DEDICATION

I dedicate this work to the pursuit of knowledge and the relentless curiosity that drives scientific discovery.

To the experiences we never expected and the paths that were redirected.

Bharat Terang

DECLARATION BY THE CANDIDATE

I hereby declare that the thesis entitled "A COMPREHENSIVE GIS-BASED FRAMEWORK FOR PHOTOVOLTAIC ENERGY PLANNING AND MANAGEMENT IN RURAL ASSAM" has been submitted to the Department of Energy, Tezpur University, Assam, India, under the School of Engineering for partial fulfilment for the award of the degree of Doctor of Philosophy in Energy. This is an original work carried out by me under the supervision of Prof. Debendra Chandra Baruah. The research was conducted at the Energy Conservation Laboratory, Department of Energy, Tezpur University.

Additionally, I declare that no part of this work has been reproduced elsewhere for the award of any other degree from another university or institute.

All the assistance and support received from various sources have been duly acknowledged.

Date: 24 06 2025

Bharat Terrang

(Bharat Terang)

Place: Tezpur

TEZPUR UNIVERSITY

(A Central University Established by an Act of Parliament of India)

Napaam, Tezpur - 784028 Assam, India

Prof. Debendra Chandra Baruah Professor Department of Energy, Tezpur University E-mail: baruahd@tezu.ernet.in

Ph. No. : +91 3712 27 5301 (O) +91-6001007767 (M) Fax: +91-3712 267005/6

CERTIFICATE BY THE SUPERVISOR

This is to certify that the thesis entitled "A COMPREHENSIVE GIS-BASED FRAMEWORK FOR PHOTOVOLTAIC ENERGY PLANNING AND MANAGEMENT IN RURAL ASSAM" submitted to Tezpur University in the Department of Energy under the School of Engineering, in partial fulfillment for the award of the degree of Doctor of Philosophy in Energy, including coursework, is a record of original work carried out by Mr. Bharat Terang under my supervision and guidance. He has complied with all the requirements stipulated in Tezpur University's regulations.

All assistance and support he received from various sources have been duly acknowledged.

No part of this thesis has been reproduced elsewhere for the award of any other degree.

(Prof. Debendra Chandra Baruah)

Date: 24.06.25

Place: Tezpur

DECLARATION BY THE CANDIDATE

I hereby declare that the thesis entitled "A COMPREHENSIVE GIS-BASED FRAMEWORK FOR PHOTOVOLTAIC ENERGY PLANNING AND MANAGEMENT IN RURAL ASSAM" has been submitted to the Department of Energy, Tezpur University, Assam, India, under the School of Engineering for partial fulfilment for the award of the degree of Doctor of Philosophy in Energy. This is an original work carried out by me under the supervision of Prof. Debendra Chandra Baruah. The research was conducted at the Energy Conservation Laboratory, Department of Energy, Tezpur University.

Additionally, I declare that no part of this work has been reproduced elsewhere for the award of any other degree from another university or institute.

All the assistance and support received from various sources have been duly acknowledged.

Date:

(Bharat Terang)

Place: Tezpur

TEZPUR UNIVERSITY

(A Central University Established by an Act of Parliament of India)

Napaam, Tezpur - 784028 Assam, India

Prof. Debendra Chandra Baruah Professor Department of Energy, Tezpur University E-mail: baruahd@tezu.ernet.in Ph. No. : +91 3712 27 5301 (O) +91-6001007767 (M) Fax: +91-3712 267005/6

CERTIFICATE BY THE SUPERVISOR

This is to certify that the thesis entitled "A COMPREHENSIVE GIS-BASED FRAMEWORK FOR PHOTOVOLTAIC ENERGY PLANNING AND MANAGEMENT IN RURAL ASSAM" submitted to Tezpur University in the Department of Energy under the School of Engineering, in partial fulfillment for the award of the degree of Doctor of Philosophy in Energy, including coursework, is a record of original work carried out by Mr. Bharat Terang under my supervision and guidance. He has complied with all the requirements stipulated in Tezpur University's regulations.

All assistance and support he received from various sources have been duly acknowledged.

No part of this thesis has been reproduced elsewhere for the award of any other degree.

(Prof. Debendra Chandra Baruah)

Date:

Place:

TEZPUR UNIVERSITY

(A Central University Established by an Act of Parliament of India) Napaam, Tezpur - 784028 Assam, India Ph. No. : +91 3712 27 5301 (O), Fax: +91-3712 267005/6

CERTIFICATE

This is to certify that the thesis entitled "A COMPREHENSIVE GIS-BASED FRAMEWORK FOR PHOTOVOLTAIC ENERGY PLANNING AND MANAGEMENT IN RURAL ASSAM" submitted to Tezpur University in the Department of Energy under the School of Engineering, in partial fulfillment for the award of the degree of Doctor of Philosophy in Energy, by Mr. Bharat Terang, has been examined by us on......and found to be satisfactory.

The committee recommends the award of the degree of Doctor of Philosophy.

Supervisor

External Examiner

Date:

Date:

"From patience comes wisdom, from humility comes honour, from absence of envy comes knowledge, and from knowledge comes liberation." - Bhagavad Gita 13.8

First and foremost, I express my deepest gratitude to the Almighty for guiding my steps and showering blessings upon me throughout this journey.

To my beloved family, especially my father Mukut Terang, mother Rengka Rongpipi, younger sister Rupmili, and younger brother Kiri, your boundless love, understanding, and support have been my rock and my refuge, sustaining me through the highs and lows of this academic endeavour. I am deeply thankful for your encouragement and sacrifices.

To my esteemed PhD supervisor, Prof. Debendra Chandra Baruah, your guidance has been the compass steering me through the seas of research. Your wisdom, patience, and belief in my potential have been the guiding stars illuminating my path, and I am truly grateful for the mentorship you have provided.

I extend my sincere gratitude to my Doctoral Committee, Prof Sadhan Mahapatra (Head of Department), Dr. Nabin Sarmah, and Prof. Bhogeswar Borah (External). Special thanks also to the faculty members, Prof. Dhanapati Deka, Prof. Rupam Kataki, Dr. Pradyumna Kumar Chaudhury, and Dr Vikas Verma, your insightful feedback and encouragement have been the wind beneath my wings, propelling me forward with renewed vigor and determination. I also express my gratitude to the non-teaching staff of the Department of Energy for their support throughout this journey.

My heartfelt thanks go to Prof. Marco Fiala and Dr. Luca Nonini at the University of Milan, Italy for hosting me in their lab and enriching my academic journey during my time as a Visiting Scholar under the AdaptNET Erasmus+ Capacity Building Project in Higher Education program (May 2022 to July 2022). Your hospitality and guidance greatly enhanced my research experience.

I am grateful to my colleagues from the State Innovation and Transformation Aayog (SITA) project team, Dr. Moonmoon Hiloidhari, Dr. Dipal Baruah, and Miss. Sherlyn Teronpi, for their assistance in GIS work. The successful completion of this study was made possible through the invaluable assistance and cooperation extended by various individuals and organizations. I extend my gratitude to the North Eastern Space Application Centre (NESAC), Meghalaya, for their training program, and National Remote Sensing Centre (NRSC), Hyderabad, for providing essential data critical to my analysis. Special appreciation goes to Miss. Pirbi Tissopi, Mr. Rangbamon Teron, and Mr. Saiful Islam for their generous contribution of agricultural and field-level data, which has significantly enriched the depth and breadth of this academic research.

I am deeply grateful to the Ministry of Tribal Affairs, Government of India, for providing financial assistance through the NFST fellowship from 2018-2023, which enabled me to pursue my academic aspirations.

To my labmates in the Energy Conservation Laboratory, including Dr. Barkhang Brahma, Dr. Trinakshee Sarmah, Mr. Isfakur Rasul, Mr. Zipshit Saikia, Mr. Dipjyoti Gowala, Mr. Shubhajeet Barman and Mr. Ankit Das for their support and encouragement.

To all my friends from the department, thank you for infusing each day with joy and making this academic journey both enjoyable and enriching.

In the grand symphony of academia, each of you has played a vital melody, enriching my experience and shaping my growth. For this, I am eternally grateful.

Lastly, I want to thank me for believing in myself, for putting in all those long hours, for staying focused, and for never giving up when it got tough. I want to thank me for pushing through the late nights, the setbacks, and the sacrifices. I want to thank me for the hard work, dedication, and perseverance that got me here today. Most of all, I want to thank me for finishing what I started.

With heartfelt appreciation, Bharat Terang

LIST OF TABLES

Table	Description	Page No.
Number		
Table 1.1	Estimated renewable energy potential by State/UT	7
Table 1.2	State-wise installed capacity of renewable power	8
Table 3.1	Village demographics and household survey data	68
Table 3.2	PV technology types with efficiency, area requirements, and key	70
	features	
Table 3.3	Data sources and parameters considered for the study	82
Table 3.4	Characteristics of the sentinel 2A data used in this study	83
Table 3.5	Land Use Land Cover (LULC) classes, classification criteria, and	96
	descriptions	
Table 3.6	Total energy production and utilization metrics for different	105-106
	energy systems in the study area	
Table 3.7	LCA phases and assumptions parameters for RTS, GMS, and	137
	SWP systems	
Table 3.8	The assumptions made in the study are summarised	139
Table 3.9	The key limitations considered in the study are summarized	140
Table 3.10	Lifecycle GHG emissions by phases for RTS, GMS and, SWP	140
	systems	
Table 3.11	Net GHG reductions for RTS, GMS, and SWP systems	140
Table 4.1	Irrigation schemes in Assam, India	149
Table 4.2	Crop selection for the analysis	152
Table 4.3	Cost calculation and assumptions for the pumping options	157
Table 4.4	Emission factors for the energy sources for pumping options	158
Table 4.5	Description of pumping options considered	162
Table 4.6	Annual cost of irrigation (₹)	163
Table 4.7	Estimated CO ₂ emission of the pumping options (kg/y/ha)	163
Table 4.8	Specifications and considerations of SWP	164
Table 4.9	Estimated value of CO ₂ emission for the pumping options	165
Table 4.10	Revenue per year for different pumping options	165

Table	Description	Page No.
Number		
Table 4.11	Net Present Value for 10 years	166
Table 4.12	The payback period for pumping options	166
Table 4.13	Ranking based on Col by Rt	167
Table 4.14	Battery specifications and energy requirements for charging	174-175
Table 5.1	Analysis of barriers and enablers for scaling solar PV systems	190-191
Table 5.2	Key parameters used for business model analysis	202-203
Table 5.3	Consolidated data sources for financial assessment of RTS	205-206
	systems in India	
Table 5.4	Component-wise capital expenditure analysis for RTS systems	206
Table 5.5	Financial analysis of RTS systems	207
Table 5.6	Costing and sales analysis of (1-3 kW) RTS systems with targeted	210
	sales 48 units	
Table 5.7	10-Year revenue projections	210
Table 5.8	Case study - analysis for 3 kW RTS system	212
Table 5.9	Calculated levelized cost of electricity for 1-10 kW RTS systems	214
Table 5.10	NPV analysis for 1–10 kW RTS systems	215
Table 5.11	Simple payback period for 1–10 kW RTS systems	216
Table 5.12	Cost breakdown of GMS systems across different capacities	219
Table 5.13	Revenue streams analysis for GMS systems across various	220
	capacities	
Table 5.14	Payback period analysis for GMS systems across different	221
	capacities	
Table 5.15	Land use efficiency analysis for GMS systems across different	221-222
	capacities	
Table 5.16	Sensitivity analysis of GMS revenue and payback period under	222-223
	varying financial and operational parameters	

LIST OF FIGURES

Figure	Description	Page No.
Number		
Fig. 1.1	Total energy supply by source, World, 1990–2022	1
Fig. 1.2	Total energy supply by source, India, 1990–2022	2
Fig. 1.3	Sector-wise India's installed capacity of electricity	3
Fig. 1.4	Percentage of renewable energy sources	5
Fig. 1.5	Trend in RES cumulative installed capacity	6
Fig. 3.1	Conceptual framework representing a description of physical	58
	systems	
Fig. 3.2	PV potential assessment framework for RTS, GMS, and SWP	64
	systems	
Fig. 3.3	Location map of the selected study area	66
Fig. 3.4	Layout map of villages in the study area with names and	67
	boundaries	
Fig. 3.5	Distribution of the number of households across villages	68
Fig. 3.6	PVlib simulation flowchart: Steps for photovoltaic energy	78
	system modelling	
Fig. 3.7	Road network of the study area	85
Fig. 3.8	Methodology for solar data analysis	86
Fig. 3.9	Validation of NASA data with ground data for Tezpur	87
Fig. 3.10 (a)	Daily solar irradiance incident on a selected location in the	88
	study area	
Fig. 3.10 (b)	Time series of daily all sky surface shortwave downward	88
	irradiance	
Fig. 3.11 (a)	Solar insolation map of India	90
Fig. 3.11 (b)	Solar insolation map of Assam	90
Fig. 3.11 (c)	Solar insolation map of Sonitpur district	91
Fig. 3.11 (d)	Solar insolation map of the study area (10 km ²)	91
Fig. 3.12 (a)	Five-year daily average of ambient temperature (T2M)	92
Fig. 3.12 (b)	Five-year time series of ambient temperature (T2M)	93

Figure	Description	Page No.
Number		
Fig. 3.13 (a)	Five-year daily average of wind speed at 10 m (WS10M)	94
Fig. 3.13 (b)	Five-year time series of wind speed at 10 m (WS10M)	95
Fig. 3.14 (a)	Identifying ground mounted options based on RFC method	98
Fig. 3.14 (b)	Identifying built-up area for RTS options based on MLC	99
Fig. 3.14 (c)	Distribution of cropland in the study area (on-screen	100
	digitization)	
Fig. 3.15 (a)	Map representing area available for installation of RTS in the	101
	study area	
Fig. 3.15 (b)	Map representing area available for installation of GMS in the	102
	study area	
Fig. 3.15 (c)	Map representing cropland for installation of SWP in the study	104
	area	
Fig. 3.16	Annual average PV system output	105
Fig. 3.17 (a)	Map of village-wise spatial distribution of RTS installation	106
	capacity	
Fig. 3.17 (b)	Map of village-wise spatial distribution of RTS generation	108
	capacity	
Fig. 3.18 (a)	Map of village-wise spatial distribution of GMS installation	109
	capacity	
Fig. 3.18 (b)	Map of village-wise spatial distribution of GMS generation	110
F: 210()	potential	111
Fig. 3.19 (a)	Map of village-wise SWP installation capacity	111
Fig. 3.19 (b)	Map of village-wise SWP generation potential	112
Fig. 3.19 (c)	Map of village-wise surplus energy from SWP systems	113
Fig. 3.20 (a)	Monthly energy generation for RTS system	114
Fig. 3.20 (b)	Monthly energy generation for GMS system	115
Fig. 3.20 (c)	Monthly energy generation for SWP system	115
Fig. 3.20 (d)	Monthly surplus energy from SWP system	116
Fig. 3.21	Layout map of proposed EV charging infrastructure utilizing	120
E' 0.00	surplus energy from SWP systems	100
Fig. 3.22	Framework for lifecycle GHG emission estimation	128

Figure	Description	Page No.
Number		
Fig. 4.1	Flowchart for the comparative assessment of SWP with DWP	151
	and EWP.	
Fig. 4.2	Location map of the study area	152
Fig. 4.3	Basin irrigation	153
Fig. 4.4	Furrow irrigation	153
Fig. 4.5	Flowchart for selection of pump	155
Fig. 4.6	Daily incident solar insolation in Jhawani-3 village	156
Fig. 4.7	Rate of subsidy for SWP to match the capital cost of DWP and	168
	EWP	
Fig. 4.8	Rate of subsidy for SWP to match the annual ownership cost of	168
	DWP and EWP	
Fig. 4.9	Energy management algorithm	177
Fig. 5.1	Cost-benefit analysis of RTS system for capacities ranging from	208
	(1 to 10 kW)	
Fig. 5.2	Cost breakdown of RTS systems (1 to 10 kW)	208
Fig. 5.3	Profit margin analysis of RTS systems for capacities ranging	209
	from 1 to 10 kW	
Fig. 5.4	Cumulative profit analysis across RTS systems ranging from 1	209
	to 10 kW	
Fig. 5.5	Annual revenue analysis for 1-3 kW RTS systems with a	211
	targeted sales volume of 48 units per year	
Fig. 5.6	Cumulative revenue analysis over 10 years for 1-3 kW RTS	211
	systems with a targeted sales volume of 48 units per year	
Fig. 5.7	Sensitivity analysis of total revenue (Million \mathbf{E}) and payback	223
	period (Years) for GMS systems at varying CUF, interest rates,	
	and tariff rates	

LIST OF ABBREVIATIONS

Abbreviation	Full form
AC	Alternating current
AI	Artificial intelligence
BESS	Battery energy storage systems
BOS	Balance of system
CEA	Central electricity authority
CFA	Central financial assistance
CR	Crop rotation
DC	Direct current
DI	Duration of irrigation
DISCOMs	Distribution companies
DOI	Days of irrigation
DWP	Diesel water pump
EMS	Energy management system
EOL	End-of-life
EV	Electric vehicle
EWP	Electrical water pump
FiTs	Feed-in-tariffs
FL	Frictional lift
FPO	Farmer producer organizations
GHG	Greenhouse Gas
GMS	Ground mounted solar
GW	Gigawatt
INDC	Intended nationally determined contributions
kWh	Kilowatt-hour
LCA	Lifecycle analysis
LULC	Land use land cover
MFI	Microfinance institutions
MNRE	Ministry of new and renewable energy
MPPT	Maximum power point tracking

Abbreviation	Full form
MSP	Minimum support prices
MW	Megawatt
NGO	Non-governmental organization
O&M	Operation and maintenance
PAYG	Pay as you go
PM-KUSUM	Pradhan Mantri Kisan Urja Suraksha evam Utthan Mahabhiyan
PPA	Power purchase agreement
РРР	Public-private partnerships
PR	Performance ratio
PV	Photovoltaic
REPP	Renewable energy-based power plants
ROI	Return on Investment
RTS	Rooftop solar
SHG	Self-help groups
STC	Standard test conditions
SWP	Solar photovoltaic water pump

LIST OF SYMBOLS

Symbol	Meaning
A _{SWP}	Area of solar PV
$B_{capacity}$	Battery capacity
$C_{O\&M}$	Operation & maintenance cost
<i>CO</i> ₂	Carbon Emission reduction
C _{cap}	Capital cost
C _{net}	Net consumer cost
C_t	Capital cost at time t
C _{total}	Total system cost
D _{transport}	Transportation distance
E _h	Hydraulic energy
E_{EV}	EV energy demand
$EF_{battery}$	Emission factor of the battery
EF _{diesel}	Emission factor for diesel
$EF_{disposed}$	Emission factor for disposal process
EF _{install}	Installation emission factor
<i>EF_{inverter}</i>	Emission factor of the inverter
$EF_{maintenance}$	Emissions factor from maintenance activities
EF _{pv}	Emission factor of PV module
EF _{recycle}	Emission factor during recycling process
$EF_{transport}$	Transportation emission factor
E _{SWP}	Energy generated by solar photovoltaic water pumping
	system
$E_{charged}$	Energy stored in the battery
E _e	Electrical energy
E _{grid}	Grid energy
$E_{irrigation}$	Energy requirement for irrigation
E_{pump}	Energy required for water pumping
E_{req}	Energy requirement of the battery

Symbol	Meaning
E _{sol}	Solar insolation
E _{sol}	Solar insolation
E _{solar}	Solar energy generation
$E_{supplied}$	Energy supplied to the battery
E _{surplus}	Excess energy available from SWP
E _t	Energy generated at time t
F _{tilt}	Panel tilt angle
GHG _{0&M}	GHG emissions during operation and maintenance phase
GHG _{end}	End of life GHG emissions
GHG _{install}	GHG emissions during installation phase
$GHG_{manufacture}$	GHG emissions during manufacturing phase
GHG _{reduction}	Reduction in GHG emission
GHG _{total}	Total lifecycle GHG emissions
GHG _{transport}	GHG emission during transportation
I ₀	Leakage current
I_L	Light generated current
I _{batt}	Current of battery
I _{capacity}	Inverter capacity
L _n	Diffusion length of electrons
L_p	Diffusion length of holes
$L_{shading}$	Energy loss due to shading
M _t	Maintenance cost at time t
0 _t	Operating cost at time t
P _{annual}	Annual profit
P _{inv}	Inverter capacity
P _{margin}	Profit margin
P _{monthly}	Monthly profit
P_{pv}	PV system capacity
P _{solar_max}	Maximum power generated by the solar panels
R_t	Annual net cash flow at in year t
T _{charging}	EV charging time

Symbol	Meaning
T _{life}	Total lifespan of PV system
T _{module}	Module temperature
V _{batt}	Voltage of battery
$W_{disposed}$	Weight of disposed components
W _{labor}	Total labour hours for installation
$W_{recycled}$	Total weight of recycled PV system components
W_{weight}	Total weight of all PV system
t_c	Battery charging duration
η_{PV}	Efficiency of PV module
$\eta_{charging}$	EV charging efficiency
η_{inv}	Inverter efficiency
$\eta_{storage}$	Efficiency of the battery storage system
η_{surf}	Surface efficiency
ω。	Solar hour angle
₹	Rupees
°C	Degree Celsius
A	Area
CUF	Capacity utilization factor
$E_{storage}$	Battery energy storage requirements
Ι	Current
k	Boltzmann constant
L	Project lifetime
LCOE	Levelized cost of energy
n	Number of days
NPV	Net present value
PBP	Payback period
q	Charge on an electron
Т	Temperature of the solar cell
V	Voltage
W	Width of depletion layer
ϕ	Latitude angle

Symbol	Meaning
CoI	Cost of irrigation
$G(\tau)$	Carrier generation rate
Н	Hydraulic head of pump
L(i,j)	Load requirement for EV charging at location i and time j
Q	Rate of flow of water
S	Government subsidy
g	Acceleration due to gravity
n	System lifetime
r	Discount rate
δ	Solar declination angle
ρ	Density of water