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CHAPTER 6 

PHENOLOGICAL MODELLING 

Objective IV:  To examine the impact of weather parameters on different 

phenophases of plants using statistical models 

6.1 Introduction 

 The occurrences and durations of phenophases in plants in association with changes in 

one or more climatic variables such as temperature, precipitation, relative humidity, 

insolation, etc. signify the sensitivity of phenophases to climatic conditions. Consequently, 

this sensitivity highlights the adaptation of plants to the climate of a specific area [1, 2]. 

Therefore, due to the presence of local adaptations in plants along with the impacts of the 

current scenario of climate change, modeling the phenological responses of plants to 

climatic variables has become an important aspect of phenological studies [2, 3, 4, 5, 6]. 

Statistical analysis of phenophases with climatic variables and the subsequent development 

of phenological models tend to provide significant insights into the roles of climatic 

variables as phenological cues [7]. These phenological models effectively establish the 

correlation between the timing of phenological events and the prevailing climatic 

conditions [9]. According to Roberts [7], statistical models can be classified into two broad 

categories: (a) regression-based models, where the underlying biological processes are not 

prioritized; (b) mechanistic models, which are developed to relate different biological 

processes inferred from experimental studies.  

 Phenological studies frequently use regression-based models because of their flexibility 

and robustness, which makes them applicable for small datasets [8]. Traditionally, 

phenological models are developed based on the assumption of linear relationships between 

climatic variables and phenophases [9]. But besides linear regression, other regression 

models such stepwise regression, multiple regression, penalized regression, and others are 

also used to obtain more accurate projections of phenological events [8, 9]. A commonly 

observed limitation in developing regression-based models is the presence of 

interdependent variables or regressors [10]. In the process of developing regression models, 

where several variables are required and their removal reduces the models’s utility, the 

presence of collinearity between the required variables can decrease the model’s 

effectiveness [10, 11]. Therefore, to address the issues associated with the multicollinearity 

of variables and subsequently obtain stable regression coefficients, it is necessary to 
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implement regularization methods such as lasso regression, ridge regression, etc. as 

alternatives to the ordinary least squares method [10, 11]. 

6.2 Methodology 

 Two phenophases of trees, i.e., leaf initiation and flowering, displaying distinct 

seasonality in the Sonai Rupai Wildlife Sanctuary were selected to develop regression 

models using climatic variables: mean air temperature, precipitation amount, mean relative 

humidity (RH) and mean photosynthetically active radiation (PAR) for each month of the 

study period (2021-2023) as regressors. Three types of regression models: simple linear 

regression, binomial generalized linear models and ridge regression models were 

developed in R using stats, lmtest and lmridge packages [10, 12, 13]. 

  The linear regression models between the phenophases and climatic variables were 

developed after applying square root normalization to the variables. The ridge regression 

models were created using standardized variables and optimal biasing parameters (k). The 

addition of a penalty term to the loss function results in constraining the ridge regression 

models’ coefficients, ensuring that the coefficients are not skewed by outliers, thereby 

reducing their variances [10, 14]. The standardizations of the variables were done as described 

by Belsley et al. [15] and Draper and Smith [16], 

Xj = 
𝑥𝑖𝑗− �̅�𝑗

√∑(𝑥𝑖𝑗− �̅�𝑗)
2
          (Eq. 1) 

 where, j = 1, 2, ...., p such that Xj=0 and X̅jʹXj = 1, given Xj is the jth column of the matrix 

X (Eq. 1) [10]. The coefficients of the independent variables were determined using the 

formula 

�̂�𝑅𝑘
= (𝑋′𝑋 + 𝑘𝐼𝑝)−1𝑋′𝑦        (Eq. 2) 

 where the vector �̂�𝑅𝑘
 is the ridge regression’s standardized coefficients of order p × 1 and 𝑘𝐼𝑝 is 

a positive semi-definite matrix added to the 𝑋′𝑋 matrix (Eq. 2) [10]. The ridge regression model 

for the phenophases along with the meteorological parameters is 

y = β0 + β1Precipitation + β2RH + β3Temperature + β4PAR                    (Eq. 3) 

 where, y is the phenophase, β0 is the constant, β1, β2, β3, and β4 are variable coefficients 

for precipitation, RH, temperature, and PAR, respectively (Eq. 3).  
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 For the evaluation of models that best fit the observed phenological data, the root mean 

square error (RMSE), AIC, and corrected AIC (AICc) of the regression models were 

calculated using the AICcmodavg and Metrics packages in R [17, 18]. The RMSE determines 

the deviation of the predicted values of the model from the observed values.  The 

calculation formula of RMSE uses observed value (Oi), predicted value (Pi) and number of 

samples (n) (Eq. 4). 

𝑅𝑀𝑆𝐸 =  √
∑ (𝑂𝑖−𝑃𝑖)2𝑛

𝑖=1

𝑛
         (Eq. 4) 

 The AIC and AICc are also used to evaluate the goodness of the models based on the 

concept of information entropy [19, 20]. The formulae of AIC and AICc contain K i.e. the 

number of parameters equipped in the models (Eqs. 5 and 6). 

𝐴𝐼𝐶 = 𝑛 ∗ 𝑙𝑜𝑔(𝑅𝑀𝑆𝐸2) + 2𝐾 +
2𝐾(𝐾+1)

𝑛−𝐾−1
      (Eq. 5) 

𝐴𝐼𝐶𝑐 = 𝐴𝐼𝐶 +
2𝐾2+2𝐾

𝑛−𝐾−1
         (Eq. 6)  

 The binomial generalized linear models were constructed using the logit link function, 

and the phenological observations were represented as the proportion of species displaying 

a particular phenophase relative to the total number of species considered for the study. 

6.3 Results 

 In the phenological study, four climatic variables were selected that displayed weak 

negative to strong positive correlation among themselves. A weak negative correlation (-

0.06) was observed between RH and PAR (Table 6.1). Moderate positive correlation was 

observed between precipitation and RH (0.52), and temperature and RH (0.43) (Table 6.1). 

However, a strong positive correlation of 0.72 was observed between temperature and PAR, 

indicating a close relationship between these two variables. The presence of moderate and 

strong correlations between the variables highlights the interplays between the climatic 

variables which act as cues for the occurrences of phenophases. 
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Table 6.1: Correlation matrix of the selected climatic variables 

Climatic variables Precipitation Temperature RH PAR 

Precipitation 1.00 0.63 0.52 0.05 

Temperature 0.63 1.00 0.43 0.72 

RH 0.52 0.43 1.00 -0.06 

PAR 0.05 0.72 -0.06 1.00 

 Simple regression models of leaf initiation with precipitation, relative humidity, 

temperature, and photosynthetically active radiation were generated. The goodness of the 

generated models was evaluated based on the values of R2, adjusted R2, AIC, AICc, and 

RMSE (Table 6.2). Among the four models of leaf initiation, the R2 (0.54) and adjusted R2 

(0.51) values were highest for the RH vs Leaf initiation model. Additionally, this model 

showed the lowest AICc value of 16.79 and RMSE value of 0.30. Therefore, among the 

models of leaf initiation, the RH vs Leaf initiation model with a p-value of 0.00 displayed 

the best-fitting relationship between a phenophase and a climatic parameter (Fig. 6.1 (d), 

Table 6.2). On the contrary, the R2 and adjusted R2 values of 0.18 and 0.14 respectively 

were the lowest, and the values of AICc and RMSE of 30.53 and 0.40 respectively were 

highest for the Precipitation vs Leaf initiation model (Table 6.2). Thus, it is implied that 

the Precipitation vs Leaf initiation model is a lesser fit to the observed variables in 

comparison to the different models of leaf initiation (Fig. 6.2 (a)). The AIC of the null 

model for leaf initiation is 111.39, yielding ΔAIC of 95.17 with RH vs Leaf initiation 

model. The Shapiro-Wilk test of the residuals for this model gives a value of 0.93 with a p-

value of 0.10, thereby upholding the fitness of the model. 

 Similarly, simple regression models were generated for the flowering phenophase using 

the selected climatic parameters. Among the four models, three models, i.e., Precipitation 

vs Flowering, Temperature vs Flowering and PAR vs Flowering hold p-values<0.05. The 

R2 and adjusted R2 values of Temperature vs Flowering and PAR vs Flowering models are 

higher than those of Precipitation vs Flowering model (Table 6.2). However, the Shapiro-

Wilk test of the residuals of the considered models for flowering shows that only 

Precipitation vs Flowering model has a value of 0.94 with a p-value of 0.14. As the null 

model for flowering has an AIC of 94.89, the ΔAIC between the Precipitation vs Flowering 

model and the null model is 43.79, thereby implying that the aforementioned model is a 

better fit for the observed data (Table 6.2). Ridge regression models were also generated 

for the two phenophases: leaf initiation and flowering using all the selected climatic 
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variables. The fittings of the selected models were determined through the comparison and 

assessment of the values of R2, adjusted R2, AIC, and RMSE. The p-values of both the 

ridge regression models were estimated to be 0.00 and 0.05, respectively. The R2 and 

adjusted R2 values of both leaf initiation and flowering models were higher compared to 

the simple regression models of RH vs Leaf initiation and PAR vs Flowering (Table 6.2). 

The ridge regression models had marginally higher RMSE values compared to the simple 

regression models. However, in ridge regression models, the AIC values for the leaf 

initiation and flowering models were comparatively lower, having 3.17 and 17.72, 

respectively (Table 6.2). The equations for ridge regression models are:  

Leaf Initiation = -14.8526 - 0.0015 * Precipitation + 0.1995 * RH + 0.1187 * Temperature 

+ 0.0579 * PAR, where k = 1.87        (5) 

Flowering = 5.8913 + 0.0027 * Precipitation – 0.0999 * RH + 0.1051 * Temperature + 

0.0125 * PAR, where k = 2.50        (6) 

 The binomial generalized linear model for leaf initiation with all the climatic variables 

yielded an AIC of 59.435 in comparison to the AIC of 122.94 for the null model of leaf 

initiation. The null deviance and residual deviance of the leaf initiation model were 80.99 

on 23 degrees of freedom (df) and 9.49 on 19 df, respectively. Similarly, for flowering, the 

AIC of the model was 76.87, while the AIC of the null model was 87.97. The null deviance 

and the residual deviance of the flowering model were 46.66 on 23 df and 27.56 on 19 df. 

The GLM plots of the predicted proportion of leaf initiation and flowering show that 

responses of the phenophases differ for different climatic variables (Fig.. 6.2, 6.3). The 

predicted leaf initiation showed positive responses to temperature, RH, and PAR, while a 

negative response was observed with precipitation (Fig.. 6.2). Similarly, flowering showed 

positive responses to temperature and precipitation and negative responses to PAR and RH 

(Fig.. 6.3). However, the broadening of the confidence intervals for both the phenophases 

at extreme values of climatic variables indicates the uncertainty of responses through the 

model predictions. 
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Table 6.2: Regression models of leaf initiation and flowering with different climatic variables 

Model 
Coefficients 

R2 
Adjusted 

R2 
AIC AICc ΔAIC RMSE 

p-

value Precipitation Temperature RH PAR 

Simple Regression models 

Precipitation vs 

Leaf initiation 
0.03    0.18 0.14 29.96 30.53 81.43 0.40 0.04 

Temperature vs 

Leaf initiation 
 0.56   0.49 0.47 18.47 19.04 92.92 0.31 0.00 

RH vs Leaf 

initiation 
  0.74  0.54 0.51 16.22 16.79 95.17 0.30 0.00 

PAR vs Leaf 

Initiation 
   0.29 0.23 0.19 28.40 28.97 82.42 0.39 0.02 

Precipitation vs 

Flowering 
0.05    0.23 0.20 51.10 51.67 43.79 0.62 0.02 

Temperature vs 

Flowering 
 0.82   0.41 0.38 45.01 45.58 49.88 0.55 0.00 

RH vs Flowering   -0.19  0.01 -0.03 57.18 57.75 37.71 0.70 0.59 

PAR vs Flowering    0.56 0.32 0.29 48.32 48.89 46.57 0.58 0.00 

Ridge regression models 

Leaf initiation ~ 

Precipitation + 
-0.0015 0.1187 0.1995** 0.0579* 0.73 0.69 3.17 5.28 106.11 0.94 0.00 
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Temperature + RH 

+ PAR 

Flowering  ~ 

Precipitation + 

Temperature + RH 

+ PAR 

0.0027 0.105 -0.0999* 0.0125 0.29 0.18 17.72 19.83 75.06 1.28 0.05 

Binomial generalized linear models 

Leaf initiation ~ 

Precipitation + 

Temperature + RH 

+ PAR 

-0.004 0.15 0.19 0.06 — — 59.44 62.77 63.50 — — 

Flowering ~ 

Precipitation + 

Temperature + RH 

+ PAR 

0.001 0.26 -0.10 -0.03 — — 76.87 80.20 11.10 — — 

 

 

 



134 

 

 

6.1 (a) 

 

6.1 (b) 

 

Fig. 6.1: Linear regression plot displaying significant relationships (p < 0.05) between 

phenophases: (a) leaf initiation, and (b) flowering with climatic variables  
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6.2 (a) 

 

 

6.2 (b) 
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6.2 (c) 

 

 

6.2 (d) 

Fig. 6.2: GLM plots of predicted leaf initiation in response to changes in (a) precipitation, 

(b) temperature, (c) PAR and (d) RH 
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6.3 (a) 

 

 

6.3 (b) 
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6.3 (c) 

 

 

6.3 (d) 

Fig. 6.3: GLM plots of predicted flowering in response to changes in (a) precipitation, (b) 

temperature, (c) PAR and (d) RH 
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6.4 Discussion 

 The application of Spearman’s rank correlation highlights the existence of positive and 

negative associations, as it does not prove a cause-and-effect or any type of potential 

relationship between the phenophases and changes in the climatic variables [21]. The 

occurrences and durations of the phenophases are responses to complex interactions with 

both the abiotic and biotic environmental variables [22]. The implementation of regression 

techniques on phenological observations allows the establishment of potential relationships 

amongst different variables and the generation of predictive models. The selection of the 

predictive models is done on the basis of several criteria, such as adjusted R2, AIC, AICc, 

etc., which can indicate a better goodness of fit [23]. According to Gregorich et al. [11], 

information criteria such as AIC can be used to determine the most predictive model. 

Although the higher value of adjusted R2, and lower values of AIC as well as AICc signify 

better models, certain cons, such as the influence of outliers as well as sizes of the datasets, 

are associated with the model selection criteria [23].  

  Although the development of regression models by multiple regression is a sensible 

approach to understand the effects of several independent variables on a dependent 

variable, the presence of collinearity between the variables causes significant variances in 

the model’s predictions [10, 11]. In this study, it is observed that interdependence is present 

among the selected climatic variables. To address the underlying issue of multicollinearity 

among the variables, multiple regression can be performed, either considering the 

ambiguity associated with the coefficients of regression or with stepwise selection of 

variables [11]. Therefore, simple linear regression models for phenophases have the benefits 

of being devoid of the issue of multicollinearity, as they have only one independent 

variable.  

 Several studies have reported the occurrences and durations of vegetative phenophases 

in response to seasonal variations in temperature, precipitation, photoperiod, etc. [24, 25, 26, 

27]. In this study, simple regression models for leaf initiation show that all 4 climatic 

variables have a significant relationship with the occurrence of leaf initiation. Compared to 

the temperate regions, the presence of weak seasonality in the tropical region along with a 

mosaic distribution of evergreen and deciduous trees results in a less prominent onset of 

green waves [9, 28]. However, in the Indian subcontinent, specifically Northeast India, the 

occurrence of the monsoon causes significant changes in the climatic variables thereby 

influencing the vegetative phenological patterns [28, 29]. This is clearly reflected in this study, 
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and other studies carried out in parts of the Eastern Himalayan region of Northeast India 

agree that seasonal variations in rainfall and temperature during different times of the year 

causes phenophases to occur [30, 31]. However, the reproductive phenophases of plants do 

not follow the same pattern. The flowering models had lower R2 and adjusted R2 values 

than the leaf initiation models. This indicates that the reproductive phenophases are affected 

by climatic variables, but their timings and durations vary with species. The asynchronous 

flowering of plants in communities often results in inconspicuous peaks or two peaks, one 

major and one minor [32, 33]. According to Kikim and Yadava [32], this is because in the case 

of the evergreen trees the onset of flowering succeeds the occurrences of leaf flushing but 

for the deciduous species different patterns are observed regarding flowering making it a 

highly species-specific response to the biotic factors as well as climatic variables. Although 

the simple linear regression technique is effective to generate predictive models, it falls 

short when the non-normal data cannot be transformed to meet the required normality 

assumption. When the required assumption of normality of data is not fulfilled, GLMs are 

effective in determining the relationships and influences of the variables on the dependent 

variable. However, the effects of collinearity on estimation of parameters are also observed 

in GLMs which reduces the reliability of the models [34].  

 Ridge regression is an efficient technique to develop phenological models because of its 

ability to suppress the collinearity among the relevant variables and its robustness towards 

overfitting [14, 35]. This study shows that this technique can be used because it includes all 

the climatic variables and gets better values for the model performance metrics [36]. 

Therefore, with the integration of the ridge penalty, the ridge regression models effectively 

convey the dynamic relationships between the phenophases i.e. leaf initiation and flowering 

with precipitation, temperature, RH and PAR.  

6.5 Conclusion 

 This study demonstrates that regression-based models are efficient in depicting the 

influence of variables on the dependent variables. However, the type and distribution of the 

data plays a significant role in the applicability of the models. The ridge regression models 

effectively demonstrate the influence of climatic variables on the phenophases of the 

tropical semi-evergreen forest in the Eastern Himalayan region of Northeast India while 

addressing underlying issue of collinearity among the variables. Furthermore, the species 

wise studies will enable to comprehend the responses along with the physiological 
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mechanisms of the tree species to the seasonal variations in the climatic conditions in this 

region where phenological studies are scare and in dire necessity in the current scenario of 

anthropogenic induced climate change. 
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