CHAPTER 5

Study of an Impulsive Hybrid Fractional Differential

Equation with p—Laplacian Operator

5.1 Introduction

The purpose of this chapter is to examine the following hybrid fractional differential

equation of second type with p—Laplacian operator and non-instantaneous impulses

Cpao [gbp{CDB"’(w(t) - S’(t,w(t)))}} =G(t,w(t), te(sgten], £=0,1,...,m,

(5.1.1)
w(t) = Ftwt) = ot w®), te (bosd, r=12_.m, (5.1.2)
w(t) =St wt)| =0, (5.1.3)
¢p{opﬁva(w(s,€) - g(sm,w(sﬂ)))} =0, k=0,1,...,m. (5.1.4)

In this problem, D and “D? denotes the Caputo-Katugampola fractional derivatives
of order o and S ranging from 0 to 1, ¢ > 0 and the p—Laplacian operator ¢,(r) =
[t[P~t, p > 1 satisfies ¢, = ¢, with %'%—% = 1. Assume that [0, 7] = _# and some
pre-fixed numbers 0 = 55 < t; < 61 < to < -+ < ty < Sn < twy1 = T. Let §,
G e C(# xR,R) and for each k =1,2,...,m, let §, € C([t.,s.] x R,R).
Katugampola [73] introduced a novel fractional derivative that generalizes the well-
established Riemann-Liouville and Hadamard fractional derivatives into a single frame-
work. Further extended this concept [15] by generalizing the Caputo and Caputo-
Hadamard fractional derivatives through the introduction of a new fractional operator,
known as the Caputo-Katugampola derivative [11,12,89,132]. The latter operator is
fundamentally defined as the left inverse of the Katugampola fractional integral and it

preserves several key properties of the Caputo and Caputo-Hadamard derivatives.

This chapter is based on the published work in Mathematical Methods in the Applied Sciences [44].
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Over the years, the theory of impulsive differential equations [62, 70, 107, 116] has
evolved significantly, becoming an fundamental tool in applied mathematics for mod-
elling real-world phenomena in fields such as population dynamics, economics, physics,
and chemistry. The article [83] and [112] provided a fundamental theory of impulsive
differential equations. Depending on their effect on the systems, impulses are categorized
as instantaneous or non-instantaneous. Instantaneous impulses induce sudden state tran-
sitions at discrete moments, whereas non-instantaneous impulses generate changes that
unfold over a finite time interval. Non-instantaneous impulses are particularly useful for
modelling systems with time delays and memory effects, where the response to an impulse
is distributed over time rather than occurring immediately. Now-a-days the study of the
existence of solutions for impulsive differential equations has gained considerable atten-
tion. Recently, Hilal et al. [64] studied the existence of solution for a hybrid differential
equation of first kind with impulses by using Dhage’s fixed point theorem. Zhang [136]
investigated an initial value problem for an instantaneous impulsive differential equation
involving the Caputo-Katugampola fractional derivative, with a primary focus on the
non-uniqueness of solutions.

The study of hybrid fractional differential equations with p—Laplacian operator with
non-instantaneous impulse has not been explored yet. So motivated from the above
mentioned literature we consider our own problem.

This chapter is designed as follows: In Section [5.2] we derive the equivalent integral

equation for (5.1.1)-(5.1.4). In Section [5.3 we establish the existence and uniqueness

results. Stability analysis of (5.1.1)-(5.1.4) is carried out in Section [5.40 Finally, an
example is presented in Section [5.5] to illustrate the main results.

5.2 Preliminaries

Lemma 5.2.1. [1] For any a,b € R such that b > a and p,v > 0 we have the following

integral value

b° — aa),u,—i—y—l

b
/ (ba _ 5a)u—1(§a _ aa),uflga—ldg _ ( ’B([L, V),

L(p)I'(v)

Mp+v)

Lemma 5.2.2. The considered problem (5.1.1)-(5.1.4) has a solution w € PC(_#,R) of
the following integral form

Fort € [0, 4],

where B(u, v) is the beta function and is equal to

w(t) = F(tw(t)
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Forte (t.,s., k=12...,m,

Fort € (s, tep1], &=1,2,....,m,

w(t) = F(t w(t) + Nu(ss, w(sx))
z [; / (€ )57 g, [ 103 / (&7 = 7777 G (7)) ds
Fz 5 /0 (gﬂa—sa)ﬂ—lsa—lgz)q[l‘iza) /sﬂ(gd—TJ)Q—lfa-lg(T,w(T))dﬂds.
Proof. For t € [0,4;], from we get

0.1—04

¢p{01>ﬁvff (w(t) - 3(t,w<t)))} = /0 (€7 — 7)1 1G (5, w(s))ds + Co.  (5.2.1)

From (j5.1.4) we obtain that Cy = 0. Therefore, (5.2.1)) gives

O_l—a

¢p{CDB:U (w(t) — S(t,(ﬂ(t)))} = F(a) /0 (ta — 50)0‘—150—1g(5’w(5))d5‘

That implies

R
w(t) = F(tw(t) = W/o (7 —57)7 g7

-«

cbq[()

Hence, from (j5.1.3)), it follows that C; = 0.
Thus for t € [0, ;] we have

/05(5" — 7)1 G (T, w(T))dT] ds + C;.

w(t) = §(t, w(t))
0'17’8 ta o\B—1 o— 9 ° o oya—1__o—
+m/0(t —5%)7 15 1¢q[r(a)/0(5 — 7)1y 1g(T,w(T))dT]d5.
For k = 1,2,...,m, t € (t.,s,], implies that

w(t) = F(tw(t) + Hu(t, w(t)).

l—«o

For k =1,2,...,m, t € (8, txs1], from (5.1.1)) we get

O.l—oc

[(a)
From we get Cy = 0. Thus using we obtain

¢p{%ﬂv0 (w(t) — 3¢, w(t)))} - / t(tff — 570G (5, w(s))ds + Co. (5.2.2)

ol=p

w(t) = F(tw(t) = ) /0 (17 — 57)F 157!
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11—«

X 64 {W / :(50 _ o)jaleslg i W(T))dT] ds + Cs.

From (5.1.2) we get

ol=B [
Pulonlon) = T [ 67 =5y e

|:O.1—a

(o) /5:(50 — 7o) G (7, w(T))dT] ds + Cs.

X g
Thus, we have

w(t) = Ft,w®)) + 9, (5., w(s,))

gﬁi/o 7)P-140- 1%[ EO:; /;(50_7-‘7)a1TOIQ(T,W(T))dT]d5
ol=8

F(ﬁ)/o 5= 87 1%[;;‘; /35”—T”>“‘1T”‘19<w<7>>d7}ds.

[]

Example. Consider a specific case of the problem — by setting G(t, w(t)) =
0, which corresponds to the homogeneous version of the original problem with 0 = 5y <
H=1<s5=2<1t3=23.

By applying Lemma the exact solution can be obtained by substituting the val-
ues of the functions §(t,w(t)) and $H,(t,w(t)). In this example, we analyse the trajectory
of the solution for three distinct values of §(t,w(t)). A similar approach can be employed

to investigate the behaviour of the solution for different values of 9, (t, w(t)).

Set, 9, (tw(t)) = —2t3.

(i) For the function §(t,w(t)) = t* + 2w(t) we get the solution

/

—, for t € [0, 1],
w(t) = ¢ — 4 28, for t € (1,2],
—t* + 16, for t € (2,3].

\

Hence, the trajectory of the solution can be observed from the graph presented
below
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12} %

100 T

05 ———1.0 15 20 25 30

(ii) For F(t,w(t)) =sint+ t* — w(t) we get the solution

(

(sin(t) + t*), for t € [0, 1],
w(t) = § L(sin(t) + t* — 2¢%), for t € (1,2,
$(sin(t) + t* — 16), for t € (2, 3].

\

Thus, we get the trajectory of the solution from the following graph

i /
30
: /
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£ /
20F /
: /
15F //
¥ /
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5F /
—— |_.m--t‘//| PR R R
05 10 15 20 25 3.0
(iii) Let F(t,w(t)) = log(t) + 5t* — 2w(t), then the solution is
(
3 (log(t) + 3t2), for t € [0, 1],
w(t) = 4 Llog(t) + 12 — 2¢%), for t € (1,2],
\ z(log(t) + 3t* — 16), for t € (2,3].

The trajectory of the solution is given by the following graph
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15 20 25 3.0

al

5.3 Main Results

The space of piecewise continuous functions is defined as PC(_# ,R) = {w: 7 - Rlw €
C((te tes1],R),k =0,1,...,malso fork = 1,2,...,m, w(t}) and w(t;) exist withw(t,) =

w(t;)}.

The space PC(_#,R) forms a Banach space when equipped with the norm
[wllpe = sup|w(t)[.
te 7

Following are the hypotheses required to establish the existence result.

(Hy) Forall t € ¢ and w € PC(J,R) there exist a function £ € C(_7, (0, +00)) and a

non-decreasing continuous function ¢ : R™ U {0} — R* such that
1Bt w(®)] < EOY((lwllpe).

(Hy) For all t € (s.,t.1], k=0,1,...,mand w € PC(_#,R) there exist a function p €
L' (s, tet1), (0,400)) and a non-decreasing continuous function n : R*U{0} — R*
such that

G(tw(t)] < uOn(lwlrc).

(Hj) For all t € (t.,s.], x = 1,2,...,m and w € PC(_#,R) there exists a function
v € C((t, 8], (0,00)) such that

[9x(tw(t))] < (1)

71



Chapter 5.  Study of an Impulsive Hybrid Fractional Differential Equation with
p—Laplacian Operator

Let us consider an operator Q : PC(_#,R) — PC(_#,R) defined by

;

St w(t))
gl=8 t gl-a s
+F<ﬁ) 0 (tg - 50)5715071@1 [F(Oz) /(; (50 - Ta)ailTailg(T,w(T))dT ds,
for t € [0, 4],
St w(t)) + 9.t w(t)), for t € (e8], £=1,2,...,m,
Quw(t) =
St w(t) + Hilsn, wise))
o8t gl—o s
vy | € = g [ = e Gt
gl=8 o= O_l—ali 5
T /0 A [F(a) / (87 — T”)a_lT”_lg(T,w(T))dT] ds,
for t € (s, teq1], w=1,2,...,m

Existence Result

Theorem 5.3.1. Let the problem (5.1.1)-(5.1.4) satisfies the assumptions (Hy)-(Hs).
Further if,

1
ot (a+ B+ 1)’
I'a+1)
()(a+ B +1)

p > max {II&IW(/J) + lulln(p) (g — DA (T)+

€l p) + 111+ llllmp) (g = DA s (5.3.1)

0<k<m

X [(’TU)QHB + max (52)‘”/8] },

then the considered problem has a solution.

Proof. Set, B, = {w € PC(_#,R) : ||w|pc < p} and assume that p satisfies ((5.3.1)).
Step 1: We need to establish the continuity of the operator Q. For this purpose, let
{wn} be a sequence in the space PC(_Z,R) such that w, — w as n — oo. For t € [0, t;],

we obtain

|Quin(t) — Qu(t)]
< Tt wa() — F(tw(D)]

e - el [ - s
01_5 l—a

~ T [~ g [ € = e
<G wn(4) =S wO)lpe + 1G( wn() = G w() e
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x [(g—1)A92 ?ii; /t(t" — g7)P g0t /05(5" — 7)1 Y drds
w(-

<S¢ wn () =3 w())llwe

1
o q—2 o\a+8
DT a5 D)

1G(, wa(-)) = G(,w(-)) [l

For t € (t.,8;], K = 1,2,..., m, we obtain

|Qun(t) — Qw(t)] < S wal()) = S w()llpe + 19:( wn () = Dl w(-)) [ pe-
For t € (s,, t11], Kk =1,2,...,m, we obtain
| Quon (t) — Qu(t)]
< IS (6 wn(t) = Tt w(t)] + 1945k, wnlsk)) — Hil8s, w(Sk))]

+ ‘;z; /Of(ta §7)P g7 1%[“ )/5(50_T”)O‘_lTa_lg(T,wn(T))dT}ds

1-8 ot 1—
G o p-1go—1
fa
O.l—,B Sk . Lot O.l @
t ), el
ol=B [ 1 o1 o ova—1_o—1
_W/o (5,7 — 7Y s qsq[ma)/ﬁ 57 — 1)Ly g(T,w(T))dT]dﬁ‘
<SG wals) =G wO) e + 1965 wn(+) = D, w ()l Pe
G wn() = G w()llpe

2—a—p3 t 5
X [‘(q — A2 / (t7 — 5")5_15"_1/ (57 — Tg)a_ng_ldeﬁ‘
0 S

/5 (87 — TU)Q_ITU_IQ(T,W(T))CZT} dﬁ‘

_|_

/ (57 = 77)° 77 G, ()| ds
(87

[(a)l(B)

270(76 Sk 5
—_ q—2 g o o0\B—1l.0-1 o o\a—1_o—1
+ ’(q 1A RORE) /0 (5.7 —s7)" s /sn (87 —719) 1 deﬁ’]

< B wn() =8¢ w))llpe + 19505 wn () = Kl w()llpe

I(a+1) o ot
) g7+ 601G () = 6w Dllpe

+(q — AT

Consequently, from the above analysis it follows that, ||Qw, — Qw||pc — 0 as n — co.
This demonstrates that the operator Q is continuous.
Step 2: Next, we will show that the operator Q(B,) is uniformly bounded.

For w € B, and t € [0, 4], we have

|Qu(t)]

;5/; /otw =) e [;(a) /05(50 - TU)Q_ITU_IQ(T,w(T))dT} dﬁ’

< Bt w)] +
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< [lEllv o) + el n(p)
( 1)Aq fo? i _ «0\f—1l.0-1 ) o _ 4o a—lTU—l T
X (@) /O(t s7)" s /0(5 ) drds

1
BT (a+ B+ 1)

< N€lw(p) + gl n(p)(g — 1)AT2(To)+F

[0,t1]

<p.

For we B, and t € (t,,s,], k =1,2,...,m, we get

[Qu(t)] < [3(tw(t)] + [9:(t,w(t)| < [Ello(p) + V]l < p-
For w e B, and t € (s, t,+1], K = 1,2,..., m, we obtain
| Qu(t)]
< \3(’( w( ))! + [9x(t, w(t))]

1_
o
o _ g0 ,8 10— 1%[

/5(5 _ 79)a oG (o (r ))df}ds)

[(a)
’—/ )P te lﬁbq[;za) /SN(BU—Ta)a_lTa_lg(T,w(T))dT}dﬁ‘
< llgliéCp) + 11yl + lllley, | 7(P)
X [)(q - 1)Aq_2—1“(z;_);_(2) /Ot(t" —57)7 717! /ﬁj(s" — T")a_lT"_ldes‘

[(a)l(B

< [I€llCo) + lIvIF =+ llaell s

(srtic1]

2—0[—6 Sk 5
+ ’(q — AT ) / (5.7 — 5”)5‘15”‘1/ (s7 — T")"‘lr"‘ldes’]
O 5.‘{

I'a+1)
ol (a)(a+ +1)

n(p)(g — A
x| (T + (s7)
< p.

Thus, ||Quw||pe < p. This implies that Q is uniformly bounded on B,.
Step 3: Next, we need to show that Q(B,) is equicontinuous.
For w € B, and (3, ¢ € [0, 4] with {; < (2, we have

|Qu(G2) — Qu(G)l
< 3G, w(G)) = 3G, w(G))l
gl=F & gl-a s
+‘F(ﬁ) /O (¢4 —5")515‘”@[”@) /0 (s"—T")”*Tffflg(f,w(ﬂ)dﬂds

11—«

) ;(ﬁi /0@(4? =) T /05<s“ —77) 77 G (7)) | ds|
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ogl=8

N0

< I3 (G w(2)) — F(Cryw(Cr))| +

RSP

¢q|: 1 O;/OS(SU—Tg)a_lTU_lg(T,w(T))dT]dﬁ‘
* ‘F(ﬁ) /Cl (¢ =871 g, [;z;j /05(50 - Ta)a_lTJ_lg(T,OJ(T))dT} ds‘
< 86 w(G2)) — §(C(C) + llly, (”(q‘”“”r?;;;
gl S
+‘/;2 g — 7)1 1/ (7 _Ta>a17_ald7_d5‘]
< [5G w(G2)) = §(G () + Nl s, m(p)(g — AT

[0,t1]

g™ T ()L (5)
< [Bla+1H{() — () ‘“”5}+—<<2 GG - .

For w e B, and (1, (2 € (4, 8,),k =1,2,...,m with {; < (s, we get

|Quw(C2) — Qu()| < (¢, w(¢2)) — (¢, w(C))] + [94(C2, w(C2)) — 9 (G, w(C))I-

For w e B, and (i, (2 € (S, tuta], k= 1,2,...,m with {; < (,, we obtain

|Qw(¢2) — Qu(()l

< (¢, w(Ca)) — F(Cr,w(Cr))l
0'17[3

W/O@(Q“Q —57)1g7" 1%[an§ /5(5" —Ta)a717071g<7',w(7'))d7'} ds

gl=8 & o o
T ), @l / (57 = 77) 771G, w(r))dr ] ds|
o _/8 81
< |S(<2,Ld( )) — 3"({1,(#({1)” + ’F(ﬁ) i {(Cg _50>571 _ (Cir _50),8—1}5071

¢q[ 103 /ﬁ:(ga —Ta)a_lTU_lg(T,w(T))dT] d5’
' Wﬁ) /g (Cé’—s")ﬁ‘ls"_l%[;z; [ & =t G (e
< [3(C2s w(Ga)) = F(C w(C))| + el 7%1]77(0)((1—UAq_Zri_)?(g)
[‘/Cl{ e (T —s7) e /sj(sd_rd)alraldrds’

G2
+‘/ CQ 5 1 57~ 1/ (50 _Ta>a17_ald7_d5‘]
G S
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< 18(C2r(G2)) =BG @G + Il L o) = DA™ i
1

X [B(Oz +1, 5){(%’)&—&-6 _ (Gf)a-&-ﬂ} + H_a(gg _ Cf)ﬁ—l{gg(l—f—a) . Cla(1+a)}:|-

The RHS of the above inequality tends to 0 as (; — (; without depending on w. Thus
Q(B,) is equicontinuous. As, Q is uniformly bounded and equicontinuous, it follows from
the Arzela-Ascoli theorem Q is a compact operator.

Hence by Schauder’s fixed point theorem, we can say that Q has at least one fixed

point w € B, which is a solution of the problem ({5.1.1))-(5.1.4). O

Uniqueness Result

To establish the further results we impose the following hypotheses.

(Ay) For t € 7 there exists a constant Lz > 0 such that §: _# x R — R satisfies the
following
|‘g(t7 wl) - S(h w2>| S £§|w1 - CU2|, VWIJWQ S R.

(Ay) For t € (s, t,11] there exists a constant L5 > 0 such that G: _# x R — R satisfies

G(t,w1) = G(twa)| < Lglwr —wa|,  Vwi,wy €R.

(A3) For t € [t.,s,] there exists a constant £, such that for all k = 1,2,...,m, £, :
[t.,5.] X R — R satisfies

‘ﬁn(t wl) - ﬁn(h w2>’ S En’wl - (.UQ’, V(JJl,OJQ e R.

Theorem 5.3.2. If the system (5.1.1))-(5.1.4)) satisfies (A1)-(As) then it will have a unique
solution provided that,

1
ot (a+ f+1)
['(a+1)
o (a)Na+ 5+ 1)

0 < ® = max {,C%' + Lg(q — 1)A(Q—2)(7~U)a+/3

Ls+ Li+ Lg(q — AT

X [(T")O‘J“B + max (52)‘”5}} <1 (5.3.2)

0<k<m

Proof. We have to show that the operator Q is contraction.
For wy,ws € B, and t € [0, 4], we have

| Qi (1) — Qus(t)|
< T (6 wi (b)) — Tt wa ()]
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ol=8 rt . B o gl—a s , e
+ ‘P(ﬁ) /0 (t -5 )ﬁ 15 1%[1“(04) /0 (5 -7 ) 17' lg(T, wl(T))dT:| dﬁ
0'1_6 11—

T [t =yt [ [ e g
(g — 1)AI 252 —F

INCYNE)

5
‘/ B 1 o— 1/ (SU_TU)aflTofldes)
0

_ SN 1
< {ﬁg + ,Cg(q — 1)Aq 2(T ) +Baa+ﬁf‘(a o 1) }Hu}l — u}2||7>c.

For wy,ws € B, and t € (t,,s,], x=1,2,...,m, we get
|Qui (t) — Qua(t)] < [S(t,wi (1)) — Tt wa(t))] + Dt wi(t)) — Hi(t, wa(t))]

< (L5 + L) ||wr = wallpe.

< Lillwr — wallpe +

Lg|lwr — wal|pe

For wy,ws € B, and t € (s, t,11], ©=1,2,...,m, we get
| Qui (t) — Quua(1)]
< I3t wi(t) = Tt wa(t))] 4 |9 (t wi(t) — He(t, wa(b))]

e [ -l [ Gt
~f L - el [ - ot

-«

* ’?1_6 / e @) / (57 = 7)1 77 G, wn (7)) dr | ds
<>/ i ACE R T

L+ L)||wr — wallpe + Lgllwr — wa|lpe

2 a—0 t 5
Aq 2 / —g° ,6’150'1/ 57 — 79 aflTafldes‘
T(@)T(5) A ) SK( )

’ q— 1A~ i /sﬁ(sn" L i /5(5" — T")“”T"*ldrds’
L'(a)T(8) Jo o

r 1
< [to+ £t oty = VNI LT {70 4 (7l =l

Thus, we get

| Qui — Qusllpe < Ollwr — wal|pe.

From (5.3.2)), it follows that Q is a contraction. Therefore, by the Banach contraction
principle, we conclude that Q has a unique fixed point, which corresponds to the unique
solution of the system (5.1.1)-([5.1.4)). This completes the proof.

O
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5.4 Stability Results

Here, we investigate two types of stability results:

5.4.1 Hyers-Ulam Stability

Definition 5.4.1. The integral equation of (5.1.1))-(5.1.4)) is said to be Hyers-Ulam stable,
if for given € > 0 the following:
for t € [0, 4],

w(t) =t w(v)
— % /Ot(ta — %) 157 g, [;1;}){ /05(50 - TU)C‘_ITU_IQ(T,w(T))dT} ds’ <,
forte (4., 8., K=1,2,...,m,

(V) — F(tLw(B) — Haltw(V)] <e.

fort € (s, teq1], £=1,2,...,m
(V) = F(L (1) — Halse,w(5,))
/O(t — 7)1, | 2 (a)/(§ — 77 TG (7, () dr | d

ol=8
ol=h ol—@
+ — / (5.7 —57) 157 1o q[r / 57 —T”)aflT‘Flg(T,w(T))dT]ds‘ <e

- T(B)
1-
L(3)
hold. There is another function w(t) € PC(_Z,R) satisfying

t 11—«

(7 =575 0, | e /0 (67 — 77 g, w(r))dr |ds,

forte [0, 4],

+ 9. (t,0(t)), forte (ti,s:], w=12...,m,

11—«

/ O |

/ (o - 7)o G (7, (7)) dr | d
/ﬁ j(sff — 7Y TG o)) dr | ds,

forte (sq,ter], £=1,2,...,m,
(5.4.1)
and a constant © > 0 independent of w(t) and w(t) such that

w(t) — ()] <O, te 7.
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Theorem 5.4.2. Assume that (Ay)-(As) hold. Then the considered problem (5.1.1))-
(5.1.4) is Hyers-Ulam stable.

Proof. Let w(t) be the unique solution of (5.1.1)-(5.1.4) and let w(t) is the approximate
solution of (5.1.1))-(5.1.4)) satisfying (5.4.1]). Then, by arguing similar way in the proof of

the Theorem [5.3.2] we obtain
For t € [0, 4], we have

jw(t) = w(t)]

< I3t w(t) — F(to(b)]

1-3 t l1—a 5
i [ e alig [ - et d
1-8 t 11—« 5
_ %/[; (to o 50)5—150—1¢q [;(a 0 (50 . TU)a_lTU_lg@',@(T))dT} dﬁ‘
-1 Ag—2 2—a—p
< Lyllw - llpe + 9 an)r(;) Lollw - @lpe
7 g B—1.0-1 ) o oya—l1 U*ld d
X ‘ /0 (7 —57)" s /0 (87 —77) 7 dr 5’

1
ol (a+ B+ 1

< {5+ Lolg — AT o = @llec
For t € (t,5., ~=1,2,...,m, we get
w(t) = @) < 156w () = FL2()] + |9u(tw(6) — Dt 2(0)]
< (L + L) lw = lpe.
For t € (s, tey1], ®=1,2,...,m, we have
w(t) = (1)

< 8t w(t) = S 0)] + [9:(t w(t) = Hu(t, ©(1))]

; ‘% /0 I —5”)6_15"_1%[;1(@(; / :(5” )G () e ds
_ % /Dt(t” _ 50)5_150_1(/% [% /5:(5” — Tg)a_ng_lg@',a}(T))dT} ds‘
i [ e —eremalfo [ -t
i [ e -l [ 6t atural

< (Ls + Ly)||w = @lpe + Lg|lw — @] pc

2—a—p t 5
] /O (€7 — 57y 1g7 / (5" e |

X
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INCHINE

< [ﬁg + L.+ ﬁg(q — 1)A(q_2)

2—a—p S 5
+ ‘(q — DA ] / (5,7 — 50)515"1/ (s” — Ta)alT"ldeﬁ‘]
0 Sk

['(a+1)
o (a)(a+ +1)

{7 + 6047 = e

Thus from ((5.3.2)) we conclude that, |w(t) — w(t)| < Ol|lw — ©||pc. Hence the considered

problem (5.1.1))-(5.1.4) is Hyers-Ulam stable. O

5.4.2 Hyers-Ulam-Rassias Stability

Definition 5.4.3. The integral equation of (5.1.1)-(5.1.4) is said to be Hyers-Ulam-
Rassias stable if for a non-decreasing function x the following:
fort €10, 4],

‘w(t) - F(tw(t))
B N L (e s NI

forte (4., 8., k=1,2,...,m,

fort € (s.,ter1], £=1,2,...,m,
() = §(6w(8) — (s wls,)
o /0t 7Y s 1¢q|: L /5( 7 —TU)Q_ITU_IQ(T,W(T))dT}dE

IN(S) I'(a)
r(gi / ") s 1%[?2&) /sfﬁa —TUWTHg(r,w(T»dﬂds\ <x(®

hold. There is an another solution w(t) € PC(_Z,R) satistying (5 and a constant
© > 0 independent of both w(t) and w(t) such that

lw(t) —w(t)| < Ox(1), Vie #.

Theorem 5.4.4. The considered problem (5.1.1)-(5.1.4)) is Hyers-Ulam-Rassias stable
under the assumptions (Ay)-(As).

Proof. The proof proceeds similarly to the proof of Theorem After following all
the steps of the Theorem [5.4.2] with the help of the Definition [5.4.3] we will get that
lw®) —w()] < @X( ) where O shares the same value as in . Thus the considered

problem (5.1.1)-(5.1.4) is Hyers-Ulam-Rassias stable. O
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5.5 Example

Consider the following impulsive fractional differential equation with p—Laplacian oper-

ator
C~15 C~15 ’COS’(’ 1 1 3
D322 D32 t) — t = — 1, =
[@{ 3 (w() R >)} e, e (oo (1)
]cost| 1 1
|cos ¢
(t) — B =0
103 0
@{%éé (w(sﬂ) - |Ci;§“|w(sﬁ))} ~0, k=01 (5.5.1)
Here we have,
1 1 5 3 1 3
04257 6257 0257 p:q:27 f:|:0>§:|7 0250<t1:§<51:1<t2:§

Compared with (5.1.1)-(5.1.4), we get

|cos 1 1,
TE wt), Gtyw®) = ——w(t), H(tw(lt) =— 12 (t —l—]smw(t)\)

3t w(t) =

Thus, we have

FwO)] < rsllllve, 1GELO) < mllollpe, 9t w(0)] < 15

Now, we observe that

1
ot (a+ B+ 1)’
I'(a+1)
o)l (a+ f+ 1)

max {Iléllw(p) + liln(p) (g — A2 (T7)ts

el (p) + VIl + llulin(p) (g — DA

0<k<m

X [(T")O"LB + max (52)0”“5]}
= max{0.00lllp, 0.0210824p} = 0.0210824p < p.

Hence all the assumptions (H;)-(Hsz) hold and Theorem is satisfied. Therefore
(5.5.1]) has a solution. And

St wi(t) = St wa(t)] <

| < 1—03le — walpe,

|Gt wi(t) — B(t,wa(t))

| < 104||W1 — walpe,
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— w1 — walpe.

[95(t wi (1) = Hu(t, wa(t)] < 102
Hence the assumptions (A;)-(A3) hold. Further we have,

1
ot (a+ B +1)

max {ﬁg + Lg(q — )N (To)ots

Ls+ Ly + Lg(g— AT Lot 1) ) [

o () (a+ S+ 1

0<k<m

= max{0.00111,0.0110824} = 0.0110824 < 1.

(T7)™+7 4 max <sz>a+ﬁ]}

Thus, from Theorem we can say that (5.5.1) has a unique solution. Also the con-

ditions of Theorem [5.4.2] and Theorem [5.4.4] can be examined easily in the similar way.

Therefore the equation (5 is Hyers-Ulam stable.
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