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3.1 Introduction 

As outlined in the preceding Chapters, the adoption and growth of solar energy in Assam, India, 

remain notably slow despite the region’s abundant solar resources, increasing demand for 

sustainable energy solutions, and promotional efforts by the government (Chapter 1). This 

disparity highlights the critical need for a precise and comprehensive understanding of the solar 

energy generation potential in the region. A robust framework to understand the potential of 

solar energy sharable among stakeholders including end-users, policymakers and energy 

promoters is essential for facilitating widespread adoption of solar energy technologies. 

Assessment of the solar photovoltaic (PV) potential in a region, particularly in rural areas, 

necessitates a spatial framework that integrates diverse and dynamically variable input 

parameters (elaborately discussed in Chapters 1 and 2). Precise data for representing spatially 

and temporally variable parameters are essential inputs for generating accurate and actionable 

insights. Existing tools and methodologies, while effective in specific contexts, are limited in 

their ability to accommodate the dynamic variability and diverse requirements of stakeholders. 

To address the critical gap, this study develops and applies a novel spatial and temporal 

framework for assessing solar photovoltaic energy potential in rural Assam, demonstrating its 

utility in localized energy planning.  

In addition to PV potential assessment, this study addresses the environmental impacts 

associated with the deployment of SPV systems by estimating Lifecycle Greenhouse Gas 

(GHG) emissions. It underscores the ecological aspects of transitioning from conventional 

energy sources to solar technologies, highlighting their contribution to environmental 

sustainability. 

This Chapter is organized in two parts to present both the above aspects systematically as 

elaborated below. 

The PART A (Spatial and Temporal Assessment of Solar Photovoltaic Potential) details the 

development and subsequent application of a framework to assess solar energy generation 

potential at spatial and temporal scales. The methodology consisting of (i) conceptualising the 

physical framework, (ii) development of spatial-temporal models, (iii) application of the model 

for spatial and temporal assessment of solar energy potential, (iv) data sources, and (v) 

assumption and limitations is presented in this PART A along with results and discussions. 
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PART B (Lifecycle GHG Emission Estimation) presents the methodology of assessment of 

GHG emissions attributed to distinctive lifecycle phases of the three solar PV systems (viz., 

RTS, GMS, and SWP). The greenhouse gas (GHG) emission reduction potential of solar PV 

systems compared to conventional electricity has been highlighted in Chapters 1 and 2. 

However, the diversity in existing GHG assessment methodologies necessitates a tailored 

approach. Based on a comprehensive review of the existing literature, this study adopts a 

rationale lifecycle analysis framework to estimate GHG emissions associated with the solar 

energy systems under consideration and is presented in Part B of this Chapter.  

By exploring the nexus among (i) solar energy availability (ii) space availability (iii) preference 

for generation option and (iv) system performance in connection with the deploying solar 

energy systems, this Chapter establishes a foundation for discussions in subsequent Chapters, 

integrating these analyses into the broader narrative of energy planning and sustainability. It 

contributes to strategic energy planning, promotes renewable energy integration, and supports 

the formulation of effective policies for achieving sustainability in rural energy systems. 
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PART A: SPATIAL AND TEMPORAL ASSESSMENT OF SOLAR PHOTOVOLTAIC 

POTENTIAL 

3.2 Conceptualizing the physical framework 

3.2.1 Energy potential of  solar PV systems: description of physical framework  

The central focus of this research is solar energy, with a specific emphasis on solar PV energy. 

Estimating solar energy potential is a multidimensional and dynamic challenge, influenced by 

spatial, temporal, and technological factors. Solar energy is inherently variable and uncertain, 

as its availability depends on geographical, meteorological, and land-use characteristics. Fig. 

3.1 illustrates a conceptual framework that traces the flow of solar energy from its source, the 

Sun, to its end use.  

 

Fig 3.1: Conceptual framework representing a description of physical systems 

Solar radiation intercepted by the Earth's surface is influenced by variations in land use, 

competing applications, and human activities. Accurate estimation of solar energy potential 

requires a thorough understanding of interrelated factors, including land-use and land-cover 

(LULC) classification, land applications, technological parameters of solar systems, and the 
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nature of transmission of harvested energy. LULC classification plays a pivotal role in 

identifying areas suitable for solar installations. Suitability depends on the type of system: RTS 

requires unshaded, structurally sound rooftops; GMS relies on large, barren, or fallow tracts of 

land; and SWP systems are suited to agricultural zones with specific water demand patterns. 

Evaluating solar potential requires consideration of current land use and anticipation of future 

changes driven by urbanisation, industrialization, or policy shifts. This dual focus ensures that 

solar energy planning is both effective and sustainable. 

Solar radiation variability over time and space, combined with the performance of PV 

collectors, significantly affects the quantity of energy that can be harvested. The performance 

of PV modules depends on environmental conditions and technical characteristics, which need 

to be estimated precisely. Energy transmission to end users also presents challenges, such as 

transmission losses and fluctuating demand profiles. This research proposes an integrative 

methodology to represent the real-life representation of the complexities and uncertainties of 

physical systems concerned with the estimation of solar energy.  

3.2.2 Key parameters for the assessment of solar PV energy potential 

By utilising diverse data sources, including satellite imagery, ground-based observations, and 

field surveys, this study develops a comprehensive framework for evaluating solar energy 

potential. The proposed spatial-temporal model captures dynamic variations in solar radiation, 

land-use patterns, and system performance attributes. It also accounts for the heterogeneity of 

land surfaces, recognising diverse land-use types and competing applications. Temporal 

dynamics are incorporated to address fluctuations in solar radiation and their implications for 

energy generation. This multidimensional framework provides a detailed understanding of 

solar energy potential while guiding land-use and energy resource management decisions. By 

addressing the dynamic interplay of geographic and technological factors, the framework 

enhances the sustainability and efficacy of solar energy planning. 

3.3 Development of the spatial-temporal model for solar PV potential assessment 

Spatial-temporal modelling forms the backbone of solar PV potential assessment, offering a 

dynamic approach to capture variations in solar energy availability over time and across 

different locations. As discussed earlier, this model development integrates environmental 

factors, solar irradiance patterns, and land use characteristics to generate accurate and context-
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specific insights. By incorporating advanced mathematical techniques and real-world 

parameters, the spatial-temporal model ensures robust predictions, aiding in optimizing solar 

installations and maximizing energy output across diverse geographic regions. The 

development of the framework is based on fundamental relationships expressed to capture 

spatial and temporal aspects as detailed below.  

The solar energy generation potential of a region with given geographical boundary, during a 

specified period is estimated using fundamental relationships. However, for considering the 

variabilities concerning space and time, the region is divided into distributed spatial elements 

(smaller units). Similarly, the specified duration is also disintegrated into smaller temporal 

units. The assessed locational and temporal potential is then integrated over the entire region 

and duration. 

3.3.1 Considerations for spatial variations  

The geographical locations suitable for the installation of solar PV systems are identified using 

standard geospatial techniques. The administrative boundaries encompassing such variable 

locations are preferred to estimate the (i) solar energy potential and (ii) available land resources.  

3.3.2 Considerations for temporal variations 

When evaluating the potential for solar energy generation, it is crucial to consider the duration 

of sunlight available at a given location, as it directly impacts the overall energy yield. 

The sunrise, sunset, and day length can be calculated using specific equations that take into 

account the observer's latitude, the solar declination, and the time of year. Equation 3.1 is used 

for calculating sunrise and sunset times based on the solar hour angle [1]: 

cos𝜔∘ = − tan𝜙 × tan 𝛿                   (3.1) 

where 𝜔∘ is the solar hour angle (negative for sunrise, positive for sunset); 𝜙 is the latitude of 

the observer; 𝛿 is the solar declination, which varies throughout the year and can be estimated 

using Eq. 3.2. 

𝛿 = 23.44° × 𝑠𝑖𝑛 5"#$
"#%

× (𝑛 + 10);                  (3.2) 

where 𝑛 is the day of the year. 
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The hour angle (𝜔∘) is converted to time (Eq. 3.3) noting that the Earth rotates at 15° per hour: 

𝑡 = &∘
'%°

                     (3.3) 

The local sunrise or sunset times are adjusted by adding or subtracting this time from local 

noon. The length of daylight is then calculated by finding the difference between sunset and 

sunrise times as shown in Eq. 3.4. 

𝑡)*+,-./0 = 𝑡1 − 𝑡2                    (3.4) 

3.3.3 Theoretical solar PV energy potential: assessment at spatial and temporal scales 

The daily energy generation by a photovoltaic (PV) system at location 𝑖 and time 𝑗 is given by 

Eq. 3.5. 

𝐸(𝑖) = 3"#×5(-)
'$$$

× ∫ 𝑆𝐼(𝑖, 𝑗)𝑑𝑡0$
0%

                  (3.5) 

where 𝐸(𝑖) is the total energy generated by the PV system, kWh/day; 𝜂89 is the efficiency of 

the solar PV module; 𝐴(𝑖) is the area of the PV system available for installation at location 𝑖, 

m²; 𝑆𝐼(𝑖, 𝑗) is the solar irradiance incident at location 𝑖 and time 𝑗, W/m²; 𝑡2 and 𝑡1 are the start 

and end times for solar irradiance (sunrise and sunset); and the factor '
'$$$

 converts W to kW. 

Consequently, the total solar energy 𝐸2:,(𝑖, 𝑗) available at location 𝑖	and time 𝑗 can be estimated 

using Eq. 3.6.  

𝐸2:,(𝑖, 𝑗) = ∑ (𝑆𝐼(𝑖, 𝑗) × 𝜂2;<=(𝑖, 𝑗) × ∆𝑡)
0$
>?0%                 (3.6) 

where 𝐸2:,(𝑖, 𝑗) is the total solar energy reaching the surface, kWh/m2; 𝜂2;<=(𝑖, 𝑗) is the 

efficiency factor representing the fraction of extraterrestrial solar irradiance that successfully 

reaches the surface. This efficiency typically ranges between 0 and 1, with a value closer to 1 

indicating minimal losses. 

The surface efficiency factor, 𝜂2;<=(𝑖, 𝑗), varies spatially and temporally due to location-

specific and time-dependent factors. Spatially, it is influenced by atmospheric conditions like 

pollution, dust, or aerosols, which reduce transmittance, and altitude, which may lower 
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atmospheric losses. Local shading from buildings, trees, or terrain, as well as microclimatic 

variations like frequent cloud cover, also impact efficiency. Temporally, 𝜂2;<=(𝑖, 𝑗) is affected 

by dynamic cloud cover, changes in solar angle causing variable atmospheric losses, and 

seasonal or daily shifts in shading patterns, such as longer shadows in winter or during early 

morning and late afternoon. 

Integration with the energy output equation, the total energy 𝐸(𝑖) generated at location 𝑖 is 

given by Eq. 3.7. 

𝐸(𝑖) = 𝜂89 × 𝐴(𝑖) × 𝐸2:,                   (3.7) 

Substituting 𝐸2:,(𝑖, 𝑗) from Eq. 3.6 the new equation (Eq. 3.8) becomes 

𝐸(𝑖) = 𝜂89 × 𝐴(𝑖) × 𝐸2:, × 5∑ (𝑆𝐼(𝑖, 𝑗) × 𝜂2;<=(𝑖, 𝑗) × ∆𝑡)
0$
>?0% ;              (3.8) 

3.3.4 Achievable solar PV energy potential 

In Eq. 3.8 the total energy generated by a PV system, the parameters were considered under 

ideal conditions. However, in actual practice, the energy generated is influenced by additional 

real-world factors, such as shading, inverter efficiency, tilt orientation, and module 

temperature. 

To account for these influences, the equation is modified to include correction factors. The 

impact of temperature is accounted for using the Power Temperature Coefficient (PTC), which 

represents the percentage change in the output of a PV module for every degree Celsius 

deviation from the standard operating temperature of 25°C. Incorporating these factors, the 

modified equation becomes [2-5]: 

𝐸(𝑖) = 𝜂 × 𝐴(𝑖) × 𝐸2:, × (1 − 𝐿2/*)-@.) × 𝜂-@A × 𝐹0-,0 × 51 +
8BC×(B&'()*$DE%℃)

'$$
;              (3.9) 

where 𝐿2/*)-@. represents the percentage of energy loss due to shading; 𝐹0-,0 adjusts the 

effective irradiance based on panel angle; 𝜂-@A represents the inverter efficiency; 𝑃𝑇𝐶  is the 

temperature coefficient of power, %/°C; 𝑇G:);,1 is the module temperature, °C. 

𝑇G:);,1 = 𝑇*GH-1@0 + 5
IJCBDE$

K$$
;                (3.10) 
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𝑁𝑂𝐶𝑇 being the Nominal Operating Cell Temperature, 51 + 8BC×(B&'()*$DE%℃)
'$$

; adjusts the 

power output based on the deviation of the module temperature from the standard 25°C. 

The correction factor can be represented as Performance Ratio (𝑃𝑅) 

𝑃𝑅 = (1 − 𝐿2/*)-@.) × 𝐹0-,0 × 51 +
8BC×(B&'()*$DE%℃)

'$$
;             (3.11) 

The performance ratio can also be represented as: 

𝑃𝑅 = 5L0;*,	J;0N;0	O@1<.+
B/1:<10-L*,	P*Q-G;G	O@1<.+	J;0N;0	*0	RBC

              (3.12) 

The performance ratio is a measure of the overall efficiency of a solar PV system, including all 

losses such as temperature effects, inverter losses, shading, dirt on panels, and other factors. It 

is expressed as a percentage of the theoretical maximum efficiency. Typical Value: PR 

typically ranges from (0.50 to 0.90, default value = 0.75) for well-maintained systems. The 

performance ratio gives a holistic view of how well the system is performing under actual 

conditions compared to its theoretical maximum output. 

The solar potential 𝑆𝑃(𝑖, 𝑗), which represents the usable energy generated by a PV system after 

accounting for system characteristics, is estimated using Eq. 3.13. 

𝑆𝑃(𝑖, 𝑗) = 𝜂89 × 𝐴(𝑖) × 5∑ (𝑆𝐼(𝑖, 𝑗) × 𝜂2;<=(𝑖, 𝑗) × ∆𝑡)
0$
>?0% ; × 𝑃𝑅           (3.13) 

Substituting 𝐸2:,(𝑖, 𝑗): 

𝑆𝑃(𝑖, 𝑗) = 𝜂89 × 𝐴(𝑖) × 𝐸2:, × 𝑃𝑅                (3.14) 

The fill factor is a parameter that describes the quality of the solar PV cell [6, 7]. It is defined 

as the ratio of the maximum power point (𝑃G*Q) to the product of the open-circuit voltage (𝑉:L) 

and the short-circuit current (𝐼2L) of the cell and estimated using Eq. 3.15.  

𝐹𝐹 = 8&+,
9'-×S%-

                   (3.15) 

The fill factor is typically in the range of 0.7 to 0.85 for silicon-based solar cells [6, 7]. While 

the fill factor is crucial at the individual solar cell or module level, it is usually already 

accounted for when determining the efficiency of the PV modules. The fill factor is generally 
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not needed in the system-level potential equation because it is already included in the 

calculation of the panel efficiency (𝜂89) that we use in the equation. The efficiency of 

commercial solar panels inherently accounts for the fill factor. 

3.4 Application of the spatial-temporal model framework for solar PV energy assessment 

 
Fig. 3.2: PV potential assessment framework for RTS, GMS, and SWP systems 
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The spatial-temporal model framework for solar PV energy assessment, illustrated in Fig 3.2, 

integrates multiple data sources and analytical steps to evaluate the solar PV potential of a 

given study area. The framework begins with selecting the study area and employing 

Geographic Information System (GIS)-based spatial analysis of satellite and ground data. Key 

land types such as barren land, cropland, and built-up areas are identified and analyzed for PV 

installation. The model incorporates field surveys and technical assessments to map potential 

rooftop, ground and crop areas for solar installations. Using Python-based PVLib simulation, 

the model calculates the potential for PV systems. The results include estimations of total PV 

potential, greenhouse gas (GHG) emission reductions, and per capita energy availability within 

the study area. 

3.4.1 Selection of study area  

The selection of the study area aimed to encompass geographic diversity concerning key 

aspects of the study, specifically the potential for solar energy generation from RTS, GMS, 

and SWP, ensuring that the findings are broadly applicable. Based on a preliminary survey, a 

10 km² area surrounding Tezpur University was chosen taking into consideration the varied 

land use patterns, and the presence of agricultural and institutional infrastructure in the area. 

This mix allows for a comprehensive feasibility analysis of rooftop solar potential, barren land 

solar capacity, and solar irrigation feasibility. The study area is depicted in Fig. 3.3.  
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Fig 3.3: Location map of the selected study area 

Additionally, Fig. 3.4 presents the layout map of villages in the study area, including village 

names and boundaries, providing a clearer understanding of the local context for solar energy 

assessment. Furthermore, Fig. 3.5 illustrates the distribution of the number of households 

across villages, offering insight into the demographic distribution and its relevance to solar 

energy deployment strategies. These figures collectively provide a comprehensive overview 

of the geographic, demographic, and infrastructural aspects of the study area, crucial for 

accurate solar energy potential assessment. 
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Fig 3.4: Layout map of villages in the study area with names and boundaries 

The presence of large rooftops, both at Tezpur University and in residential areas, provides 

ample space for evaluating solar PV installations on buildings. The area has some stretches of 

unused and barren land that can be assessed for large-scale solar installations. This aligns with 

the objectives of mapping and evaluating barren land solar potential in rural regions. 

Agriculture is a dominant activity in the villages around Tezpur University, with major crops 

like rice, mustard, and seasonal vegetables. Field visits revealed that major agricultural lands 

in the study area rely on irrigation systems powered by diesel and grid electricity-operated 

pumps. Detailed crop data is provided in Appendix 3A to offer further insights into the 

region's agricultural practices. These practices are heavily dependent on water, and diesel and 

grid-powered pumps often drive irrigation. Solar photovoltaic water pumps (SWPs) are 

expected to replace these systems, providing a more sustainable and cost-effective solution. 

The study area is suitable for implementing and studying solar irrigation systems, as it includes 

both rain-fed and irrigated agricultural lands. This offers an opportunity to evaluate how solar 

energy can be integrated into rural agricultural practices, helping farmers save on energy costs 

while reducing carbon emissions. Table 3.1 summarizes the village demographics and the 

number of households surveyed. 
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Fig 3.5: Distribution of the number of households across villages 

Table 3.1: Village demographics and household survey data [8] 

No. of Villages No. of Households No. of Households surveyed Total Population 

61 24,606 1,793 1,21,703 

The detailed village data, including additional specifics and breakdowns, is provided in 

Appendix 3B. 

3.4.2 Selection of solar PV system types 

The study considers the following three types of solar PV systems as mentioned earlier, which 

are commonly deployed in rural areas for assessment of solar energy potential. 

a) Rooftop solar (RTS): Designed for residential and commercial rooftops, RTS systems 

harness solar energy at the point of consumption, reducing transmission losses. 

b) Ground-mounted solar (GMS): GMS installation, typically utility-scale, are deployed on 

open land and cater to relatively larger energy demands. 

c) Solar photovoltaic water pump (SWP): Targeted at off-grid rural areas, SWP systems 

address critical needs such as irrigation and potable water supply. 
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3.4.3 Assessment and mapping of available space for solar PV installation  

Assessment of area requirements for PV systems 

The area required for the installation of a PV system is a critical parameter in determining its 

feasibility, particularly to ensure optimal utilisation of available space. Guidelines from the 

National Renewable Energy Laboratory (NREL) suggest that a 1 kW system, under standard 

conditions, typically requires approximately 100 square feet (9.3 square meters) of space [9]. 

Similarly, the Solar Energy Industries Association (SEIA) indicates that the space requirements 

for a 1 kW solar PV system range from 90 to 120 square feet (8.4 to 11.1 square meters), 

depending on the module's efficiency and installation conditions [10]. These estimations align 

with engineering standards, where approximately 10 square meters per kW is a reliable 

benchmark for designing PV systems [11]. 

This area estimation is influenced by several factors, including the efficiency of commercially 

available solar panels, the need for spacing between panels to reduce shading, and maintenance 

requirements. Additionally, the optimal tilt and orientation of the panels must be factored in to 

maximise sunlight exposure throughout the day [12]. These considerations ensure that system 

designs are technically feasible, economically viable, and adaptable to site-specific conditions 

while accounting for efficiency losses and maintenance needs. 

Installation capacity calculation 

The installation capacity 𝑃-@20*,, in kW based on the available area (𝐴) is then calculated using 

Eq. 3.16: 

𝑃-@20*,, =
5

5.$/
                   (3.16) 

where 𝑃-@20*,, is the installation capacity in kW; 𝐴 is the available area for PV installation in 

m²; 𝐴<1T is the area required to install 1 kW of PV capacity, which depends on the panel type 

and its efficiency. 

The value changes depending on the panel efficiency. Higher efficiency panels will produce 

the same power in a smaller area compared to lower efficiency panels. The area requirement 
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per kW can be estimated based on the efficiency of the PV modules. The general relationship 

between area and power output is: 

The value of 𝐴<1T varies depending on the efficiency of the PV modules. Higher efficiency 

panels generate the same power output in a smaller area compared to lower efficiency panels. 

The area requirement per kW (𝐴<1T) can be estimated based on the efficiency (𝜂89) of the PV 

modules using Eq. 3.17: 

𝐴<1T =
'
3"#

                   (3.17) 

Where 𝜂89 represents the efficiency of the PV modules, which depends on the technology type 

and real-world conditions. Table 3.2 below provides a comparison of different PV module 

technologies, detailing their efficiency ranges, area requirements per kW, and notable features. 

This serves as a reference for selecting the most appropriate technology, considering factors 

such as efficiency, available area, cost, and performance characteristics. 

Table 3.2: PV technology types with efficiency, area requirements, and key features [13-15] 

Technology Type Efficiency 
Range (%) 

Area Required 
per kW (m²/kW) 

Typical features 

Monocrystalline Silicon 18 – 22 5.56 – 4.55 High efficiency, performs well in low-
light conditions. Typically, higher cost. 

Polycrystalline 
(Multicrystalline) Silicon 15 – 20 6.67 – 5.00 

Moderate efficiency, lower cost 
compared to monocrystalline. Not as 
efficient in low-light as monocrystalline. 

Thin-Film (e.g., 
Cadmium Telluride or 
CIGS) 

10 – 12 10.00 – 8.33  

Lower efficiency, lightweight, flexible, 
and ideal for large installations. 
Typically, lower cost, good performance 
in diffused light. 

Bifacial Modules 
(capture light from both 
sides) 

19 – 24 5.26 – 4.17 

Captures sunlight from both front and 
rear, leading to increased energy 
production. Requires reflective surfaces 
for optimal performance. 

3.4.4 Application of geospatial tools 

This study employed a range of advanced remote sensing and GIS tools to ensure precise 

mapping and analysis of available areas for solar PV installation, tailored to various system 

types. These tools were selected for their specific strengths in handling spatial data, land 

classification tasks, and integration with field observations. 
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GIS tools for spatial analysis 

ArcGIS 10 was used to analyze and map available areas [16] for different solar PV system 

types, including rooftop solar (RTS), ground-mounted solar (GMS), and solar water pump 

(SWP) installations. Its high-resolution spatial visualization capabilities and layered analysis 

enabled detailed mapping of land-use patterns and identification of suitable locations. ArcGIS 

also facilitated the integration of field data, ensuring ground-truthing and validation of spatial 

analyses. The Sentinel Application Platform (SNAP) was central to Land Use Land Cover 

(LULC) classification [17], which identified critical land cover classes such as built-up 

clusters, barren/fallow land, and rice cropland. These classes informed the assessment of 

available space for each PV system type. SNAP’s advanced capabilities in atmospheric 

correction and high-resolution image processing enhanced the accuracy of classification 

results, ensuring reliable identification of potential solar installation sites. QGIS played a 

crucial role in layout preparation and flexible data management [18]. Its extensive plugin 

ecosystem supported the creation of detailed maps for presentation and analysis, while its user-

friendly interface allowed for efficient handling of attribute data and visualization of results. 

This integration of GIS tools; ArcGIS for detailed spatial analysis, SNAP for efficient 

classification, Google Maps for high-resolution verification, and QGIS for layout preparation 

resulted in a robust and comprehensive approach to identifying areas suitable for PV 

installations. 

Sentinel-2A imagery for LULC classification 

The foundational data source for LULC classification was high-resolution multispectral 

imagery from the Sentinel-2A satellite, part of the European Space Agency’s (ESA) 

Copernicus Programme [19]. The spectral and spatial detail of this imagery enabled precise 

identification of critical land cover types for solar PV planning. Key land cover classes 

included: (i) Built-up clusters for assessing rooftop solar (RTS) potential, (ii) Barren/fallow 

land for evaluating ground-mounted solar (GMS) feasibility and, (iii) Croplands for solar 

irrigation and water pumping applications (SWP). 

To ensure accuracy, Sentinel-2A imagery underwent a series of rigorous pre-processing steps. 

Atmospheric correction was applied to remove distortions caused by atmospheric interference, 

followed by orthorectification and georeferencing to the Universal Transverse Mercator 
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(UTM) reference system (zone 46N). Additionally, spectral bands were resampled to a 10-

meter spatial resolution using bilinear up-sampling and mean down-sampling techniques, 

ensuring consistent data quality across the dataset. 

Classification techniques 

Two supervised classification techniques were applied to the LULC data to identify areas 

available for solar PV installation: 

a) Random Forest Classifier (RFC) [20]: A robust ensemble learning method used to manage 

the spectral complexity of Sentinel-2A imagery. RFC’s ability to handle high-dimensional 

data and mitigate overfitting was particularly effective in distinguishing LULC types 

relevant to solar PV planning. 

b) Maximum Likelihood Classifier (MLC) [21]: A probabilistic method assuming a Gaussian 

distribution of input data. MLC was used to delineate specific features like barren land and 

croplands, providing a straightforward yet reliable classification method. 

A comparative analysis of the two methods evaluated their performance using accuracy 

metrics, such as user’s accuracy, producer’s accuracy, and overall classification accuracy. The 

results ensured reliable identification of available areas for solar PV installations. 

3.4.4.1 RTS potential assessment 

The identification of built-up areas, which are critical for rooftop solar installations, was 

initially performed through GIS-based Land Use and Land Cover (LULC) classification. The 

classification provided an overview of the built-up clusters within the selected villages, forming 

the basis for assessing RTS potential. However, to refine the analysis and enhance the accuracy 

of the estimates, detailed field surveys were conducted alongside the GIS analysis. This 

integration of spatial data and field observations ensured the identification of specific 

characteristics of rooftops, such as their structural suitability for solar panel installations and 

their shadow-free areas. 

A random sampling method [22] was employed to estimate the total rooftop solar potential 

across the 61 villages. This method ensured that the collected data were representative of the 

larger population and minimized biases in the selection process. The population for the study 

comprised all residential buildings within the villages identified through LULC classification. 
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The administrative boundaries, geospatial socio-economic datasets, and information from the 

Village Information System (VIS) based on the 2001 Census of India were also incorporated 

to ensure the accuracy of the population definition. 

To determine the sample size, a random selection of households was performed for each 

village, with the sample size ranging from 5% to 20% of the total households, depending on 

the village size. This approach maintained a statistically significant sample size that was 

manageable within the constraints of field data collection. The number of households to be 

sampled in each village, 𝑛A, was calculated as: 

𝑛A =
I0×8
'$$

                   (3.18) 

where 𝑁A represents the total number of households in the village and 𝑃 is the percentage of 

households sampled. The selection process was conducted using a random number generator 

applied to a complete list of households in each village, ensuring that every household had an 

equal probability of being included in the sample. 

For each selected household, the field survey collected data on rooftop type (flat or sloped), 

building type (residential or commercial), rooftop area (in square meters), shadow-free areas 

(determined by identifying obstructions such as trees or nearby buildings), south-facing 

orientation (crucial for maximizing solar exposure in the Northern Hemisphere), tilt angle (roof 

angle with respect to the ground), and structural capacity to support solar panels. These 

parameters were essential for determining the suitability of rooftops for PV installations and 

their overall potential. 

The collected data were extrapolated to the entire population of households in each village to 

estimate the total rooftop solar potential. The total rooftop area for each village, 𝐴0:0*,, was 

calculated using: 

𝐴0:0*, =
5%×I0
@0

                  (3.19) 

where, 𝐴0:0*, is the estimated total rooftop area for the village and 𝐴2 is the average rooftop 

area from the sampled households. The same extrapolation method was used to calculate 

shadow-free areas and other relevant factors influencing solar potential. These calculations 
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allowed for a comprehensive estimate of the total rooftop solar potential across the 61 villages. 

By using random sampling and extrapolation techniques, this method provides a reliable and 

statistically sound estimation of the rooftop solar potential across the selected region. 

3.4.4.2 GMS potential assessment 

The assessment of Ground-Mounted Solar (GMS) potential involved identifying suitable 

barren and fallow land using GIS-based Land Use and Land Cover (LULC) classification. 

Sentinel-2A imagery with a 10-meter spatial resolution was used to perform supervised 

classification, distinguishing barren land from other land use categories such as built-up areas, 

water bodies, and agricultural land. The barren land category, essential for solar PV installation, 

was identified based on its unique spectral signature. 

Field verification using GPS data ensured the accuracy of the classification. However, due to 

the limitations of the imagery's spatial resolution, barren land was grouped with grass-covered 

fallow areas and other indistinct features such as village playgrounds, classifying them 

collectively under the grassland/fallow land category. This step minimized misclassification 

while maintaining practical relevance for solar energy assessments. 

3.4.4.3 SWP potential assessment 

The assessment of solar water pump (SWP) potential began with the determination of cropland 

areas requiring irrigation. On-screen digitization of rice croplands was conducted using QGIS, 

incorporating data from the Land Use Land Cover (LULC) classification and high-resolution 

visualization from Google Earth. This process provided an accurate determination of cropland 

areas, forming the basis for estimating the volume of water required for irrigation.  

From the digitized cropland area, the daily volume of water required (𝑉, measured in m3/day) 

was estimated based on agricultural water demand for rice cultivation. The next step involved 

calculating the hydraulic power required (𝑃/+)<*;,-L) to lift water, expressed as [23]: 

𝑃/+)<*;,-L =
U×.×9×V
01)&1

                 (3.20) 

In this equation, 𝜌 represents the density of water, which is taken as 1000 kg/m3, while 𝑔 is the 

gravitational acceleration, equal to 9.81 m/s2. The volume of water required per day is denoted 

by 𝑉, and the total head (𝐻) represents the total lift height in meters, which includes the static 
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lift, friction losses, and any additional pressure requirements. The term 𝑡N;GN specifies the 

daily operating hours of the pump. 

Using the hydraulic power, the daily energy required for water pumping (𝐸N;GN, in kWh/day) 

was then calculated as: 

𝐸N;GN =
U×.×9×V

31)&1×3&'2'.×3340$.2$.×'$$$
                      (3.21) 

Here, 𝜂N;GN is the efficiency of the pump. Similarly, 𝜂G:0:< represents the motor efficiency, 

𝜂-@A1<01< refers to the inverter efficiency, which is typically around 90% or 0.9. The constant 

1000 is used to convert watts (W) to kilowatts (kW). 

The energy demand was then used to calculate the required PV power capacity (𝑃89) using the 

formula: 

𝑃89 =
O1)&1

VR8×W($.+2345
                  (3.22) 

In this equation, 𝐻𝑆𝑃 represents the average daily peak sun hours at the location, measured in 

hours per day, while 𝐹)1<*0-@. accounts for various system losses, such as those caused by dust, 

temperature, and wiring inefficiencies. The derating factor typically ranges between 0.75 and 

0.85. 

The total number of solar panels (𝑁) required to meet the pumping power demand was then 

determined using: 

𝑁 = 8"#
81+4$*

                   (3.23) 

In this equation, 𝑃N*@1, refers to the rated power output of each solar panel, measured in 

kilowatts. 

For systems using alternating current (AC) pumps, the inverter capacity (𝑃-@A1<01<) was 

calculated to ensure efficient operation while including a safety margin of 25% above the 

pump’s peak power demand. The inverter capacity was calculated as: 

𝑃-@A1<01< = 𝑃N;GN × 1.25                 (3.24) 
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Here, 𝑃N;GN represents the actual power rating of the pump, measured in kW. Additionally, 

cables should be designed to ensure that they could handle the current with minimal voltage 

drop, typically less than 3% over the distance. 

 

The total SWP potential for each location was computed by summing up the contributions from 

the identified croplands.  

3.4.4.4 Combined solar potential assessment 

To evaluate the overall solar energy potential at a given location, the contributions from the 

three systems were integrated into a unified framework. The total solar potential at location 𝑖 

was calculated using the following equation: 

𝑆𝑃(𝑖) = 𝑆𝑃XBR(𝑖) + 𝑆𝑃YPR(𝑖) + 𝑆𝑃RZ8(𝑖)               (3.25) 

where, 𝑆𝑃(𝑖) represents the total solar potential of the 𝑖 location, combining the contributions 

from RTS, GMS and SWP. 𝑆𝑃XBR(𝑖) denotes the potential from RTS, 𝑆𝑃YPR(𝑖) represents the 

potential from GMS, 𝑆𝑃RZ8(𝑖) refers to the potential from SWP at 𝑖-th location. 

3.4.5 Simulation of PV energy potential using PVLib-Python  

Simulation plays a critical role in assessing the performance of photovoltaic (PV) systems by 

providing detailed insights into energy output under varying environmental conditions. By 

leveraging computational tools, this study employs Python 3 [24] and Visual Studio Code (VS 

Code) to simulate the behavior of PV systems, incorporating site-specific parameters such as 

solar irradiance, module efficiency, and ambient temperature. The simulation process 

integrates advanced modeling techniques to predict PV system performance with precision and 

reliability, ensuring an accurate evaluation of energy generation potential. 

Use of PVLib-Python library 

The pvlib-python library was selected for its versatility in simulating PV system performance 

under various environmental conditions [25, 26]. This library supports detailed modeling of 

PV systems by accounting for geographic location, meteorological variables, and PV module 

characteristics. By enabling robust calculations of direct current (DC) and alternating current 

(AC) power output, pvlib-python offers an accurate estimation of energy generation potential. 
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The primary objective of the simulation is to evaluate the energy output of PV systems by 

incorporating factors such as solar irradiance, ambient temperature, and wind speed. 

The simulations were conducted using Python 3 within the Visual Studio Code (VS Code) 

environment. VS Code was chosen for its integrated terminal, debugging tools, and extensions 

that enhance Python development. Its features, including IntelliSense, Git integration, and 

customizable interface, made the simulation process efficient and streamlined, ensuring 

accurate execution and analysis of the workflow. 

3.4.6 Methodology for simulation 

The workflow for simulating PV system performance using pvlib-python involves several 

sequential steps [27], as illustrated in Fig. 3.6. These steps include defining the geographic 

location, preparing weather data, specifying PV system parameters, constructing a model chain, 

executing the simulation, and analyzing the results. The methodology is detailed below: 

a) Geographic location definition: The geographic location of the PV installation was defined 

by specifying the latitude, longitude, and time zone of the site. This information is critical 

for calculating solar angles, solar position, and the local availability of solar resources, 

which directly influence energy generation. 

b) Weather data preparation: Weather data, including global horizontal irradiance (GHI), 

ambient temperature, and wind speed, was used to simulate environmental conditions. These 

parameters were sourced from meteorological databases or field measurements to ensure 

realistic input for the simulation. Weather data was prepared and formatted to align with 

pvlib-python's requirements. 

c) PV system parameter specification: The parameters of the PV system were defined, 

including the nominal power of the PV modules, the inverter’s AC power capacity, tilt angle, 

azimuth, and other system properties. This step was critical for modeling the system’s 

energy production potential under specific environmental conditions. 
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Fig 3.6: PVlib simulation flowchart: Steps for photovoltaic energy system modeling 
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d) Model Chain Construction: The pvlib-python library was used to construct a ModelChain, 

which integrates system parameters, geographic location, and weather data to calculate the 

energy output of the PV system. The library provides specific models for DC and AC power 

calculations (e.g., ‘pvwatts’) to ensure consistency and simplicity. The ModelChain enabled 

dynamic simulation of the interaction between the environment and the PV system. 

e) Simulation Execution: The simulation was executed using the run_model method provided 

by pvlib-python. This method calculated hourly or sub-hourly DC and AC power outputs 

for the simulation period. The output included estimated DC power, AC power, and total 

energy generated. 

f) Result Analysis and Visualization: The temporal variations in energy output were analyzed 

using visualization techniques. The results provided insights into system performance over 

time, enabling the identification of patterns and trends in energy generation. Visualization 

tools, such as matplotlib, were used to create graphs and plots for detailed analysis. 

Python script development and implementation 

To streamline the simulation process, a Python script was developed to integrate all the 

aforementioned steps into a cohesive workflow. The script included definitions for location, 

weather data preparation, system parameter specification, simulation execution, and 

visualization of results. This design ensured that the workflow was reproducible, adaptable, 

and user-friendly. 

The script relied on the pvlib-python library for accurate energy calculations and incorporated 

additional dependencies such as pandas for data manipulation and matplotlib for visualization. 

Users were advised to execute the script using Python 3 within the VS Code environment. The 

integrated tools in VS Code, including its debugging capabilities and dependency management, 

enhanced the usability and efficiency of the simulation workflow. 

Reproducibility and flexibility 

The developed Python script offers a practical example for analyzing photovoltaic system 

performance. By consolidating all steps into a single, cohesive script, the approach provides a 

flexible framework that allows users to tailor inputs and parameters to suit specific project 
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requirements. The methodology ensures reproducibility across different scenarios, enabling its 

application in diverse geographic locations and system configurations. 

The script also serves as a flexible tool for researchers and practitioners, facilitating the analysis 

of PV system performance under varying environmental conditions. Detailed guidance on 

executing the script is provided in Appendix 3C. 

3.4.7 Estimation of per capita energy availability (PCEA) 

Per capita electricity consumption is a critical metric for evaluating energy access and its 

impact on quality of life, particularly in rural regions where energy deficits are prevalent [28, 

29]. This section focuses on estimating the potential per capita energy availability (PCEA) 

derived from rooftop solar (RTS), ground-mounted solar (GMS), and solar water pump (SWP) 

systems across 61 villages in rural Assam. By integrating the estimated energy potential from 

these systems with population data, this analysis provides a quantitative measure of the 

additional electricity availability per individual, highlighting the transformative potential of 

solar energy deployment in bridging rural energy gaps. 

Contribution of RTS systems 

RTS systems, characterized by their decentralized nature, offer a targeted solution for 

enhancing household-level energy access. The deployment of RTS systems ensures that energy 

production is localized, making it especially impactful in areas where centralized energy 

distribution is limited. By evaluating the collective impact of RTS installations, this study 

illustrates how solar energy can elevate per capita energy availability to levels that align with 

national and global benchmarks. Furthermore, RTS systems provide the flexibility to scale 

energy generation in tandem with local energy demands, contributing to sustainable energy 

solutions at the household level [30]. 

Contribution of GMS systems 

GMS systems are designed for large-scale energy production, addressing village-wide energy 

needs through their scalability and higher production potential. These systems are well-suited 

for collective energy solutions, ensuring equitable access across the community. By utilizing 

barren and fallow lands for installation, GMS systems not only maximize energy output but 

also contribute to regional energy independence. Their ability to generate substantial energy 
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makes them a crucial component in the overall strategy to enhance rural energy access and 

bridge the urban-rural energy divide [31]. 

Contribution of SWP systems 

SWP systems primarily address agricultural energy needs by reducing dependence on 

conventional energy sources for irrigation and water pumping. While their primary utility lies 

in supporting agricultural activities, SWP systems often produce surplus energy that can be 

redirected for secondary purposes. This surplus energy can be integrated into local energy 

grids, enabling broader utilization and enhancing overall energy availability in rural areas. By 

incorporating the energy potential from SWP systems into the PCEA calculation, this study 

ensures a holistic representation of the contributions of solar energy to rural energy access, 

particularly in regions where agriculture is the dominant livelihood [32]. 

By combining the energy potentials of RTS, GMS, and SWP systems with population data, this 

approach offers a comprehensive perspective on the socio-economic benefits of solar energy 

deployment. The results demonstrate how solar energy can bridge energy gaps, enhance living 

standards, and align rural communities with global energy access goals. The integration of 

these systems into the rural energy framework not only addresses immediate energy needs but 

also fosters sustainable development, driving progress in line with the United Nations 

Sustainable Development Goals (SDGs). 

The per capita energy availability for RTS, GMS, and SWP systems is calculated using the 

following equation: 

𝑃𝐶𝐸𝐴	(𝑘𝑊ℎ/𝑦𝑒𝑎𝑟) = B:0*,	O@1<.+	8:01@0-*,	([Z//+1*<)
8:N;,*0-:@

             (3.26) 

where, Total Energy Potential (kWh/year) = Energy Potential from RTS + Energy Potential 

from GMS + Energy Potential from SWP. 

3.5 Data sources 

The investigation relies on various data sources and parameters, as summarised in Table 3.3. 

For field surveys, the detailed questionnaire is provided in Appendix 3D. 
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Table 3.3: Data sources and parameters considered for the study [8, 33] 

Sl. 
No. 

Group Parameters Data Sources 

1 Demographic and 
Village 
Information 

Population, number of 
households, occupation, 
income 

Census of India, Survey of India 

2 Geographic 
Information 
System (GIS) 

Satellite images, shapefiles, 
raster data 

National Remote Sensing Centre, DIVA GIS, 
North Eastern Spatial Data Repository (NeSDR) 

3 Solar Resource 
and Weather 
Information 

Solar irradiance, 
temperature, wind speed 

NASA Prediction of Worldwide Energy 
Resources, National Renewable Energy 
Laboratory (NREL), Global Solar Atlas, Centre 
for Wind Energy Technology (C-WET), 
Visualization of Earth Observation Data and 
Archival System (ISRO) 

4 RTS Assessment Rooftop area, tilt angle, 
south-facing orientation, 
structural feasibility 

GIS analysis and field survey 

6 GMS Assessment Land availability, land slope, 
shading  

GIS analysis and ground truthing 

7 SWP Assessment Cropland, irrigation patterns, 
water demand, SWP 
feasibility 

GIS analysis, field Survey, State Agriculture 
Department, Package of Practices for Agricultural 
crops of Assam 

8 Transportation 
and EV Charging 

Road network, accessibility, 
EV charging station 
locations 

GIS analysis, NeSDR 

9 Environmental 
Assessment 

GHG emission reduction 
potential, Lifecycle emission 
assessment 

IPCC Emission Factors, Central Electricity 
Authority (CEA) of India 

3.5.1 Remote sensing and GIS data 

Satellite image 

The satellite data used in this study were acquired from Sentinel-2A, a high-resolution 

multispectral imaging mission under the ESA’s Copernicus Programme [45]. Sentinel-

2A\u2019s capabilities, including a 10-meter spatial resolution and frequent revisit cycles, 

were instrumental in capturing temporal and spatial variations across the study area. Details of 

the Sentinel-2A imagery, including spectral band characteristics and acquisition parameters, 
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are summarized in Table 3.4. These data supported the study’s LULC classification efforts, 

offering a robust foundation for spatial analysis. 

Table 3.4: Characteristics of the sentinel 2A data used in this study 
Parameter  Detail  

Spatial resolution  10 × 10 m  

60 × 60 m  

Spectral band-central wavelength (μm)  Band 1 (Coastal) 0.443 μm  

 Band 2 (Blue) 0.490 μm  

 Band 3 (Green) 0.560 μm  

 Band 4 (Red) 0.665 μm  

 Band 5 (Red edge) 0.740 μm  

 Band 6 (Red edge) 0.783 μm  

 Band 8 (NIR) 0.842 μm  

 Band 8A (NIR) 0.865 μm  

 Band 9 (Water) 0.940 μm  

 Band 10 (SWIR) 1.375 μm  

 Band 11 (SWIR) 1.610 μm  

 Band 12 (SWIR) 2.190 μm  

Swath  290 km  

Cloud cover  0%  

Date of acquisition  December 22, 2020  

No. of scene used for present study  1  

Tools such as Google Earth and handheld GPS devices were employed to validate the 

classification results [46]. Google Earth’s high-resolution imagery was employed to visualise 

and verify road networks, infrastructure, and other spatial features, ensuring consistency 

between classified maps and on-ground realities. GPS devices provided precise latitude and 

longitude coordinates for selected locations, which were crucial for ground truthing. This 

process significantly enhanced the reliability of the LULC classification by cross-referencing 

satellite-derived data with field observations. 

Shapefiles 

Shapefiles, representing administrative boundaries and spatial data layers, were integral to the 

study. These shapefiles, sourced from reliable databases such as the Survey of India (SOI) [33], 

DIVA-GIS [35], and the North Eastern Spatial Data Repository (NeSDR) [36], were refined 
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and aligned with the UTM projection system to standardize spatial data across datasets. This 

alignment improved the accuracy of distance and area calculations, ensuring consistency in 

spatial analyses. Road network shapefiles, in particular, were verified by overlaying them with 

Sentinel-2A imagery and Google Earth data, ensuring their accuracy and relevance for solar 

infrastructure planning and electric vehicle (EV) charging integration.  

Road network 

The layout of the road network in the study area is depicted in Fig. 3.7, providing an essential 

framework for understanding accessibility and connectivity [36]. Two types of roads are 

present within the study area: kutchha roads (unpaved roads) and pucca roads (paved roads). 

The road network has been overlaid with the village boundary to provide a comprehensive 

understanding of its alignment with the spatial extent of the villages. The analysis reveals that 

the road network extends even into agricultural areas, including paddy fields, enabling detailed 

assessments of rural connectivity. This comprehensive mapping can be further utilized for 

advanced road network analyses, such as evaluating accessibility to key resources, planning 

transportation routes, or identifying optimal locations for infrastructure development. The 

eastern part of the map displays blank spaces, which correspond to riverine areas, naturally 

devoid of road infrastructure. On the western side, some areas appear to have missing road 

data, which corresponds to an airport area, where road infrastructure is limited or restricted. 

Despite these gaps, the mapped road network offers valuable insights into the transportation 

framework of the region, serving as a foundational tool for planning and development 

initiatives. 
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Fig 3.7: Road network of the study area 

Field data and verification 

A detailed field survey further validated the LULC classification results. A total of 42 locations, 

representing each identified LULC class for the selected study area, were strategically selected 

for field visits. At each site, GPS coordinates were recorded, and photographs were taken in all 

cardinal directions to capture a 360-degree view of the surrounding landscape. These field 

observations provided critical reference data for validating classification accuracy. The survey 

also documented rooftop characteristics, including type, condition, and shadow-free, south-

facing sections, to assess solar installation feasibility. This comprehensive data collection 

ensured robust validation of satellite-derived classifications and informed the study’s solar 

energy potential analysis. The classification accuracy was assessed using well-established 

metrics such as the confusion matrix, overall accuracy, and the kappa coefficient. These 

statistical tools provided a structured evaluation of classification performance, identifying 

areas for refinement and ensuring the reliability of the results. This rigorous methodology, 

combining advanced tools, manual digitization, and field validation, provided a solid 
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foundation for achieving the study’s objectives of mapping land use and evaluating solar 

energy potential. [47, 48] 

3.5.2 Solar insolation data 

NASA data 

The methodology adopted for estimation of the solar data is shown in Fig 3.8 below. In this 

study two major approaches are considered to estimate the solar radiation, one is based on 

measured data from meteorological station and second method is derived from satellite data 

(NASA solar radiation data) [37, 40]. 

 
Fig 3.8: Methodology for solar data analysis 

The meteorological station which is nearer to the study area is considered to be the most 

appropriate for verifying the estimated solar radiation. The NASA data are satellite-retrieved; 

its parameters are computed on a daily average basis using NASA/GEWEX surface radiation 

Budget model. The model considers the effect of cloud cover and local atmospheric conditions. 

Compared to BSRN (Baseline Surface Radiation Network) sites the NASA data showed high 

accuracy with Bias (less than 0.12) and RMSE (Root Mean Square Error) (less than 18%). 

BSRN sites are the most accurate approved ground sites.  
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To verify the NASA data accuracy, the data were verified with the Tezpur university ground 

data which is monitored by CWET (Centre for Wind Energy Technology) and collected using 

a pyrheliometer. The accuracy showed an R-squared value of 0.97 while the percentage of 

deviation was 9% as shown in Fig 3.9 below.  

 
Fig. 3.9: Validation of NASA data with ground data for Tezpur 

For optimum solar energy generation, it is required to calculate the radiation data on inclined 

surface at a tilt angle where solar PV modules will be mounted. The energy generation from a 

PV module depends not only on the energy contained in the sunlight, but also on the angle 

between the module and the sun. The energy density is maximum when the PV module is 

perpendicular to the sun. However, the angle between the sun and a collector area is 

continuously changing. Therefore, calculation of incident solar radiation on an inclined 

collector is an utmost requirement to estimate the maximum energy generation from the solar 

system. 

Incident radiation on a tilted surface is calculated from solar radiation measured on horizontal 

surface or from satellite data.  

The analysis aimed at estimating the energy generation potential for a south facing surface 

tilted at an angle of 30°. The analysis considered losses in different stages of the conversion 

process. Energy generation potential in a tilted surface in the study area for different days of a 

year was estimated. 
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Daily solar energy generation data has been estimated by using hourly solar radiation and 

ambient temperature data obtained from the NASA website (https://power.larc.nasa.gov/data-

access-viewer/). The five-year average daily solar irradiance at a selected location in the study 

area is presented in Fig. 3.10 (a). In contrast, the five-year time series of daily irradiance is 

shown in Fig. 3.10 (b). 

 
Fig 3.10 (a): Daily solar irradiance incident on a selected location in the study area [37] 

 

 
Fig 3.10 (b): Time series of daily all sky surface shortwave downward irradiance 

(kWh/m²/day) [37] 

Global solar atlas data 

https://power.larc.nasa.gov/data-access-viewer/
https://power.larc.nasa.gov/data-access-viewer/
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Solar insolation data was systematically mapped at multiple geographic scales, starting from 

India, then Assam, Sonitpur District, and finally narrowing down to the 10 km² study area. 

Long-term average Global Horizontal Irradiance (GHI) data (1999–2018) has been used for 

this GIS map. The data was obtained from the Global Solar Atlas, developed by the World 

Bank Group and ESMAP, with data provided by Solargis [39]. The map represents spatial 

variation in average solar resource potential across the geographic scales analyzed. This step 

was undertaken to understand how solar insolation varies with geographical location. Across 

India, solar insolation varies significantly, ranging from 1 kWh/m² to 6.42 kWh/m², as shown 

in Fig. 3.11(a). In Assam, this variation narrows to a range of 2.82 kWh/m² to 4.72 kWh/m², 

as depicted in Fig. 3.11(b). In Sonitpur District, the range is further constrained to 3.8 kWh/m² 

to 4.5 kWh/m², as shown in Fig. 3.11(c). Within the study area itself, solar insolation varies 

between 4.26 kWh/m² and 4.35 kWh/m², as illustrated in Fig. 3.11(d). 

The data highlights that as the geographical scale becomes smaller, the variation in solar 

insolation becomes narrower. This trend is evident in the 10 km² study area, where there is 

minimal variation in solar insolation. However, despite the limited variation, the study area 

receives a significant amount of solar insolation, making it suitable for photovoltaic systems. 

Relevant GIS maps depicting solar insolation variations across these geographic scales are 

provided in the figures, offering a visual representation of the data and supporting the analysis. 

This data underscores the potential of the study area for effective solar energy utilization and 

reinforces its viability for solar PV installations. 
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Fig 3.11 (a): Solar insolation map of India (1999–2018) 

 
Fig 3.11 (b): Solar insolation map of Assam (1999–2018) 
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Fig 3.11 (c): Solar insolation map of Sonitpur district (1999–2018) 

 
Fig 3.11 (d): Solar insolation map of the study area (10 km²) (1999–2018) 
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3.5.3 Temperature data 

Temperature data is a critical input parameter in the assessment of solar PV potential, as the 

efficiency and performance of PV modules are significantly influenced by temperature 

variations. Both ambient temperature and module temperature are key considerations, and their 

accurate estimation is necessary for reliable solar energy modeling. 

Ambient temperature (𝑇*GH-1@0), typically measured at 2 meters above ground level (T2M), is 

the external temperature surrounding the PV system. It plays a fundamental role in determining 

the operating temperature of the solar module. High ambient temperatures generally reduce the 

efficiency of PV modules due to their temperature-dependent characteristics. The temperature 

coefficient of the PV modules, which indicates the rate of power loss with rising temperature, 

is a critical factor for performance analysis. 

The module temperature (𝑇G:);,1) is a function of ambient temperature, wind speed, and solar 

irradiance. Empirical models such as the Nominal Operating Cell Temperature (NOCT) model 

[49] or the Faiman model are widely used to estimate module temperature under real-world 

conditions [50]. 

 
Fig 3.12 (a): Five-year daily average of ambient temperature (T2M) [37] 
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Fig 3.12 (b): Five-year time series of ambient temperature (T2M) [37] 

The 5-year daily average Fig 3.12 (a) and 5-year time series Fig 3.12 (b) of ambient 

temperature (T2M) are critical for understanding seasonal and long-term temperature trends, 

which directly influence the performance of photovoltaic (PV) systems. Seasonal variations 

highlight periods of high ambient temperatures, such as summer, where PV efficiency 

decreases due to thermal losses, while cooler months may enhance performance. The time 

series data provides insights into long-term temperature stability, helping to assess the potential 

impact of climate trends on module performance. Accurate T2M data improves module 

temperature estimation, ensuring reliable predictions of power output and performance ratio 

(PR). This analysis is essential for system design, module selection, and mitigation strategies, 

particularly in regions with persistent high temperatures, thereby enhancing the accuracy of 

solar potential estimation in rural Assam. 

3.5.4 Wind speed data 

Wind speed is an essential parameter for modelling the performance of PV systems, 

particularly for estimating module temperature and assessing mechanical stability. The NASA 

POWER dataset provides wind speed data at 10 meters above ground level (WS10M) [37], 

including the average, maximum, minimum, and range of wind speed. The average wind speed 

is used to model the convective cooling effect on PV modules, which reduces their operating 

temperature and mitigates efficiency losses. The maximum wind speed is significant for 

structural design to evaluate wind load impacts on PV systems, while the minimum wind speed 

highlights calm conditions where convective cooling is negligible, leading to peak module 

temperatures. The wind speed range indicates variability in wind conditions, helping assess 

fluctuations in cooling effects over time. Empirical models, such as the Faiman model, 
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integrate wind speed to estimate module temperature accurately, ensuring robust performance 

predictions under varying environmental conditions [51]. 

The Faiman model integrates wind speed (𝜈) as follows: 

𝑇G:);,1 = 𝑇*GH-1@0 +
Y"67

]8^]9.`
                (3.27) 

The module temperature (𝑇G:);,1) is determined by a combination of environmental and 

system-specific factors, where it is influenced by the ambient temperature (𝑇*GH-1@0), the 

plane-of-array irradiance (𝐺8J5) measured in (W/m²), and the wind speed (𝜈), which is 

typically recorded at a height of 10 meters and may require adjustment to match the module 

height. Additionally, empirical heat loss coefficients (𝑈$ and 𝑈') account for thermal 

dissipation mechanisms, incorporating both convection and radiative heat transfer processes 

that impact the module's thermal balance. These factors collectively contribute to the thermal 

behaviour of PV modules under various operational and environmental conditions. 

For this study, the average wind speed (WS10M) is used to estimate module temperature using 

Python PVLib models (e.g., Faiman or NOCT models). The maximum wind speed will be 

analyzed for structural design considerations, while the range and variability of wind speed 

will be examined to identify periods of limited cooling or extreme conditions. This analysis 

ensures accurate temperature modelling and robust PV system design, enhancing the overall 

solar potential estimation for rural Assam. 

 
Fig 3.13 (a): Five-year daily average of wind speed at 10 m (WS10M) [37] 
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Fig 3.13 (b): Five-year time series of wind speed at 10 m (WS10M) [37] 

The analysis of 5-year daily average wind speed Fig. 3.13 (a) and its 5-year time series Fig. 

3.13 (b) provides details into the influence of wind speed on PV system performance. The daily 

average highlights typical wind conditions that contribute to convective cooling, which is 

particularly critical in regions with high ambient temperatures, such as rural Assam. The time 

series analysis captures the variability of wind speed over the years, including extreme events, 

which aids in understanding wind load impacts on PV system structures. Together, these 

analyses ensure accurate module temperature modeling, performance optimization, and the 

design of mechanically stable PV systems, enhancing the reliability of solar potential 

estimation in the study area. 

3.6 Results and Discussions  

3.6.1 Assessment of available area for solar PV installation 

Land use land cover classification 

The preliminary results of the LULC classification are presented in Fig. 14 (a) for the Random 

Forest Classifier (RFC) method, Fig. 14 (b) for the Maximum Likelihood Classifier (MLC) 

method, and Fig. 14 (c) for on-screen digitization of rice croplands. These analyses identified 

three key land cover classes critical for solar photovoltaic (PV) installations: built-up clusters 

for assessing rooftop solar (RTS) potential, barren/fallow land for evaluating ground-mounted 

solar (GMS) feasibility, and rice croplands for solar irrigation and water pumping applications 

(SWP). In addition to these, other LULC classes such as forests, water bodies, and grasslands 

were identified but excluded from consideration for PV installations due to their unsuitability. 

The LULC classification provided precise spatial distribution data, with details of the identified 
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classes outlined in Table 3.5. By combining results from the RFC, MLC, and on-screen 

digitization methods, the analysis ensured accuracy and reliability, particularly in delineating 

agricultural areas like rice croplands. This comprehensive assessment of land use forms the 

foundation for estimating the energy generation potential of RTS, GMS, and SWP systems, as 

detailed in subsequent sections. 

Table 3.5: Land use land cover (LULC) classes, classification criteria, and descriptions 
LULC Classes  Classification Criteria and Descriptions  

Water bodies  Major river (Jia Bhalari), minor river (Mora Bharali) and small water bodies such 

as wetland, ponds are classified under the same class ‘water bodies’. 

Sand  The satellite image was acquired on December 22, 2021. During this winter period 

Jia Bhalari river dried up and sandbars are also visible in the satellite image. To 

distinguish the sand bars from built-up/settlement areas, a separate class ‘sand’ is 

created.  

Forest-Plantation forest  The study area includes two tea gardens, a forested area and also rural home garden 

plantation. Although such different vegetation patterns can be visually 

distinguished in the satellite image, it is difficult to precisely train the classification 

algorithm to differentiate the vegetation as different classes. Therefore, the tea 

gardens, forested areas and rural home gardens are mapped as a single class 

‘forest/plantation’.  

On-screen or manual method of classification is also done separately to distinguish 

the tea gardens from the forested area. However rural home gardens could not be 

mapped separately because they are closed mixed with rural built-up areas so not 

possible to map accurately using Sentinel-2A image (10 m resolution).  

Built up-Settlement  Rural and urban houses, industries, institutions are mapped as a single class ‘built-

up/settlement’.  

Airport tarmac  The study area covers a small airport, the airport tarmac is mapped separately. This 

was also done to avoid false classification of the airport tarmac as a water body.  

Rice cropland  

 

Winter rice cultivation is the major agricultural activity in the study area. Rice is 

planted during June-July and harvested in November-December. After harvesting, 

the rice fields remain as current fallow land till next cropping season. As 

mentioned earlier, the acquired image belongs to the month of December (22 

December, 2020), when rice harvesting is already completed in the study region. 

Therefore, rice growing areas were mapped as ‘rice cropland’.  

The rice growing areas were also manually digitized as individual polygons using 

the satellite image. The comparison of area under digital and manual classification 

was done to assess the classification accuracy.  

Winter cropland  

 

Winter vegetables such as cabbage, cauliflower, brinjal, potato are also grown in 

the study area, but in small amounts. Therefore, winter crop growing areas were 
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mapped as ‘winter cropland’. Land use shared by different winter vegetables could 

not be mapped separately.  

Wetland-Wetland rice  

 

Some parts of the river Mora Bharali is converted to artificial wetland for fishing 

and wetland rice cultivation. Those areas were mapped as wetland/wetland rice. 

The differentiation between wetland and wetland rice areas could not be made 

because wetland rice areas are not permanent. Wetland rice covers a small part of 

the river. Depending on depth and water content of the river, the wetland rice areas 

change from one season to another.  

Barren land-Fallow land  

 

There are no distinct grasslands in the study area as one can observe in a protected 

forest like a national park. However, there are grass-covered playgrounds in 

villages, in school and in community areas. Similarly, there is also fallow land 

(grass-covered in the study area. It is difficult to identify those areas separately 

using a 10 m image. Therefore, they are mapped together as ‘grassland/fallow 

land’.  
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Fig 3.14 (a): Identifying ground mounted options based on RFC method 
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Fig 3.14 (b): Identifying built-up area for RTS options based on MLC 



CHAPTER 3 

 

100 | Page 
 

 
Fig 3.14 (c): Distribution of cropland in the study area (on-screen digitization) 

Assessment of available area for RTS installation 

The household-wise area available for RTS ranges from 27 m² to 65 m², with an average of 47 

m² per household. Smaller roof areas, such as 27 m², may limit the feasibility of installing 

larger photovoltaic systems, constraining energy generation capacity, whereas larger roof 

areas, such as 65 m², offer greater potential for energy generation, enabling households to meet 

their energy needs and even contribute surplus energy to the grid. 

At the village level, the available area varies from 1,277 m² to 45,315 m², with an average of 

18,967 m² per village. Villages with extensive rooftop areas, such as 45,315 m², provide 

significant opportunities for large-scale solar PV adoption. In contrast, villages with limited 

rooftop areas, such as 1,277 m², may require supplementary solutions, including ground-

mounted systems or shared community solar installations. 

The total rooftop area available for the study area amounts to 1,157,013 m², while the roof area 

per hectare across villages ranges from 11 m²/ha to 346 m²/ha, with an average of 114 m²/ha. 

Villages with higher rooftop area densities, such as 346 m²/ha, indicate clustered opportunities 
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for efficient solar energy planning, whereas those with lower densities, such as 11 m²/ha, may 

face challenges in achieving significant rooftop solar deployment. Fig 3.15 (a) illustrates the 

rooftop area available on a village-wise basis, providing a clear visualization of the spatial 

distribution and variations across the study area. 

 

Fig 3.15 (a): Map representing area available for installation of RTS in the study area 

Assessment of available area for GMS installation 

The area available for Ground-Mounted Solar (GMS) installations at the village level ranges 

from 4,341 m² to 271,413 m², with an average of 105,036 m² per village. The analysis is 

conducted at the village scale due to the absence of household-level data on the distribution of 

barren or fallow land that is suitable for GMS installations. Villages with larger available areas, 

such as 271,413 m², represent ideal candidates for large-scale solar energy projects, enabling 

significant contributions to regional renewable energy targets. Conversely, villages with 

smaller available areas, such as 4,341 m², may require strategic prioritization or alternative 

solar energy solutions. 
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The total ground area available for GMS installations across the study area amounts to 

6,407,182 m², underscoring the substantial potential for widespread solar PV deployment. The 

variation in available ground area per hectare further highlights spatial disparities, with values 

ranging from 38 m²/ha to 1,691 m²/ha and an average of 620 m²/ha for the study area. Villages 

with higher densities, such as those with 1,691 m²/ha, indicate concentrated opportunities for 

efficient land utilization and energy planning. In contrast, villages with lower densities, such 

as those with 38 m²/ha, may face challenges in achieving impactful solar energy deployment 

due to dispersed land availability. This analysis reflects the critical role of barren or fallow land 

in contributing to the feasibility and scalability of ground-mounted solar projects. By 

leveraging such land resources effectively, GMS installations can significantly enhance the 

region’s renewable energy capacity while avoiding competition with productive agricultural or 

urban land uses. Fig 3.15 (b) illustrates the village-wise distribution of GMS area availability, 

providing a visual representation of the spatial variation and potential opportunities for ground-

mounted solar installations. 

 

Fig 3.15 (b): Map representing area available for installation of GMS in the study area 
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Assessment of available crop area for SWP systems 

The area available for Solar Water Pumping (SWP) systems at the village level ranges from 90 

m² to 4,616,460 m², with an average of 546,682 m² per village. The analysis is conducted at 

the village scale as detailed household-level data on the distribution of crop area is unavailable. 

Villages with larger available crop areas, such as 4,616,460 m², demonstrate significant 

potential for SWP system deployment, enabling efficient irrigation of large agricultural fields. 

Conversely, villages with smaller crop areas, such as 90 m², may have limited capacity for 

SWP installations, potentially constraining their use to small-scale agricultural operations or 

specialized crop irrigation. 

The total crop area available for SWP systems across the study area amounts to 33,347,620 m², 

reflecting the substantial potential for integrating solar water pumping systems into the region's 

agricultural landscape. This total highlights the critical role SWP systems can play in enhancing 

agricultural productivity while promoting renewable energy use. However, the availability of 

crop area per hectare within villages varies significantly, ranging from 1 m²/ha to 9,746 m²/ha, 

with an average of 2,737 m²/ha. Villages with higher crop area densities, such as 9,746 m²/ha, 

present concentrated opportunities for SWP deployment, offering efficient energy and water 

management. In contrast, villages with lower densities, such as 1 m²/ha, may face challenges 

in achieving significant SWP integration due to the sparse distribution of irrigable land. This 

variability in crop area availability reflects the diverse agricultural landscape of the study area, 

influenced by factors such as land-use patterns, soil conditions, and irrigation practices. While 

SWP systems are primarily constrained by water demand and irrigation requirements, their 

deployment provides an opportunity to reduce dependency on conventional energy sources and 

improve the sustainability of agricultural practices. Future considerations, such as integrating 

agrivoltaics, may further enhance the utility of available crop areas by combining agricultural 

production with solar energy generation. Fig 3.15 (c) illustrates the village-wise distribution of 

crop area availability for SWP systems, providing a visual representation of spatial variations 

and potential opportunities for solar water pumping installations across the study area. 
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Fig 3.15 (c): Map representing cropland for installation of SWP in the study area 

3.6.2 Assessment of solar PV system potential 

Assessment of photovoltaic (PV) system output 

Spatial and temporal maps of PV system output have been generated to represent energy 

production in kWh/kWp for both annual averages and monthly temporal variations from 

January to December. These assessments provide valuable insights into the performance of PV 

systems under varying climatic and seasonal conditions within the study area. By analyzing the 

annual average output, the overall efficiency and productivity of PV system installations can 

be assessed, while the monthly variations highlight the impact of seasonal changes on energy 

generation. 

The spatial maps offer a visual representation of geographic variations in PV system output, 

identifying areas with higher or lower energy production potential. Meanwhile, the temporal 

maps help in understanding how the output fluctuates across different months, enabling better 

planning for energy storage and management systems. 
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The annual average map is provided in Fig 3.16 and monthly temporal variations maps are 

provided in Appendix 3E figures Fig A.1 to Fig A.12, illustrating both the spatial and temporal 

distribution of PV system output. These results underscore the viability of PV system 

installations in the study area and provide a comprehensive framework for optimizing solar 

energy utilization throughout the year. 

 
Fig 3.16: Annual average PV system output (kWh/kWp) 

The PV system potential for each energy system RTS, GMS, and SWP has been determined 

both on a village-wise basis and for the entire study area. The aggregated results for the entire 

study area are summarized in Table 3.6, which includes the total energy generation potential 

and the per capita energy availability from each system. This table provides a comprehensive 

overview of the contribution of each system to the energy landscape of the study area. 

Table 3.6: Total energy production and utilization metrics for different energy systems in the 

study area 

Category Installation Capacity 
(MW) 

Annual Generation 
(GWh/y) 

Per Capita 
(kWh/y) 

Surplus Energy 
Available (GWh/y) 
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RTS 208 244.25 2,036 NA 
GMS 1,153 1,352.62 11,275 NA 
SWP 13 15.76 101 12.13 
Total 1,374 1,612.63 13,412 12.13 

3.6.2.1 RTS: Installation and generation capacity 

The installation capacity for RTS systems at the household level ranges from a minimum of 5 

kW to a maximum of 12 kW, with an average of 8 kW per household. At the village level, the 

installation capacity varies from 230 kW to 8,157 kW, with an average of 3,414 kW per village. 

The total RTS installation capacity for the study area is 208,262 kW, reflecting substantial 

potential for meeting local energy demands. Considering the mix of urban and rural 

demographics and the prevailing energy consumption patterns, this capacity has the potential 

to make households and villages largely energy self-sufficient, with surplus energy available 

for grid supply. This surplus presents an opportunity to enhance regional energy security and 

contribute to the overall renewable energy mix. Fig 3.17 (a) illustrates the village-wise spatial 

distribution of RTS installation capacity, providing insights into the spatial variability across 

the study area. 

 

Fig 3.17 (a): Map of village-wise spatial distribution of RTS installation capacity 
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The generation capacity for RTS systems at the household level ranges from a minimum of 

5,700 kWh/y to a maximum of 13,691 kWh/y, with an average of 9,940 kWh/year per 

household. At the village level, the generation capacity varies significantly, from 269,501 

kWh/y to 9,566,470 kWh/y, with an average of 4,004,221 kWh/y per village. The total RTS 

generation capacity for the study area amounts to 244,257,462 kWh/y, demonstrating its ability 

to address energy demands while reducing reliance on conventional energy sources. Fig 3.17 

(b) depicts the village-wise spatial distribution of RTS generation capacity, offering a clear 

visualization of potential hotspots for solar energy production. 

The household-level installation and generation capacities highlight the suitability of RTS 

systems for diverse residential settings. Households with smaller capacities, such as 5 kW, may 

find it sufficient for basic energy needs, while those with larger capacities, such as 12 kW, can 

cater to higher consumption levels or even contribute excess energy to the grid. Similarly, 

villages with higher capacities, such as 8,157 kW in installation and 9,566,470 kWh/y in 

generation, represent key nodes for solar energy production and distribution. These villages 

could act as energy hubs, facilitating surplus energy transfer to surrounding areas. 

The significant total capacity of 208,262 kW and annual generation of 244,257,462 kWh/y 

underscore the transformative potential of RTS systems in achieving energy self-sufficiency 

and sustainability for the study area. Furthermore, the analysis aligns with the region’s mixed 

urban-rural demographic, where diverse energy demands can be effectively addressed through 

distributed generation. The availability of surplus energy also highlights opportunities for 

economic benefits through energy trading or grid integration, particularly in regions with well-

developed grid infrastructure. 
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Fig 3.17 (b): Map of village-wise spatial distribution of RTS generation capacity 

3.6.2.2 GMS: Installation and generation capacity 

The installation capacity for GMS systems at the village level ranges from a minimum of 781 

kW to a maximum of 48,854 kW, with an average of 18,906 kW per village. The total GMS 

installation capacity for the study area is 1,153,293 kW, reflecting its significant potential for 

large-scale solar energy production. Given the high capacity potential, GMS installations have 

the ability to meet local energy demands comprehensively while creating surplus energy for 

grid integration. This surplus capacity can enhance regional energy security and facilitate the 

transition toward renewable energy systems. Fig 3.18 (a) illustrates the village-wise spatial 

distribution of GMS installation capacity, providing insights into areas with significant 

potential for solar energy production. 

The generation capacity for GMS systems varies significantly at the village level, ranging from 

a minimum of 916,484 kWh/y to a maximum of 57,297,979 kWh/y, with an average of 

22,174,133 kWh/y per village. The total GMS generation capacity for the study area amounts 

to 1,352,622,119 kWh/y, demonstrating its ability to contribute substantially to the energy mix 
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and support regional sustainability goals. Fig 3.18 (b) depicts the village-wise spatial 

distribution of GMS generation capacity, offering a clear visualization of potential hotspots for 

energy production. 

 

Fig 3.18 (a): Map of village-wise spatial distribution of GMS installation capacity 

Due to the nature of GMS installations, the analysis is conducted at the village scale rather than 

the household level. Barren or fallow land suitable for GMS systems is distributed across the 

study area and has been attributed to the administrative boundaries of villages. This method 

reflects the challenges of directly associating land availability with individual households while 

ensuring a comprehensive understanding of the potential within the administrative framework. 

The analysis of GMS installation and generation capacities underscores its critical role in 

addressing energy demands at a large scale. Villages with higher capacities, such as those 

exceeding 48,000 kW in installation or generating over 57 million kWh/y, represent key sites 

for extensive solar energy production. These high-capacity villages could serve as energy hubs, 

supplying surplus energy to adjacent regions through grid integration. Conversely, villages 

with lower capacities, such as 781 kW in installation or generating 916,484 kWh/y, can still 
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benefit from GMS systems by supplementing local energy needs and reducing dependence on 

conventional energy sources. 

 

Fig 3.18 (b): Map of village-wise spatial distribution of GMS generation potential 

The total capacity of 1,153,293 kW and generation of 1,352,622,119 kWh/y highlight the 

transformative potential of GMS systems in achieving regional energy self-sufficiency. By 

leveraging barren and fallow land for solar PV deployment, GMS installations avoid 

competition with agricultural or urban land uses, making them a sustainable and efficient 

solution for scaling renewable energy. 

However, the reliance on aggregated village-level data introduces some limitations. Variations 

in land quality, accessibility, and competing land uses within villages may influence the 

feasibility and scalability of GMS installations. Addressing these challenges will require 

localized assessments and strategic planning to optimize land utilization and maximize energy 

generation. Furthermore, technical and economic support for grid infrastructure development 

will be essential to ensure the effective integration of surplus energy into the regional grid. 
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The GMS system's ability to meet energy demands while providing surplus energy underscores 

its pivotal role in transitioning toward a sustainable and decentralized energy future. The 

substantial capacity and generation potential offer an opportunity for large-scale contributions 

to renewable energy targets, fostering energy security and environmental sustainability in the 

study area. 

3.6.2.3 SWP: Installation and generation capacity 

For the SWP system, the water requirement of rice, the predominantly cultivated crop in the 

region and one with the highest water demands among crops is considered. This design ensures 

that the system is capable of meeting the peak water demand during the cropping season, 

addressing the primary irrigation needs of the area effectively.  

 

Fig 3.19 (a): Map of village-wise SWP installation capacity 

While the RTS and GMS systems are designed to either feed energy into the grid or be 

consumed locally, the SWP system exhibits a unique characteristic: surplus energy generation 

during non-irrigation periods. This surplus, which can be effectively utilized for alternate 
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energy applications such as EV charging, is depicted in the corresponding figures. Notably, for 

some months, the surplus energy matches the total production, as irrigation scheduling 

indicates no irrigation requirements during these periods. This is a significant observation, 

emphasizing the seasonal nature of energy demand in agricultural applications. 

 
Fig 3.19 (b): Map of village-wise SWP generation potential 

The analysis underscores the versatility and potential of each system in meeting both localized 

energy needs and broader sustainability goals. The surplus energy from SWP, in particular, 

presents an opportunity for innovative energy solutions in rural areas, while RTS and GMS 

contribute to strengthening the grid infrastructure. Together, these systems demonstrate the 

ability to transform the energy ecosystem of the study area into a more sustainable and resilient 

model. 



PART A: SPATIAL AND TEMPORAL ASSESSMENT OF SOLAR PHOTOVOLTAIC 

POTENTIAL 

 

113 | Page 
 

 
Fig 3.19 (c): Map of village-wise surplus energy from SWP systems 

3.6.3 Temporal Variations in Generation Capacity: System-wise Assessment 

The monthly energy generation potential for each solar PV system in the study area, including 

RTS, GMS, and SWP, from January to December, is depicted in Fig 3.20 (a) (RTS), Fig 3.20 

(b) (GMS), and Fig 3.20 (c) (SWP). Additionally, Fig 3.20 (d) illustrates the monthly surplus 

energy available from SWP systems during non-operational periods. This temporal analysis 

provides critical insights for energy planning and management, enabling stakeholders to 

optimize resource allocation, ensure grid stability, and align energy supply with demand 

patterns. 

The RTS systems, as depicted in Fig 3.20 (a), exhibit a consistent generation pattern across the 

year, with slight variations influenced by seasonal changes in solar irradiance. The peak 

generation months typically align with periods of high solar insolation, such as the summer 

months, while slightly lower outputs are observed during the monsoon season due to cloud 

cover and rainfall. This predictable generation pattern supports stable energy supply for 

residential and commercial purposes. The temporal analysis aids in designing efficient energy 

storage systems to store excess energy during high-generation months and utilize it during 
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periods of lower output. Additionally, it facilitates grid integration planning by identifying peak 

surplus periods for energy export. 

 

Fig 3.20 (a): Monthly energy generation for RTS system  

For GMS systems, shown in Fig 3.20 (b), the seasonal generation trends follow a similar 

pattern to RTS systems, with higher outputs during sunny months and reduced performance 

during monsoon periods. However, the scale of GMS installations allows for substantial energy 

generation even during suboptimal conditions. This makes GMS systems a reliable backbone 

for meeting large-scale energy demands. Temporal analysis of GMS generation capacity helps 

in planning grid infrastructure, such as transmission and distribution systems, to handle 

seasonal variations and surplus energy efficiently. It also supports policy frameworks for 

encouraging solar farms to supply energy during peak demand periods, enhancing regional 

energy stability. 

The energy generation from SWP systems, presented in Fig 3.20 (c), demonstrates strong 

seasonality driven by agricultural cycles and water demand patterns. Peak generation coincides 

with irrigation seasons, while energy output is underutilized during non-irrigation periods. This 

temporal alignment with agricultural needs ensures reliable energy availability for farmers 

during critical cropping months. However, during non-operational periods, surplus energy is 

generated, as shown in Fig 3.20 (d), highlighting the potential for alternative energy utilization. 
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This surplus energy could be redirected for secondary applications, such as powering rural 

electrification projects, supporting local microgrids, or charging electric vehicles, thereby 

maximizing the utility of SWP systems. 

 

Fig 3.20 (b): Monthly energy generation for GMS system  

Fig 3.20 (c): Monthly energy generation for SWP system  
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Fig 3.20 (d): Monthly surplus energy from SWP system  

3.6.3.1 Implications of diurnal and seasonal variability in solar PV generation 

The generation potential of solar PV systems is inherently variable due to natural fluctuations 

in solar irradiance, which follow clear diurnal (daily) and seasonal patterns. While the 

preceding subsections present system-wise assessments of temporal variations, it is important 

to interpret how such variability influences solar PV-based energy availability, consumption 

planning, and the integration of end-use applications such as EV charging. 

Solar PV systems only generate electricity during daylight hours, with zero generation 

occurring during nighttime. Within each day, irradiance levels and power output rise from 

sunrise to midday and decline toward sunset. This intra-day variability was analytically 

captured through hourly irradiance data retrieved from the NASA POWER Data Access 

Viewer. Monthly and annual generation profiles presented earlier in this chapter were derived 

by aggregating this hourly data, ensuring a robust temporal representation of potential energy 

yields. 

Seasonal variations are also prominent. During summer months, longer daylight hours and 

higher irradiance intensities result in increased PV output, whereas winter months experience 

shorter day lengths and often reduced insolation. These fluctuations have direct implications 
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for energy reliability, particularly in rural regions where the energy demand pattern may not 

align with solar availability. 

To address this generation-consumption mismatch, two technical strategies are commonly 

adopted: 

• Grid-tied operation: Connecting solar PV systems to the local grid allows for net metering 

or energy exchange. Surplus energy generated during sunny hours can be fed into the grid, 

while energy demand during non-generating hours (e.g., night-time or cloudy days) can be 

met by drawing electricity from the grid. This enables the continuity of power supply despite 

generation variability. 

• Energy storage solutions: Incorporating battery energy storage systems (BESS) allows 

excess solar electricity generated during the day to be stored and used during the night or 

periods of low irradiance. This not only enhances energy availability but also supports 

critical end uses such as EV charging or irrigation scheduling. 

Furthermore, these temporal insights play a critical role in the planning of EV charging 

infrastructure. Aligning EV charging hours with peak solar generation windows, or 

alternatively buffering with stored energy, can mitigate the risks of supply intermittency. 

Demand-side management strategies, such as incentivized daytime charging or smart 

scheduling, can further improve the system’s performance. 

3.6.3.2 Energy planning and management implications 

The temporal analysis of generation capacity for RTS, GMS, and SWP systems provides a 

foundation for effective energy planning and management: 

a) RTS Systems: Enable residential and commercial users to plan energy usage, optimize self-

consumption, and reduce reliance on the grid during high-generation months. Surplus 

energy can be fed into the grid or stored using battery systems. 

b) GMS Systems: Support large-scale energy supply for industrial and commercial needs. 

Temporal insights help in synchronizing generation with demand patterns, ensuring efficient 

transmission and minimizing grid congestion. 
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c) SWP Systems: Address energy-water nexus challenges by aligning generation with 

irrigation needs. Surplus energy during non-operational months offers opportunities for 

secondary applications, enhancing the economic and operational viability of SWP systems. 

This system-wise temporal analysis of generation capacity underscores the importance of 

integrating renewable energy systems into regional planning frameworks. It also highlights the 

need for advanced energy management systems and supportive policies to maximize the utility 

of solar PV systems across diverse applications. 

3.6.4 Estimation of per capita energy availability (PCEA) 

India's per capita electricity consumption is approximately 1,255 kWh per year (2022), 

significantly lower than the global average of 3,500 kWh per year. This disparity highlights the 

challenges of equitable energy access in a rapidly developing economy. In 2022, the per capita 

power consumption in Assam was 346 kilowatt hours (kWh). This was an increase from the 

previous year when it was around 313 kWh, which is still very low compared to the national. 

In the study area encompassing 61 villages, per capita electricity availability varies 

significantly based on the type of energy system deployed. For example, renewable 

technologies like rooftop solar (RTS) provide a per capita availability of 2,036 kWh/year, 

which is above the national average but still falls short compared to developed nations. Grid-

based systems (GMS) offer a much higher per capita availability of 11,275 kWh/year, 

approaching consumption levels of countries like Germany (7,000 kWh/year) and even nearing 

that of the United States (12,000 kWh/year). Conversely, small-scale solar water pumping 

systems (SWP) contribute a modest 101 kWh/year per capita, closer to levels observed in less 

developed regions such as Niger (147 kWh/year) [24-27]. 

These findings demonstrate the potential of grid and distributed solar systems in bridging the 

energy access gap in rural India. Leveraging resources such as solar energy can significantly 

enhance electricity availability while ensuring sustainability. The wide range of per capita 

electricity availabilities among different systems highlights the need for targeted strategies to 

optimize energy generation and distribution. By addressing these disparities, it is possible to 

move closer to achieving equitable energy access and supporting the broader goals of 

socioeconomic development. 

3.6.5 Surplus energy from SWP and planning for EV charging infrastructure 
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In the study area, SWP systems are primarily operational during irrigation periods, leaving 

significant surplus energy during non-irrigation times. This surplus energy, amounting to 

approximately 12.136 GWh/year, presents a valuable opportunity to support emerging energy 

demands, such as charging electric vehicles (EVs). Utilizing surplus energy for EV charging 

can optimize the use of renewable energy resources while contributing to the development of 

sustainable transport infrastructure in rural areas. 

To implement this strategy, the spatial distribution of agricultural lands within the study area 

was analyzed to identify potential sites for SWP installations. Agricultural land clusters were 

mapped and overlaid with the existing road network to assess accessibility for EV users. For 

each identified cluster, centroids were determined as central locations for deploying EV 

charging stations, ensuring optimal accessibility and minimizing infrastructure costs. These 

centroids serve as potential hubs where surplus energy from nearby SWP systems can be 

efficiently redirected for EV charging. The layout map illustrating the identified agricultural 

clusters, road network, and proposed EV charging station centroids is provided in Fig. 3.21. 

This integrated approach not only enhances the utilization of renewable energy but also aligns 

with national goals to promote EV adoption and reduce reliance on fossil fuels. By strategically 

placing EV charging infrastructure near agricultural clusters, the study area can address dual 

challenges: providing sustainable energy solutions for transportation and optimizing the use of 

SWP systems. Furthermore, such initiatives can contribute to rural economic development by 

improving accessibility and connectivity while fostering a transition toward a low-carbon 

future. 
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Fig 3.21: Layout map of proposed EV charging infrastructure utilizing surplus energy from 

SWP systems 

3.6.6 Key assumptions and limitations 

The assessment of solar PV potential in the study area is based on several assumptions. First, 

the calculations for installation capacity and energy generation assume uniform efficiency for 

RTS, GMS, and SWP systems across the study area. Site-specific variations in efficiency, such 

as those caused by shading, panel orientation, and maintenance practices, are not explicitly 

considered. Additionally, the availability of rooftop, barren, fallow, and crop areas for solar 

PV installations is assumed to be unrestricted, with no conflicts arising from competing land 

uses. The analysis further assumes full utilization of the identified areas, without accounting 

for technical, social, or legal barriers that may limit their deployment. For SWP systems, the 

potential capacity is determined based on static water demand for agricultural crops, assuming 

that current irrigation practices and crop patterns will remain unchanged in the near future.  

Despite its comprehensive scope, the study has several limitations. The potential of agrivoltaic 

systems, which integrate agricultural and energy production, is not assessed in this study, 

limiting the scope of land-use optimization. Dynamic land-use changes, such as urbanization 
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or infrastructure development, are not considered, which may affect the availability of land for 

GMS or crop areas for SWP in the future. Furthermore, the study does not account for potential 

environmental impacts, such as biodiversity loss, or social factors, such as land ownership 

conflicts, which could influence the feasibility of solar PV installations. 

Economic viability is another unaddressed aspect, as this study does not include detailed cost-

benefit analyses or financial feasibility assessments for large-scale solar deployment. However, 

these aspects are addressed comprehensively in subsequent Chapter 4 and Chapter 5, which 

focus on techno-economic feasibility assessments and business models for scaling solar 

photovoltaic systems. Lastly, the analysis relies on aggregated data at the village level for GMS 

and SWP, which may not capture localized variations or constraints, potentially leading to 

overestimations or underestimations. 

Future studies should address these limitations by incorporating agrivoltaics, modeling land-

use dynamics, and conducting detailed economic, environmental, and social analyses. 

Integrating stakeholder feedback and adopting participatory planning approaches will further 

enhance the feasibility and acceptance of solar PV projects. These efforts will provide a more 

holistic assessment, ensuring the sustainability and effectiveness of renewable energy solutions 

in the study area. 

3.6.7 Summary 

The total combined installation capacity for solar photovoltaic systems in the study area is 

1,374 MW, with an annual generation capacity of 1,612.63 GWh/year. This corresponds to a 

potential per capita energy availability of 13,412 kWh/year, highlighting the significant 

renewable energy potential of the region. Individually, the capacities from RTS, GMS, and 

SWP systems are 208 MW, 1,153 MW, and 13 MW, respectively, with GMS demonstrating 

the highest contribution to the total capacity in the study area. Among the three systems, GMS 

exhibits the highest area availability, making it the most significant contributor to the overall 

capacity. This is attributed to the availability of extensive barren or fallow land, which can 

support large-scale installations. RTS, on the other hand, is limited by the household rooftop 

areas, which vary significantly across villages. SWP, although associated with relatively large 

crop areas, has a limited installation capacity due to its dependency on water demand for 

agricultural crops. 
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The concept of Agrivoltaics, which integrates agricultural activities with photovoltaic energy 

generation, emerges as a promising solution for optimizing land use. While this study does not 

include agrivoltaics, it represents a potential area for future exploration, particularly in regions 

where competing demands for land resources exist. Future assessments can help determine its 

feasibility and scalability in the study area. 

Competing use of land area and future perspectives 

The availability of land for solar installations is increasingly influenced by competing demands, 

such as agriculture, infrastructure development, and conservation efforts. Effective planning 

and management are essential to balance these demands while maximizing renewable energy 

potential. Strategic prioritization of areas for GMS, RTS, and SWP systems should consider 

not only technical feasibility but also socio-economic and environmental impacts. For example, 

integrating agrivoltaics could mitigate land-use competition while enhancing agricultural 

productivity and energy generation. 

The findings from Part A establish a comprehensive understanding of the potential capacity 

and energy generation from RTS, GMS, and SWP systems. While the focus so far has been on 

assessing spatial and technical feasibility, it is equally important to evaluate the environmental 

impacts of these systems. Part B: Lifecycle GHG Emission Estimation will address this 

critical dimension by quantifying the greenhouse gas emissions associated with the lifecycle of 

solar photovoltaic systems, providing deeper insights into their sustainability and alignment 

with net-zero energy goals. 

  



PART A: SPATIAL AND TEMPORAL ASSESSMENT OF SOLAR PHOTOVOLTAIC 

POTENTIAL 

 

123 | Page 
 

References 

[1]  Solanki, C.S. Solar photovoltaics: fundamentals, technologies and applications. Phi 

learning pvt. Ltd, 2015. 

[2]  Singh, G.K. Solar power generation by PV (photovoltaic) technology: A 

review. Energy, 53:1-13, 2013. 

[3]  Saurenergy. Saur Energy International. Retrieved on 16 March, 2022, from 

https://www.saurenergy.com/solar-energy-blog/here-is-how-you-can-calculate-the-

annual-solar-energy-output-of-a-photovoltaic-

system#:~:text=Globally%20a%20formula%20E%20%3D%20A,output%20of%20a

%20photovoltaic%20system, 2016. 

[4]  Van Sark, W.G.J.H.M., Reich, N.H., Müller, B., Armbruster, A., Kiefer, K., and Reise, 

C. Review of PV performance ratio development. In World renewable energy congress, 

page 4795-4800, Denver CO, USA, 2012. 

[5]  Dierauf, T., Growitz, A., Kurtz, S., Cruz, J.L.B., Riley, E., and Hansen, C. Weather-

corrected performance ratio (No. NREL/TP-5200-57991). National Renewable 

Energy Lab.(NREL), Golden, CO (United States), 2013. 

[6]  Green, M.A. Solar cell fill factors: General graph and empirical expressions. Solid-

State Electronics, 24(8):788-789, 1981. 

[7]  Greulich, J., Glatthaar, M. and Rein, S. Fill factor analysis of solar cells' current–voltage 

curves. Progress in Photovoltaics: Research and Applications, 18(7):511-515, 2010. 

[8]  Census of India, Government of India. Census 2021 reports. Retrieved on 25 February, 

2024, from https://censusindia.gov.in, 2023. 

[9]  National Renewable Energy Laboratory (NREL) (2023). Guidelines for space 

requirements for solar PV systems. Retrieved on 10 February, 2024, from 

https://www.nrel.gov. 

[10]  Solar Energy Industries Association (SEIA) (2023). Space requirements for solar 

photovoltaic installations. Retrieved on 12 February, 2024, from https://www.seia.org. 

[11]  Solar Engineering and Installation Guidelines (2023). Standards for solar PV system 

design and space requirements. Retrieved on 15 February, 2024, from 

 https://www.solarinstallationguidelines.org. 

[12]  Zhong, Q., and Tong, D. Spatial layout optimization for solar photovoltaic (PV) panel 

installation. Renewable energy, 150:1-11, 2020. 

https://www.saurenergy.com/solar-energy-blog/here-is-how-you-can-calculate-the-annual-solar-energy-output-of-a-photovoltaic-system#:~:text=Globally%20a%20formula%20E%20%3D%20A,output%20of%20a%20photovoltaic%20system
https://www.saurenergy.com/solar-energy-blog/here-is-how-you-can-calculate-the-annual-solar-energy-output-of-a-photovoltaic-system#:~:text=Globally%20a%20formula%20E%20%3D%20A,output%20of%20a%20photovoltaic%20system
https://www.saurenergy.com/solar-energy-blog/here-is-how-you-can-calculate-the-annual-solar-energy-output-of-a-photovoltaic-system#:~:text=Globally%20a%20formula%20E%20%3D%20A,output%20of%20a%20photovoltaic%20system
https://www.saurenergy.com/solar-energy-blog/here-is-how-you-can-calculate-the-annual-solar-energy-output-of-a-photovoltaic-system#:~:text=Globally%20a%20formula%20E%20%3D%20A,output%20of%20a%20photovoltaic%20system
https://censusindia.gov.in/
https://www.nrel.gov/
https://www.seia.org/
https://www.solarinstallationguidelines.org/


CHAPTER 3 

 

124 | Page 
 

[13]  Romero-Fiances, I., Muñoz-Cerón, E., Espinoza-Paredes, R., Nofuentes, G., and De la 

Casa, J. Analysis of the performance of various pv module technologies in 

Peru. Energies, 12(1):186, 2019. 

[14]  Notton, G., Lazarov, V. and Stoyanov, L. Optimal sizing of a grid-connected PV system 

for various PV module technologies and inclinations, inverter efficiency characteristics 

and locations. Renewable Energy, 35(2):541-554, 2010. 

[15]  Rahman, M.M., Hasanuzzaman, M., and Rahim, N.A. Effects of various parameters on 

PV-module power and efficiency. Energy Conversion and Management, 103:348-358, 

2015. 

[16]  Scott, L.M., and Janikas, M.V. Spatial statistics in ArcGIS. In Handbook of applied 

spatial analysis: Software tools, methods and applications, 27-41, Berlin, Heidelberg: 

Springer Berlin Heidelberg, 2009. 

[17]  Zuhlke, M., Fomferra, N., Brockmann, C., Peters, M., Veci, L., Malik, J., and Regner, 

P. SNAP (sentinel application platform) and the ESA sentinel 3 toolbox. In Sentinel-3 

for Science Workshop, 734:21, 2015. 

[18]  Kurt Menke, G.I.S.P., Smith Jr, R., Pirelli, L., and John Van Hoesen, 

G.I.S.P. Mastering QGIS. Packt Publishing Ltd, 2016. 

[19]  Cavur, M., Duzgun, H.S., Kemec, S., and Demirkan, D.C. Land use and land cover 

classification of Sentinel 2-A: St Petersburg case study. The International Archives of 

the Photogrammetry, Remote Sensing and Spatial Information Sciences, 42:13-16, 

2019. 

[20]  Pal, M. Random forest classifier for remote sensing classification. International journal 

of remote sensing, 26(1):217-222, 2005. 

[21]  Shivakumar, B.R., and Rajashekararadhya, S.V. Investigation on land cover mapping 

capability of maximum likelihood classifier: a case study on North Canara, 

India. Procedia computer science, 143:579-586, 2018. 

[22]  Etikan, I., & Bala, K. Sampling and sampling methods. Biometrics & Biostatistics 

International Journal, 5(6):00149, 2017. 

[23]  Tuzson, J. Centrifugal pump design. John Wiley & Son, 2000. 

[24]  Hunt, J. Advanced guide to Python 3 programming, 35-42. Berlin: Springer, 2019. 

[25]  Anderson, K.S., Hansen, C.W., Holmgren, W.F., Jensen, A.R., Mikofski, M.A., and 

Driesse, A. pvlib python: 2023 project update. Journal of Open Source 

Software, 8(92):5994, 2023. 



PART A: SPATIAL AND TEMPORAL ASSESSMENT OF SOLAR PHOTOVOLTAIC 

POTENTIAL 

 

125 | Page 
 

[26]  Gurupira, T., and Rix, A.J. October. Photovoltaic System Modelling using PVLib-

Python. In Southern African Solar Energy Conference (SASEC), pages 1-6, 

Stellenbosch, South Africa, 2016.  

[27]  Holmgren, W.F., Hansen, C.W. and Mikofski, M.A. pvlib python: A python package 

for modeling solar energy systems. Journal of Open Source Software, 3(29):884, 2018. 

[28]  Jackson, R.B., Ahlström, A., Hugelius, G., Wang, C., Porporato, A., Ramaswami, A., 

Roy, J., and Yin, J. Human well‐being and per capita energy 

use. Ecosphere, 13(4):3978, 2022. 

[29]  Simionescu, M., Bilan, Y., Krajňáková, E., Streimikiene, D. and Gędek, S. Renewable 

energy in the electricity sector and GDP per capita in the European 

Union. Energies, 12(13):2520, 2019. 

[30]  Wiginton, L.K., Nguyen, H.T. and Pearce, J.M. Quantifying rooftop solar photovoltaic 

potential for regional renewable energy policy. Computers, Environment and Urban 

Systems, 34(4):345-357, 2010. 

[31]  Sahu, B. K. A study on global solar PV energy developments and policies with special 

focus on the top ten solar PV power producing countries. Renewable and Sustainable 

Energy Reviews, 43:621-634, 2015. 

[32]  Meah, K., Ula, S. and Barrett, S. Solar photovoltaic water pumping—opportunities and 

challenges. Renewable and Sustainable Energy Reviews, 12(4):1162-1175, 2008. 

[33]  Survey of India, Government of India (2023). Topographic maps and village 

information. Retrieved on 25 February, 2024, from https://surveyofindia.gov.in. 

[34]  National Remote Sensing Centre (NRSC), Indian Space Research Organisation (ISRO) 

(2023). Satellite imagery and spatial data. Retrieved on 25 February, 2024, from 

https://nrsc.gov.in. 

[35]  DIVA GIS (2023). Free GIS data for mapping and analysis. Retrieved on 25 February, 

2024, from https://diva-gis.org. 

[36]  North Eastern Spatial Data Repository (NeSDR) (2023). Spatial data for the 

northeastern region of India. Retrieved on 25 February, 2024, from https://nesdr.gov.in. 

[37]  NASA Prediction of Worldwide Energy Resources (2023). Solar and weather data 

resources. Retrieved on 25 February, 2024, from https://power.larc.nasa.gov. 

[38]  National Renewable Energy Laboratory (NREL) (2023). Solar radiation and weather 

data. Retrieved on 25 February, 2024, from https://nrel.gov. 

https://surveyofindia.gov.in/
https://nrsc.gov.in/
https://diva-gis.org/
https://nesdr.gov.in/
https://power.larc.nasa.gov/
https://nrel.gov/


CHAPTER 3 

 

126 | Page 
 

[39]  Global Solar Atlas, World Bank Group and ESMAP. Solar resource maps and data for 

photovoltaic systems. Data provided by Solargis. Retrieved on 18 February, 2024, from 

https://globalsolaratlas.info, 2023. 

[40]  Centre for Wind Energy Technology (C-WET) (2018). Renewable energy resources 

and wind data. Retrieved on 25 February, 2018, from https://cwet.res.in. 

[41]  ISRO (2023). Visualization of Earth Observation Data and Archival System (VEDAS). 

Retrieved on 25 February, 2024, from https://vedas.sac.gov.in. 

[42]  State Agriculture Department, Assam (2023). Package of practices for agricultural 

crops. Retrieved on 25 February, 2024, from https://diragri.assam.gov.in/portlet-

innerpage/package-of-practices.  

[43]  IPCC (2023). Guidelines for national greenhouse gas inventories. Retrieved on 25 

February, 2024, from https://ipcc.ch. 

[44]  Central Electricity Authority (CEA), Government of India (2023). CO2 baseline 

database. Retrieved on 25 February, 2024, from https://cea.nic.in. 

[45]  European Space Agency (ESA) (2019). Sentinel-2A: High-resolution satellite imagery 

for Earth observation. Retrieved on 22 December, 2020, from  

https://sentinel.esa.int/web/sentinel/home. 

[46]  Google Earth. High-resolution satellite imagery and mapping platform. Retrieved on 

21 March, 2024, from https://earth.google.com, 2024. 

[47]  Rwanga, S.S., and Ndambuki, J.M. Accuracy assessment of land use/land cover 

classification using remote sensing and GIS. International Journal of 

Geosciences, 8(04):611, 2017. 

[48]  Foody, G.M. Explaining the unsuitability of the kappa coefficient in the assessment and 

comparison of the accuracy of thematic maps obtained by image classification. Remote 

sensing of environment, 239:111630, 2020. 

[49]  García, M.A., and Balenzategui, J.L. Estimation of photovoltaic module yearly 

temperature and performance based on nominal operation cell temperature 

calculations. Renewable energy, 29(12):1997-2010, 2004. 

[50]  Koehl, M., Heck, M., Wiesmeier, S., and Wirth, J. Modeling of the nominal operating 

cell temperature based on outdoor weathering. Solar Energy Materials and Solar 

Cells, 95(7):1638-1646, 2011. 

[51]  Barykina, E., and Hammer, A. Modeling of photovoltaic module temperature using 

Faiman model: Sensitivity analysis for different climates. Solar Energy, 146:401-416, 

2017. 

https://globalsolaratlas.info/
https://cwet.res.in/
https://vedas.sac.gov.in/
https://diragri.assam.gov.in/portlet-innerpage/package-of-practices
https://diragri.assam.gov.in/portlet-innerpage/package-of-practices
https://ipcc.ch/
https://cea.nic.in/
https://sentinel.esa.int/web/sentinel/home
https://earth.google.com/


CHAPTER 3 

 

127 | Page 
 

PART B: LIFECYCLE GHG EMISSION ESTIMATION 

3.7 Introduction 

Lifecycle GHG (Greenhouse Gas) emission estimation is a critical component in assessing the 

environmental sustainability of solar PV systems [1]. The estimation follows a chronological 

approach to comprehensively evaluate the emissions associated with PV systems from cradle 

to grave. The estimation involves quantifying emissions for each lifecycle phase, including 

manufacturing, transportation, installation, operation and maintenance, and end-of-life. These 

phases were chosen as they represent the most significant contributors to the overall carbon 

footprint of solar PV systems to identify areas for reducing environmental impact [2-6]. 

Following this, the GHG emission reduction achieved by replacing conventional grid-based 

electricity with solar PV systems is quantified. This comparison highlights the potential of PV 

systems to mitigate emissions compared to fossil-fuel-based energy sources [7, 8]. The study 

then proceeds to estimate the net GHG emissions by juxtaposing the emissions generated 

throughout the lifecycle of the PV systems with the emissions avoided due to their deployment. 

To systematically evaluate the environmental impact of PV systems, the study presents the 

parameters, equations, and assumptions necessary for calculating emission reductions over 

their lifespan. The scope covers all relevant phases for RTS, GMS, and SWP systems, ensuring 

a comprehensive framework for assessing the net environmental benefits of solar energy 

adoption. 

3.8 Framework for lifecycle GHG emission estimation 

The lifecycle GHG emission estimation follows a systematic framework based on the 

principles of Lifecycle Assessment (LCA), as standardized by the ISO 14040 and ISO 14044 

guidelines [9]. The flowchart for the lifecycle GHG emission estimation framework is shown 

in Fig 3.22. This diagram visually represents the structured approach, depicting the interactions 

between various LCA phases and critical elements such as system boundaries, impact 

categories, and data inventory processes [10]. 



PART B: LIFECYCLE GHG EMISSION ESTIMATION 

 

128 | Page 
 

 

Fig 3.22: Framework for lifecycle GHG emission estimation 

3.8.1 Goal and scope definition 

The goal of this lifecycle GHG estimation is to assess the total emissions associated with the 

deployment of PV systems in rural Assam. The analysis follows a Gate-to-Gate approach [11], 

covering emissions within the phases. A functional unit is defined as the energy output of the 

system per kilowatt-hour (kWh) over its operational lifetime, serving as a reference point for 

comparison across different systems or scenarios [12]. This facilitates a standardized 

evaluation of emissions and performance across various configurations, ensuring alignment 

with industry benchmarks and sustainability goals. The impact category considered in the 

analysis is global warming potential (GWP), expressed in CO₂-equivalents (CO₂e), providing 

a comprehensive assessment across selected lifecycle stages. 

3.8.2 System boundary selection 

The system boundary defines which lifecycle stages and processes are considered in the 

estimation, with a focus on a Gate-to-Gate approach that encompasses manufacturing, 
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transportation, installation, operation, maintenance, and end-of-life disposal. This approach 

ensures a detailed assessment of emissions related to these stages while excluding upstream 

activities such as raw material extraction. The system boundary includes the stages for each of 

the systems, RTS, GMS, and SWP to provide a more precise evaluation of emissions associated 

with system deployment, thereby facilitating meaningful comparisons and aiding in the 

identification of process optimization opportunities. 

3.9 Methodology for lifecycle GHG emission estimation 

The lifecycle GHG emissions are estimated using Process-Based LCA, complemented by 

Input-Output (IO) Analysis where necessary, following an inventory-based approach in line 

with the GHG Protocol and IPCC guidelines. Two methods are considered for GHG emission 

estimation: Process-Based LCA, which provides a detailed process-level assessment using 

primary and secondary data, allowing specificity in emission sources and hotspots, making it 

suitable for small-to-medium scale assessments with reliable data sources; and Economic 

Input-Output LCA (EIO-LCA), which is based on national and sectoral economic data and is 

useful for broad estimations where detailed process data are unavailable. Process-based LCA 

is selected due to its higher accuracy and relevance in product-specific emissions, while IO-

LCA serves as a complementary tool for assessing broader system-wide impacts. 

3.9.1 Emission calculations for each phase 

3.9.1.1 Manufacturing phase 

The GHG emissions during the manufacturing phase of the PV system for each system 𝑘 (RTS, 

GMS, SWP) are calculated using Equation (3.28), which accounts for emissions generated 

from the production of PV modules, batteries, and inverters. The total emissions, denoted as 

𝐺𝐻𝐺!"#$%"&'$()!, are derived by summing the contributions of these three major components. 

𝐺𝐻𝐺!"#$%"&'$()! = 𝑃*+! × 𝐸𝐹*+ + 𝐵&","&-'.! × 𝐸𝐹/"'')(. + 𝐼&","&-'.! × 𝐸𝐹-#0)(')(   (3.28) 

where, 𝑃*+! represents the total PV system capacity for each system 𝑘  measured in kW, while 

𝐸𝐹*+ denotes the emission factor associated with PV production, expressed in kg CO₂/kW. 

Similarly, 𝐵&","&-'.! refers to the battery capacity for system 𝑘, where applicable, measured in 

kWh, and 𝐸𝐹/"'')(. corresponds to the emission factor for battery production, quantified in kg 
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CO₂/kWh. Furthermore, 𝐼&","&-'.! indicates the inverter capacity for system 𝑘, measured in 

kW, while 𝐸𝐹-#0)(')( represents the emission factor associated with inverter production, 

expressed in kg CO₂/kW. 

3.9.1.2 Transportation phase 

The GHG emissions associated with the transportation phase account for the emissions 

generated during the delivery of all system components from manufacturing facilities to the 

installation site. These emissions depend on the total weight of the transported components, 

the distance travelled, and the emission factor per unit distance and weight. The emissions for 

the transportation phase are calculated using the following equation: 

𝐺𝐻𝐺'("#1,2('! = 𝐷'("#1,2(' × 𝐸𝐹'("#1,2(' ×𝑊3)-45'             (3.29) 

where, 𝑊3)-45' represents the total weight of all PV system components transported, including 

PV modules, inverters, and batteries, measured in kg; 𝐷'("#1,2(' denotes the total distance 

travelled for transportation from the manufacturing facility to the installation site, expressed in 

km; and 𝐸𝐹'("#1,2(' refers to the emission factor associated with transportation, which 

quantifies the emissions produced per unit distance travelled per unit weight transported, 

measured in kg CO₂/km. 

3.9.1.3. Installation phase 

The GHG emissions associated with the installation phase of a PV system arise predominantly 

from the energy and material resources expended during the labour-intensive process of 

mounting, wiring, and commissioning the system components. These emissions are not 

attributed to the PV modules themselves, but rather to the human and mechanical efforts 

involved in physically assembling the infrastructure at the site. 

In lifecycle assessment, this phase includes emissions from auxiliary activities such as the 

operation of lifting equipment, use of installation tools, temporary site infrastructure, and 

transportation of personnel. The GHG emissions associated can be estimated based on the 

installed system capacity and a corresponding emission factor per kilowatt of installed capacity. 

This approach is commonly used in literature and LCA databases where installation-related 

emissions are normalized by system size, incorporating typical energy consumption and labour 
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requirements per kW of installed PV. The emissions for the installation phase are calculated 

using the following equation: 

𝐺𝐻𝐺-#1'"66! = 𝑃*+! 	 × 𝐸𝐹-#1'"66                (3.30) 

Where, 𝐺𝐻𝐺-#1'"66! represents the total GHG emissions during the installation phase (kg CO₂-

eq); 𝑃*+! represents the total PV system capacity for each system 𝑘  measured in kW and 

𝐸𝐹-#1'"66 is the emission factor for installation per unit capacity (kg CO₂/kW).  

3.9.1.4 Operation and maintenance phase 

The GHG emissions during the operation and maintenance (O&M) phase of the PV system 

primarily arise from routine maintenance activities conducted throughout the system's lifespan. 

These emissions are influenced by the frequency and intensity of maintenance operations and 

the system's operational lifetime. The total emissions for the O&M phase are calculated using 

the following equation: 

𝐺𝐻𝐺7&9! = 𝑃*+! 	 × 	𝑇6-%) × 𝐸𝐹!"-#')#"#&)              (3.31) 

where, 𝑃*+! represents the total PV system capacity for each system 𝑘  measured in kW, 𝑇6-%) 

represents the total lifespan of the PV system, typically measured in years, and 𝐸𝐹!"-#')#"#&) 

denotes the annual emissions resulting from maintenance activities, expressed in kg 

CO₂/kW/year. This equation provides an estimation of the cumulative emissions over the entire 

operational period of the system by taking into account the annual maintenance requirements 

and the expected duration of operation. 

3.9.1.5 End-of-life phase 

The GHG emissions associated with the end-of-life (EOL) phase of the PV system arise from 

the processes involved in the recycling and disposal of system components once they reach the 

end of their operational lifespan. These emissions are dependent on the quantities of materials 

being recycled and disposed of, along with their respective emission factors. The GHG 

emissions associated with the end-of-life phase of the PV system are calculated by considering 

both recycling and disposal pathways for major components, including PV modules and 

inverters. The total emissions are estimated using the following equation: 
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𝐺𝐻𝐺)#:! = (𝑊()&.&6): × 𝐸𝐹()&.&6)) + (𝑊:-1,21): × 𝐸𝐹:-1,21):)            (3.32) 

where, 𝑊()&.&6): represents the total weight of PV system components that are recycled, 

measured in kg, and 𝑊:-1,21): denotes the weight of components that are disposed of without 

recycling, also measured in kg. These quantities are calculated separately for PV modules and 

inverters and then summed. The parameter 𝐸𝐹()&.&6) refers to the emission factor associated 

with the recycling process, expressed in kg CO₂/kW, while 𝐸𝐹:-1,21"6 represents the emission 

factor for disposal processes, also measured in kg CO₂/kW. 

Determining the weight of recycled and disposed components 

To estimate the GHG emissions associated with the EOL phase of a PV system, it is essential 

to determine the weight of recycled and disposed components. This process involves several 

key steps, including estimating the total system weight, identifying recycling and disposal rates, 

and calculating the weight of materials subject to each process. 

a) Estimation of total system weight 

The total weight of the PV system encompasses various components such as PV modules, 

inverters, and batteries (if applicable). The weight of PV modules depends on the type and size 

of the system, with silicon-based panels typically weighing around 10-12 kg per square meter. 

Given that a 1 kW system requires an area of approximately 6-8 m², the total panel weight is 

estimated to be around 60-100 kg per kW, with an average of 80 kg per kW [13-15]. Inverters, 

which convert DC power to AC power, usually weigh between 10-50 kg depending on their 

capacity; for a 1 kW system, an average inverter weight of 10-15 kg can be assumed [16, 17]. 

Batteries, if incorporated into the system (viz., in solar water pumping or electric vehicle 

charging applications), weight approximately 7-10 kg per kWh, with a typical assumption of 7 

kg per kWh for calculations [18, 19]. 

b) Determination of recycling and disposal rates 

Recycling and disposal rates depend on the materials used in the components and the efficiency 

of recycling technologies available. PV modules, which primarily consist of recyclable 

materials such as glass, aluminium, and certain metals (viz., silicon and silver), have an 

estimated recycling rate of 85-90% for silicon-based modules [14]. Inverters, composed mainly 
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of metals and plastics, have an estimated recycling potential of 70-80% [20]. Lithium-ion 

batteries, commonly used in PV systems, have a recycling rate of around 50-60%, with the 

potential for improvement as recycling technologies advance [21, 22]. The disposal rate for 

each component is calculated as the complement of the recycling rate, representing the fraction 

of material that cannot be recycled and is instead directed to landfills or other waste 

management facilities.  

𝐷𝑖𝑠𝑝𝑜𝑠𝑎𝑙	𝑟𝑎𝑡𝑒 = 1 − 𝑅𝑒𝑐𝑦𝑐𝑙𝑖𝑛𝑔	𝑟𝑎𝑡𝑒               (3.33) 

c) Calculation of recycled and disposed component weights 

Using the total system weight and the respective recycling and disposal rates, the weight of 

recycled and disposed materials for each component can be determined. For PV modules with 

a total weight of 80 kg, an 85% recycling rate results in 68 kg being recycled and 12 kg being 

disposed of. Inverters with a total weight of 12 kg and a 75% recycling rate result in 9 kg 

recycled and 3 kg disposed of. For batteries weighing 7 kg per kWh with a 55% recycling rate, 

approximately 3.85 kg will be recycled, while 3.15 kg will be disposed of. 

d) General formula for component weight estimation 

The weight of recycled and disposed materials for each system component can be estimated 

using the following general formulas: 

𝑊()&.&6): = 𝑊'2'"6 × 𝑅𝑒𝑐𝑦𝑐𝑙𝑖𝑛𝑔	𝑅𝑎𝑡𝑒               (3.34) 

𝑊:-1,21): = 𝑊'2'"6 × (1 − 𝑅𝑒𝑐𝑦𝑐𝑙𝑖𝑛𝑔	𝑅𝑎𝑡𝑒)              (3.35) 

where 𝑊'2'"6 represents the total weight of the component (viz., PV modules, inverters, or 

batteries), and the recycling and disposal rates are specific to each component type. These 

formulas provide a standardised approach to quantifying the environmental impact of PV 

system decommissioning by assessing material recovery and waste generation. 

3.9.2 Total lifecycle GHG emissions for each system 

The total lifecycle GHG emissions for each system (RTS, GMS, and, SWP), denoted as 

𝐺𝐻𝐺!"!#$!, represents the cumulative emissions resulting from various stages of the system's 

lifecycle. The total lifecycle GHG emissions for each system 𝑘 can is represented as follows: 



PART B: LIFECYCLE GHG EMISSION ESTIMATION 

 

134 | Page 
 

𝐺𝐻𝐺'2'"6! =	𝐸; ∙ 𝑋; (3.36) 

where, 𝐸; = [𝐺𝐻𝐺%#&'(#)!'*+! , 𝐺𝐻𝐺!*#&,-"*!! , 𝐺𝐻𝐺.&,!#$$! , 𝐺𝐻𝐺/&1! , 𝐺𝐻𝐺+&2!] (a vector 

containing emissions from all lifecycle stages for strategy 𝑘), 𝑋; = 

[𝓍%#&'(#)!'*+! , 𝓍!*#&,-"*!! , 𝓍.&,!#$$! , 𝓍/&1! , 𝓍+&2!] (a vector of activity data or scaling factors for 

each lifecycle stage). 

Thus, the total GHG emissions across all strategies can be expressed as: 

𝐺𝐻𝐺'2'"6 = D 𝐸; 	∙ 𝑋;
;∈{>?@,B9@,@C}

 (3.37) 

3.10 GHG emission reductions estimation 

GHG emission reductions are estimated by comparing the energy generated by solar PV 

systems with the baseline energy derived from conventional sources such as diesel-powered or 

grid-connected systems. This comparison allows for the quantification of the emissions 

avoided by transitioning to solar energy, thus highlighting the environmental benefits of 

adopting PV technology. The key parameters considered in this estimation include energy 

generation, system lifespan, and emission factors associated with conventional energy sources. 

3.10.1 GHG emission reductions for each system 

The emission reductions for solar PV systems are calculated separately for different system 

types, including RTS, GMS, SWP, and EV charging applications. Each system's reduction 

potential is evaluated based on its energy generation capacity and the emission factors of the 

displaced conventional energy sources. This assessment helps in determining the contribution 

of solar PV systems to overall carbon footprint reduction in the study region. 

3.10.1.1 GHG emission reductions for RTS and GMS 

For RTS and GMS, which are primarily grid-connected systems, the avoided emissions are 

calculated using the energy generated by the solar PV system over its operational lifetime. The 

emissions avoided by substituting grid electricity with solar power are determined using the 

following equations: 
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𝐺𝐻𝐺():$&'-2#"#$ = 𝐸126"(! × 𝐸𝐹4(-: × 𝑇6-%)               (3.38) 

𝐺𝐻𝐺():$&'-2#%&$ = 𝐸126"(! × 𝐸𝐹4(-: × 𝑇6-%)              (3.39) 

where, 𝐸𝐹4(-: represents the emission factor for grid electricity, which varies by country or 

region. For India, it is approximately 0.716 kg CO₂/kWh. 𝐸126"(! denotes the daily energy 

generated by the solar PV system 𝑘, measured in kWh/day [23]. The parameter 𝑘 represents 

the RTS and GMS systems under consideration. 

3.10.1.2 GHG emission reductions for SWP 

Solar Water Pumping (SWP) systems can replace conventional diesel or grid electricity-

powered pumps, leading to significant GHG emission reductions. In the case of diesel 

replacement, the emission reductions are calculated based on the energy generated by the solar 

system, considering the emission factor of diesel-powered pumps. Similarly, for grid electricity 

substitution, the emissions avoided are determined by comparing the solar energy output to the 

emissions generated by grid electricity consumption. The equations used to estimate these 

reductions are as follows:  

𝐺𝐻𝐺():$&'-2#$'(,*+,-,. = 𝐸126"($'( × 𝐸𝐹:-)1)6 × 365 × 𝑇6-%)            (3.40) 

𝐺𝐻𝐺():$&'-2#$'(,/0+* = 𝐸126"($'( × 𝐸𝐹4(-: × 365 × 𝑇6-%)             (3.41) 

where, 𝐸𝐹:-)1)6 represents the emission factor for diesel, typically 2.68 kg CO₂/liter, which is 

widely accepted in India and globally for calculating emissions from diesel-powered pumps, 

particularly in rural agricultural settings [24]. 

3.10.2 Total GHG emission reductions 

The total GHG emission reductions are derived by summing the emission reductions achieved 

by all solar PV systems considered in the study, including RTS, GMS, SWP, and EV charging. 

This provides a comprehensive estimate of the overall environmental benefits of solar energy 

deployment. The total emission reductions are computed using the following equation:       
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𝐺𝐻𝐺():$&'-2#1213. =D𝐺𝐻𝐺;

#

;EF

 (3.43) 

where, 𝑘 represents the specific GHG reduction source (RTS, GMS, SWP, EV), 𝑛 is the total 

number of GHG reduction strategies (𝑛 = 4), 𝐺𝐻𝐺; refers to each individual reduction 

contribution. 

3.10.3 Net GHG emission reductions 

The net GHG emission reductions for each system are determined by subtracting the total 

lifecycle emissions from the calculated GHG reductions, providing a realistic estimate of the 

environmental impact. This calculation takes into account emissions generated during the 

system's entire lifecycle, from manufacturing to disposal. The net emission reductions for an 

individual system and all systems combined are calculated using the following equations: 

𝐺𝐻𝐺#)'! = 𝐺𝐻𝐺():$&'-2#! − 𝐺𝐻𝐺'2'"6!               (3.43) 

For all systems combined, the total net GHG emission reduction over the system's lifetime is: 

𝐺𝐻𝐺#)'1213. = 𝐺𝐻𝐺():$&'-2#1213. − 𝐺𝐻𝐺'2'"6                   (3.44) 

3.11 Data sources, assumptions, and limitations 

3.11.1 Data sources 

The lifecycle GHG emission estimation for solar PV systems in rural Assam relies on both 

primary and secondary data sources. Primary data include the technical specifications of PV 

systems installed in the study area, providing insights into system configurations, energy 

outputs, and operational parameters. Secondary data are derived from peer-reviewed literature, 

databases such as Ecoinvent and GREET, and government reports. For example, the Central 

Electricity Authority (CEA) provides an emission factor for the Indian grid for FY 2022-23 at 

0.716 tCO₂/MWh, which is utilized in the analysis. These data sources enable comprehensive 

modelling of emissions while ensuring the incorporation of region-specific factors. 

 

 



CHAPTER 3 

 

137 | Page 
 

Table 3.7: LCA phases and assumptions parameters for RTS, GMS, and SWP systems 

Phase Parameter Value Unit Remarks 

Manufacturing 
phase 

PV emission factor 750 kg CO₂/kW 
Mid-range value for 
polycrystalline modules in 
Indian conditions [25, 26]. 

Inverter emission 
factor 75 kg CO₂/kW 

Reflects mid-range emissions 
for inverter production [17, 
20]. 

Battery emission 
factor (if applicable) 175 kg CO₂/kWh 

Accounts for lithium-ion 
battery emissions in SWP 
systems [27, 28]. 

Pump emission factor 50 kg CO₂/kW 
Manufacturing emissions for 
water pumps in SWP systems 
[29]. 

Transportation 
phase 

Transport emission 
factor 0.2 kg CO₂/ton-km 

Reflects suboptimal transport 
efficiency in rural Assam [30, 
31]. 

Transportation 
distance 500 km 

Conservative estimate for 
transporting components to 
rural Assam. 

PV module weight 80 kg/kW Standard weight for silicon-
based PV panels [13-15]. 

Inverter weight 12 kg/kW Typical weight for inverters 
per kW of capacity [16, 17]. 

Battery weight (if 
applicable) 7 kg/kWh 

Standard weight for lithium-
ion batteries in SPVWP 
systems [18, 19]. 

Pump weight 20 kg/kW 
Average weight for water 
pumps used in SWP systems 
[32]. 

Installation 
phase 

Installation energy 
emission factor 0.05 kg CO₂/kW 

Scales installation emissions 
proportionally to system 
capacity [33]. 

Operation & 
maintenance 

Annual maintenance 
emission factor 

0.5 for RTS 
and GMS, 
1 for SWP 

kg CO₂/kW/year 
SWP has higher maintenance 
emissions due to water pump 
operations [34, 35]. 

System lifespan 25 years Typical lifespan for solar PV 
systems and components [36]. 

End-of-Life 
phase 

PV module recycling 
rate 85 % Assumes partial recycling of 

silicon PV panels [14]. 
Inverter recycling 
Rate 75 % Assumes moderate recycling 

potential for inverters [20]. 

Battery recycling 
Rate (if applicable) 55 % 

Reflects limited recycling 
technology for lithium-ion 
batteries [21, 22]. 

Pump recycling rate 65 % 
Pumps are moderately 
recyclable due to metal 
components [37]. 

Recycling emission 
Factor 30 kg CO₂/kW 

Emissions for recycling PV 
modules and components 
[38]. 

Disposal emission 
factor 55 kg CO₂/kW 

Higher emissions for disposal 
of non-recyclable materials 
[39]. 

Parameters for PV systems considered 



PART B: LIFECYCLE GHG EMISSION ESTIMATION 

 

138 | Page 
 

The emission factor for solar PV modules is set at 750 kg CO₂/kW, a mid-range value reflecting 

manufacturing efficiency under Indian conditions. This value accounts for variations in 

production processes and energy sources used. For inverters, an emission factor of 75 kg 

CO₂/kW is chosen, based on the balance between advanced and conventional technologies used 

in rural areas. For batteries, a selected value of 175 kg CO₂/kWh is used, considering the 

widespread adoption of lithium-ion technology in rural applications and the associated 

environmental costs. 

Transportation 

A transportation emission factor of 0.2 kg CO₂/ton-km is selected, recognizing the suboptimal 

logistics conditions in rural Assam. Given the region's challenging terrain, transportation often 

relies on less efficient methods, leading to higher emissions. The estimate falls within the 

global range of 0.1 to 0.25 kg CO₂/ton-km, with the chosen value reflecting regional conditions. 

Installation 

The emission factor for energy use during installation is set at 0.716 kg CO₂/kWh, based on 

the Indian grid's average emission factor provided by the Central Electricity Authority (CEA). 

Since installation activities such as crane use and electrical work are dependent on grid 

electricity, this value provides a realistic measure of emissions. 

Operation & maintenance 

For grid electricity substitution, the emission factor used is 0.716 kg CO₂/kWh, reflecting the 

national average provided by the CEA. This factor is applicable to rural Assam, where grid 

energy predominantly comes from thermal power sources. The annual energy output of the 

solar PV systems is assessed based on region-specific solar irradiance data, providing 

conservative yet realistic energy generation estimates. 

End-of-life phase 

The emission factor for recycling and disposal of solar panels is set at 30 kg CO₂/kW, reflecting 

the limited but developing recycling infrastructure in India. The disposal factor is set at 55 kg 

CO₂/kW, recognizing the higher emissions from non-recycled components due to inadequate 
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waste management facilities in rural areas. These values represent mid-range estimates, 

accounting for both current constraints and potential improvements in recycling capabilities. 

3.11.2 Assumptions 

The analysis of lifecycle GHG emissions for solar PV systems in rural Assam is based on 

several key assumptions to ensure consistency and comparability across different installations. 

It is assumed that the efficiency of PV modules remains uniform across all installations, 

reflecting standardized manufacturing processes and quality control measures. A standardized 

operational lifespan of 25 years is considered for all PV systems, aligning with industry norms 

and typical performance warranties offered by manufacturers. Additionally, emission factors 

used in the estimation process are assumed to remain constant over time, providing a stable 

basis for long-term assessments and facilitating straightforward comparisons between different 

scenarios. These assumptions help create a reliable framework for evaluating the 

environmental impact of PV systems while acknowledging the inherent complexities of solar 

energy deployment in diverse rural environments. 

Table 3.8: The assumptions made in the study are summarised in the following table 

Assumption Value/Justification 
Module efficiency Uniform across installations 

Operational lifespan 25 years (industry standard) 

Emission factors 
stability 

Assumed constant over time for 
consistency 

3.11.3 Limitations 

Despite the comprehensive approach adopted for estimating lifecycle GHG emissions, several 

limitations must be acknowledged. One major limitation is the limited availability of region-

specific data, particularly related to raw material extraction. The lack of localized data 

necessitates reliance on global averages or estimates, which may not fully capture the nuances 

of material sourcing and energy use specific to the study area. Another challenge is the potential 

variability in recycling and end-of-life management practices. The actual recycling rates and 

disposal methods may differ from the assumed values due to evolving policies, technological 

advancements, and regional infrastructure constraints. Furthermore, the study excludes the 

impact of land-use changes associated with PV installations due to data constraints. Land-use 
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changes can have significant environmental implications, but their exclusion limits the scope 

of the current assessment. These limitations highlight the need for continued research and data 

collection efforts to enhance the accuracy and relevance of GHG emission estimations for solar 

PV systems in rural Assam. 

Table 3.9: The key limitations considered in the study are summarised below 

Limitation Impact 
Lack of region-specific data May lead to reliance on generalized values 

Variability in recycling practices Differences in actual versus assumed recycling rates 

Exclusion of land-use change impacts Potential underestimation of environmental effects 

3.12 Results and Discussions 

3.12.1 Lifecycle GHG emissions by stage 

Table 3.10: Lifecycle GHG emissions by phases for RTS, GMS and, SWP systems 

System Manufacturing 
(t CO₂) 

Transportation 
(t CO₂) 

Installation 
(t CO₂) 

O&M  
(t CO₂) 

End-of-Life 
(t CO₂) 

Total GHG 
Emissions 

(t CO₂) 

RTS 1,71,817 1,916 10 2,603 6,52,903 8,29,249 

GMS 9,51,467 10,610 58 14,416 36,15,573 45,92,123 

SWP  1,666 149 1 333 41,790 43,940 

Table 3.11: Net GHG reductions for RTS, GMS, and SWP systems 

System Total GHG Reductions  
(t CO₂) 

Total GHG Emissions  
(t CO₂) 

Net GHG Reductions  
(t CO₂) 

RTS 43,72,209 8,29,249 35,42,960 

GMS 2,42,11,936 45,92,123 1,96,19,812 

SWP (Grid) 2,82,181 43,940 2,38,241 

SWP (Diesel) 3,23,168 43,940 2,79,228 

3.12.2 Interpretation 
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The interpretation of lifecycle GHG emissions and net GHG reductions for RTS, GMS, and 

SWP systems highlights the environmental benefits of deploying solar PV technologies. The 

total lifecycle emissions for RTS, GMS, and SWP are 8,29,249 t CO₂, 45,92,123 t CO₂, and 

43,940 t CO₂, respectively, with End-of-Life being the most dominant phase, contributing 

approximately 60–70% of total emissions. Despite initial emissions from manufacturing and 

installation, long-term GHG savings significantly outweigh lifecycle emissions, reinforcing the 

sustainability of these systems. 

The GMS system achieves the highest net reduction, offsetting approximately 196,198,812 t 

CO₂, followed by RTS at 35,42,960 t CO₂ and SWP (Grid) at 2,38,241 t CO₂. Furthermore, 

SWP (Diesel) reduces 2,79,228 t CO₂, demonstrating the potential emissions savings from 

replacing diesel-powered water pumps with solar alternatives. The findings emphasize the role 

of solar PV in mitigating carbon emissions, particularly in decentralized rural electrification 

and irrigation applications. Enhancements in PV manufacturing efficiency, recycling, and 

cleaner energy sources for production can further amplify these reductions, positioning solar 

energy as a crucial component in achieving net-zero emission targets. 

Comparative analysis 

A comparative analysis of lifecycle GHG emissions from SWP systems versus diesel-based 

and grid-connected alternatives demonstrates the environmental benefits of solar-based 

solutions. The total GHG emissions for the SWP system are 43,940 t CO₂. In contrast, diesel-

based and grid-powered water pumping systems used as baselines produce significantly higher 

emissions 323,168 t CO₂ and 282,181 t CO₂, respectively. Diesel systems generate the highest 

emissions due to direct fossil fuel combustion, making them the least sustainable. Although 

grid-connected systems emit less than diesel, they remain carbon-intensive owing to the fossil 

fuel composition of the electricity mix. Fully solar-powered SWP systems, by comparison, 

yield substantially lower lifecycle emissions. These findings highlight the critical need to 

replace diesel and grid-based pumps with solar alternatives to reduce carbon footprints, 

enhance energy access, and support sustainable agriculture in rural areas. 

GHG mitigation potential 

The GHG mitigation potential of solar photovoltaic systems, including RTS, GMS, and SWP 

systems, demonstrates a significant reduction in lifecycle emissions when compared to 



PART B: LIFECYCLE GHG EMISSION ESTIMATION 

 

142 | Page 
 

conventional energy sources such as grid electricity and diesel-based systems. These reductions 

highlight the effectiveness of solar PV technology in mitigating carbon emissions across 

different applications, from decentralized household energy generation to large-scale power 

plants and sustainable agricultural irrigation. 

Over a typical 25-year operational lifespan, the cumulative GHG savings from these solar PV 

installations become even more substantial, reinforcing their role in achieving regional and 

national emission reduction targets. India, under its Nationally Determined Contributions 

(NDCs) to the Paris Agreement, has committed to reducing the emissions intensity of GDP by 

45% by 2030 and achieving net-zero emissions by 2070. The large-scale deployment of RTS 

and GMS contributes directly to these goals by replacing fossil-fuel-based electricity 

generation, which is still a dominant source in the national grid. Meanwhile, the integration of 

SWP systems supports the agriculture sector’s transition towards clean energy, reducing its 

dependency on grid power and diesel while enhancing rural energy security. 

3.6 Summary 

The analysis includes all LCA phases, such as manufacturing, transportation, installation, 

operation and maintenance, and end-of-life processes, ensuring a holistic environmental 

assessment. These findings reinforce the significance of solar PV deployment in reducing GHG 

emissions, promoting sustainable energy transitions, and addressing rural energy access 

challenges. Lifecycle GHG emission estimations provide critical insights into the 

environmental benefits of solar PV systems. By identifying the stages contributing the most 

emissions, targeted interventions can be designed to minimize the carbon footprint, thereby 

enhancing the sustainability of solar energy deployment in rural Assam. The chapter concludes 

by summarizing the environmental benefits and lifecycle emissions of solar PV adoption and 

underscores the importance of incorporating LCA methodologies to support informed decision-

making for sustainable energy transitions.  
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