © for some specific values of o and £.
Case 1: Let 3 is fixed and say 8 = 3 and for arbitrary a(€ (1,2)) we have the

following values

Table 4.1: Values of © changing on «

«

A

oy

D,

o

1.025641026
1.051282051
1.076923077
1.102564103
1.128205128
1.153846154
1.179487179

1.615384615
1.641025641
1.666666667
1.692307692
1.717948718
1.743589744
1.769230769

2.157828133
2.088799373
2.022233564
1.957997129
1.895968245
1.836035509
1.778096785

1.028878106
0.995749728
0.963597859
0.932393715
0.902109723
0.872719435
0.844197436

2.39759E-05
2.32089E-05
2.24693E-05
2.17555E-05
2.10663E-05
2.04004E-05
1.97566E-05

1.1432E-05
1.10639E-05
1.07066E-05
1.03599E-05
1.00234E-05
9.69688E-06
9.37997E-06

0.000239759
0.000232089
0.000224693
0.000217555
0.000210663
0.000204004
0.000197566

0.00011432
0.000110639
0.000107066
0.000103599
0.000100234
9.69688E-05
9.37997E-05

0.012011701
0.012011615
0.012011533
0.012011453
0.012011377
0.012011303
0.012011231

0.012010304
0.012010263
0.012010223
0.012010185
0.012010147
0.012010111
0.012010076
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nnnnnnn

0>
/
#

So from the above graph obtained from the Table [4.1, we can conclude that as «
increases the values of © decreases gradually not exceeding 1.

Case 2: Next, assume that « is fixed and let @ = % For arbitrary g(€ (1,2)) we
have the following

Table 4.2: Values of © changing on g

B

A

oy

D,

C)

1.021276596
1.042553191
1.063829787
1.085106383
1.106382979
1.127659574

1.14893617
1.170212766

1.723404255
1.744680851
1.765957447
1.787234043
1.808510638
1.829787234
1.85106383

1.53187406
1.50745967
1.483187514
1.459065167
1.435099858
1.411298475
1.387667575
1.364213389

0.830192374
0.812881194
0.795819037
0.779005802
0.762441258
0.746125048
0.730056697

1.70208 E-05
1.67496E-05
1.64799E-05
1.62118E-05
1.59456E-05
1.56811E-05
1.54185E-05
1.51579E-05

9.22436E-06
9.03201E-06
8.84243E-06
8.65562E-06
8.47157E-06
8.29028E-06
8.11174E-06

0.000170208
0.000167496
0.000164799
0.000162118
0.000159456
0.000156811
0.000154185
0.000151579

9.22436E-05
9.03201E-05
8.84243E-05
8.65562E-05
8.47157E-05
8.29028E-05
8.11174E-05

0.012010926
0.012010896
0.012010866
0.012010836
0.012010807
0.012010777
0.012010748
0.012010719

0.012010058
0.012010037
0.012010016
0.012009995
0.012009975
0.012009955
0.012009935
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From the above graph obtained from the Table|4.2, we can conclude that as (8 increases

the values of © decreases gradually not exceeding 1.
Case 3: Next we assume that both a and 5 € (1,2) are arbitrary. We get that

Table 4.3: Values of © changing on both « and

«

B

A

4

Dy

S)

1.03030303
1.060606061
1.090909091
1.121212121
1.151515152
1.181818182
1.212121212

1.696969697
1.727272727
1.757575758
1.787878788
1.818181818
1.848484848
1.878787879
1.909090909

1.027027027
1.054054054
1.081081081
1.108108108
1.135135135
1.162162162
1.189189189

1.621621622
1.648648649
1.675675676
1.702702703
1.72972973
1.756756757
1.783783784
1.810810811

2.574770691
2.452572849
2.33359215
2.21797931
2.105853319
1.997304544
1.892397691

0.698170497
0.650707377
0.605918897
0.563705024
0.523965035
0.486597933
0.451502847
0.418579421

2.86086E-05
2.72508E-05
2.59288E-05
2.46442E-05
2.33984E-05
2.21923E-05
2.10266E-05

7.75745E-06
7.23008E-06
6.73243E-06
6.26339E-06
5.82183E-06
5.40664E-06
5.0167E-06
4.65088E-06

0.000286086
0.000272508
0.000259288
0.000246442
0.000233984
0.000221923
0.000210266

7.75745E-05
7.23008E-05
6.73243E-05
6.26339E-05
5.82183E-05
5.40664E-05
5.0167E-05
4.65088E-05

0.012012216
0.012012065
0.012011918
0.012011775
0.012011636
0.012011502
0.012011372

0.012009895
0.012009836
0.012009781
0.012009729
0.01200968
0.012009634
0.01200959
0.012009549
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In this case also, for arbitrary « and § we get from the above graph and the Table

that, as o and 3 increases then © decreases. So the values of © can’t exceed 1.
As, (4.5.1)) satisfies all the assumptions (H;)-(Hg) and (4.3.9) in all the above men-

tioned cases. Thus, from Theorem we can conclude that the implicit hybrid frac-
tional differential equation with p—Laplacian (4.5.1) has a unique solution on [0, 1].
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