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individual PAbs, PAbE, PAbV and FPAb. Significance of 

difference in immune-recognition of NnV, KV, RvV, EcV, and 

NkV by PAb 1,2,3,4, 5, PAbE and PAbV compared to immune-

recognition by FPAb *p<0.05. Error bars indicate mean ± SD 

(n=3). 

 

(e) Dot blot assay to determine the immune recognition of NnV, 

KV, NkV, RvV, and EcV (1 pg/µL) spiked rat plasma against FPAb 

and commercial anti-snake PAV. (f) Image analyses of the 

intensities of the blots were performed using ImageJ software. 

Significance of difference of FPAb compared to commercial anti-

snake PAV *p<0.05. Error bars indicate mean ± SD (n=3). 

 

(g) Western blot analysis to determine the immune recognition of 

NnV, NkV, KV, RvV and EcV against FPAb. Lane 1 represents the 

immunoblot of NnV, Lane 2 represents the immunoblot of NkV, 

Lane 3 represents the immunoblot of KV, Lane 4 represents the 

immunoblot of RvV, Lane 5 represents the immunoblot of EcV, and 

Lane M denotes the marker. Immunoblot detected by HRP 

conjugated anti-rabbit IgG. (h) Western blot analysis to determine 

the immune recognition of NnV, NkV, KV, RvV and EcV against 

commercial anti-snake PAV. Lane 1 represents the immunoblot of 

NnV, Lane 2 represents the immunoblot of NkV, Lane 3 represents 

the immunoblot of KV, Lane 4 represents the immunoblot of RvV, 

Lane 5 represents the immunoblot of EcV, and Lane M denotes the 

marker. Immunoblot detected by HRP conjugated anti-horse IgG. 

(i) Densitometry analyses of the blot intensities of NnV, NkV, KV, 
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Significance of difference in recognition of the snake venoms by 

FPAb compared to recognition by commercial anti-snake PAV 

*p<0.05. Error bars indicate mean ± SD (n=3). 

 

Data showing spectrofluorometric interaction between the snake 
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represented in a one-site specific binding curve showing the change 

in maximum fluorescence intensity (λmax) of venom-antibody 

binding. (j) Interaction of NnV with FPAb and commercial anti-

snake PAV, (k) Interaction of KV with FPAb and commercial anti-

snake PAV, (l) Interaction of NkV with FPAb and commercial anti-

snake PAV, (m) Interaction of RvV with FPAb and commercial 

anti-snake PAV, and (n) Interaction of EcV with FPAb and 

 

 

 

 

 

 

100 

 

 

 

 

 

 

101 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

102 

 

 

 

 

 

 

 

 

 

 



  xvii 
 

 

 

 

 

 

4.3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

commercial anti-snake PAV. The graphs were plotted using 

GraphPad Prism 5.0 software and demonstrate the mean of five 

scans.  

 

(a) Dot blot assay to determine immune-recognition of NnV in the 

plasma of the group 1 and 2 rats by FPAb and commercial anti-

snake PAV when the blood was collected at 60 min, 120 min, and 

240 min post-injection (s.c.). Blots 1-3 incubated with control 

plasma (s.c.) collected after 60 min, 120 min, and 240 min 

recognised by FPAb; Blots 4-6 incubated with NnV -treated plasma 

(s.c.) collected after 60 min, 120 min, and 240 min recognised by 

FPAb; Blots 7-9 incubated with control plasma (s.c.) collected after 

60 min, 120 min, and 240 min recognised by commercial anti-snake 

PAV; Blots 10-12 incubated with NnV-treated plasma (s.c.) 

collected after 60 min, 120 min, and 240 min recognised by 

commercial anti-snake PAV. (b) Dot intensities of NnV-envenomed 

rats' plasma immune-recognised by FPAb and commercial anti-

snake PAV were analysed using ImageJ. Significance of difference 

in recognition of plasma collected from NnV-envenomed rats (s.c.) 

at 60 min and 120 min compared to plasma collected at 240 min 
ωp<0.05; recognition of plasma collected at 60 min, 120 min and 

240 min by FPAb compared to recognition by commercial anti-

snake PAV *p<0.05. Error bars indicate mean ± SD (n=3). 

 

(c) Dot blot assay to determine immune-recognition of KV in the 

plasma of the group 1 and 3 rats by FPAb and commercial anti-

snake PAV when the blood was collected at 60 min, 120 min, and 

240 min post-injection (s.c.). Blots 1-3 incubated with control 

plasma (s.c.) collected after 60 min, 120 min, and 240 min 

recognised by FPAb; Blots 4-6 incubated with KV-treated plasma 

(s.c.) collected after 60 min, 120 min, and 240 min recognised by 

FPAb; Blots 7-9 incubated with control plasma (s.c.) collected after 

60 min, 120 min, and 240 min recognised by commercial anti-snake 

PAV; Blots 10-12 incubated with KV-treated plasma (s.c.) collected 

after 60 min, 120 min, and 240 min recognised by commercial anti-

snake PAV. (d) Dot intensities of KV-envenomed rats' plasma 

immune-recognised by FPAb and commercial anti-snake PAV were 

analysed using ImageJ. Significance of difference in recognition of 

plasma collected from KV-envenomed rats (s.c.) at 240 min 

compared to plasma collected at 60 min and 120 min ωp<0.05; 

recognition of plasma collected at 60 min, 120 min and 240 min by 

FPAb compared to recognition by commercial anti-snake PAV 

*p<0.05. Error bars indicate mean ± SD (n=3). 
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(e) Dot blot assay to determine immune-recognition of NkV in the 

plasma of the group 1 and 6 rats by FPAb and commercial anti-

snake PAV when the blood was collected at 60 min, 120 min, and 

240 min post-injection (s.c.). Blots 1-3 incubated with control 

plasma (s.c.) collected after 60 min, 120 min, and 240 min 

recognised by FPAb; Blots 4-6 incubated with NkV-treated plasma 

(s.c.) collected after 60 min, 120 min, and 240 min recognised by 

FPAb; Blots 7-9 incubated with control plasma (s.c.) collected after 

60 min, 120 min, and 240 min recognised by commercial anti-snake 

PAV; Blots 10-12 incubated with NkV-treated plasma (s.c.) 

collected after 60 min, 120 min, and 240 min recognised by 

commercial anti-snake PAV. (f) Dot intensities of NkV-envenomed 

rats' plasma immune-recognised by FPAb and commercial anti-

snake PAV were analysed using ImageJ. Significance of difference 

in recognition of plasma collected from NkV-envenomed rats (s.c.) 

at 120 min and 240 min compared to plasma collected at 60 min 
ɣp<0.05; recognition of plasma collected at 60 min, 120 min and 

240 min by FPAb compared to recognition by commercial anti-

snake PAV *p<0.05. Error bars indicate mean ± SD (n=3). 

 

(g) Dot blot assay to determine immune-recognition of RvV in the 

plasma of the group 1 and 4 rats by FPAb and commercial anti-

snake PAV when the blood was collected at 60 min, 120 min, and 

240 min post-injection (s.c.). Blots 1-3 incubated with control 

plasma (s.c.) collected after 60 min, 120 min, and 240 min 

recognised by FPAb; Blots 4-6 incubated with RvV-treated plasma 

(s.c.) collected after 60 min, 120 min, and 240 min recognised by 

FPAb; Blots 7-9 incubated with control plasma (s.c.) collected after 

60 min, 120 min, and 240 min recognised by commercial anti-snake 

PAV; Blots 10-12 incubated with RvV-treated plasma (s.c.) 

collected after 60 min, 120 min, and 240 min recognised by 

commercial anti-snake PAV. (h) Dot intensities of RvV-envenomed 

rats' plasma immune-recognised by FPAb and commercial anti-

snake PAV were analysed using ImageJ. Significance of difference 

in recognition of plasma collected from RvV-envenomed rats (s.c.) 

at 240 min compared to plasma collected at 60 min and 120 min 
ɣp<0.05; recognition of plasma collected at 60 min, 120 min and 

240 min by FPAb compared to recognition by commercial anti-

snake PAV *p<0.05. Error bars indicate mean ± SD (n=3). 

 

(i) Dot blot assay to determine immune-recognition of EcV in the 

plasma of the group 1 and 5 rats by FPAb and commercial anti-

snake PAV when the blood was collected at 60 min, 120 min, and 
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4.5 

240 min post-injection (s.c.). Blots 1-3 incubated with control 

plasma (s.c.) collected after 60 min, 120 min, and 240 min 

recognised by FPAb; Blots 4-6 incubated with EcV-treated plasma 

(s.c.) collected after 60 min, 120 min, and 240 min recognised by 

FPAb; Blots 7-9 incubated with control plasma (s.c.) collected after 

60 min, 120 min, and 240 min recognised by commercial anti-snake 

PAV; Blots 10-12 incubated with EcV-treated plasma (s.c.) 

collected after 60 min, 120 min, and 240 min recognised by 

commercial anti-snake PAV. (j) Dot intensities of EcV-envenomed 

rats' plasma immune-recognised by FPAb and commercial anti-

snake PAV were analysed using ImageJ. Significance of difference 

in recognition of plasma collected from EcV-envenomed rats (s.c.) 

at 240 min compared to plasma collected at 60 min and 120 min 
ωp<0.05; recognition of plasma collected at 60 min, 120 min and 

240 min by FPAb compared to recognition by commercial anti-

snake PAV *p<0.05. Error bars indicate mean ± SD (n=3). 

 

(a) Chemical reaction sequence for citrate reduction-based AuNP 

synthesis. 

 

(b) UV-Vis spectra depicting AuNP and AuNP-FPAb conjugate. 

The absorbance is the mean of values obtained in triplicates. 

 

(c) FTIR spectra of AuNP and AuNP-FPAb conjugate. 

 

(d) Zeta potential of AuNP and AuNP-FPAb conjugate. 

 

TEM images of (e) AuNP and (f) AuNP-FPAb conjugate particle at 

20 nm magnification; Histogram depicting Particle size distribution 

of (g) AuNP and (h) AuNP- FPAb conjugate particle in TEM 

images, with Gaussian function, fit using Originpro 8.5. 

 

Topographic 2D AFM images with scanned area 1000 x 1000 nm 

of (i) AuNP, (j) AuNP-FPAb conjugate; Histogram of height 

distribution of (k) AuNP, (l) AuNP-FPAb conjugate, from the 

topographic 2D AFM images with scanned area 1000 x 1000 nm. 

 

(m) Calibration curve for estimating FPAb left in the supernatant 

after AuNP-conjugation. Error bars indicate mean ± SD (n=3). 

 

Linear fitted plot based on the relationship between colour 

intensities obtained from RGB of smartphone images and different 

concentrations of snake venom spiked rat plasma. (a) NnV 
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concentrations 0.125-2 ng/μL, (b) KV concentrations 0.125-2 

ng/μL, (c) NkV concentrations 0.25-4 ng/μL, (d) RvV 

concentrations 0.125-2 ng/μL, (e) EcV concentrations 0.25-4 ng/μL. 

Error bars indicate mean ± SD (n=3). 

 

Colour changes of AuNP-abs in the presence of control and venom-

treated rat plasma. In the case of control plasma, the AuNP-ab 

conjugate's colour is violet-pink, while in the venom-treated 

plasmas, the colour changes to blue-grey due to aggregation of the 

AuNPs. (f) NnV-envenomed rat plasma collected at 60 min, 120 

min and 240 min, (g) KV-envenomed rat plasma collected at 60 

min, 120 min and 240 min, (h) NkV-envenomed rat plasma 

collected at 60 min, 120 min and 240 min, (i) RvV-envenomed rat 

plasma collected at 60 min, 120 min and 240 min, (j) EcV-

envenomed rat plasma collected at 60 min, 120 min and 240 min, 

(k) Blue colour intensities (IB) of all the snake venom-treated rat 

plasmas compared to the control plasma. Significance of difference 

for IB of NnV-treated plasma collected at 60 and 120 min compared 

to IB of NnV-treated plasma collected at 240 min *p<0.05; IB of 

KV-treated plasma collected at 60 and 120 min compared to IB of 

KV-treated plasma collected at 240 min γp<0.05; IB of NkV-treated 

plasma collected at 120 and 240 min compared to IB of NkV-treated 

plasma collected at 60 min ωp<0.05; IB of RvV-treated plasma 

collected at 60 and 120 min compared to IB of RvV-treated plasma 

collected at 240 min #p<0.05; IB of RvV-treated plasma collected at 

120 and 240 min compared to IB of RvV-treated plasma collected at 

60 min ψp<0.05; IB of EcV-treated plasma collected at 60 and 120 

min compared to IB of EcV-treated plasma collected at 240 min 
λp<0.05; IB of EcV-treated plasma collected at 120 and 240 min 

compared to IB of EcV-treated plasma collected at 60 min δp<0.05. 

Error bars indicate mean ± SD (n=3). 

 

(l) Absorbance spectra of the AuNP-FPAb conjugate in the 

presence of control (untreated, group 1 rats) and NnV-treated 

plasma collected at 60 min, 120 min and 240 min post-injection 

(group 2 rats). The absorption maximum (λmax) for Control plasma 

was at 537 nm. On interacting with the envenomed plasma, the λmax 

shifted to 630 nm, 602 nm and 580 nm for NnV-treated plasma 

collected at 60 min, 120 min and 240 min, respectively.; (m) 

Absorbance spectra of the AuNP-FPAb conjugate in the presence of 

control (untreated, group 1 rats) and KV-treated plasma collected at 

60 min, 120 min and 240 min post-injection (group 3 rats). The 

absorption maximum (λmax) for Control plasma was at 537 nm. On 
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interacting with the envenomed plasma, the λmax shifted to 610 nm, 

589 nm and 555 nm for KV-treated plasma collected at 60 min, 120 

min and 240 min, respectively.; (n) Absorbance spectra of the 

AuNP-FPAb conjugate in the presence of control (untreated, group 

1 rats) and NkV-treated plasma collected at 60 min, 120 min and 

240 min post-injection (group 6 rats). The absorption maximum 

(λmax) for Control plasma was at 537 nm. On interacting with the 

envenomed plasma, the λmax shifted to 604 nm, 548 nm and 546 nm 

for NkV-treated plasma collected at 60 min, 120 min and 240 min, 

respectively.; (o) Absorbance spectra of the AuNP-FPAb conjugate 

in the presence of control (untreated, group 1 rats) and RvV-treated 

plasma collected at 60 min, 120 min and 240 min post-injection 

(group 4 rats). The absorption maximum (λmax) for Control plasma 

was at 537 nm. On interacting with the envenomed plasma, the λmax 

shifted to 548 nm, 547 nm and 543 nm for RvV-treated plasma 

collected at 60 min, 120 min and 240 min, respectively.; (p) 

Absorbance spectra of the AuNP-FPAb conjugate in the presence of 

control (untreated, group 1 rats) and EcV-treated plasma collected 

at 60 min, 120 min and 240 min post-injection (group 5 rats). The 

absorption maximum (λmax) for Control plasma was at 537 nm. On 

interacting with the envenomed plasma, the λmax shifted to 550 nm, 

548 nm and 547 nm for EcV-treated plasma collected at 60 min, 

120 min and 240 min, respectively. 

 

(q) Absorbance spectrum for NnV spiked rat plasma detection by 

AuNP-FPAb conjugate. Absorbance curves correspond to plasma 

samples containing 0.125-2 ng/μL NnV; (r) Calibration curve for 

NnV spiked rat plasma detection at concentrations 0.125-2 ng/μL; 

(s) Absorbance spectrum for KV spiked rat plasma detection by 

AuNP-FPAb conjugate. Absorbance curves correspond to plasma 

samples containing 0.125-2 ng/μL KV; (t) Calibration curve for KV 

spiked rat plasma detection at concentrations 0.125-2 ng/μL; (u) 

Absorbance spectrum for NkV spiked rat plasma detection by 

AuNP-FPAb conjugate. Absorbance curves correspond to plasma 

samples containing 0.25-4 ng/μL NkV; (v) Calibration curve for 

NkV spiked rat plasma detection at concentrations 0.25-4 ng/μL; 

(w) Absorbance spectrum for RvV spiked rat plasma detection by 

AuNP-FPAb conjugate. Absorbance curves correspond to plasma 

samples containing 0.125-2 ng/μL RvV; (x) Calibration curve for 

RvV spiked rat plasma detection at concentrations 0.125-2 ng/μL; 

(y) Absorbance spectrum for EcV spiked rat plasma detection by 

AuNP-FPAb conjugate. Absorbance curves correspond to plasma 

samples containing 0.25-4 ng/μL EcV; (z) Calibration curve for 
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EcV spiked rat plasma detection at concentrations 0.25-4 ng/μL; 

Error bars indicate mean ± S.D. (n = 3). 
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Determination of titer of purified antibody by ELISA: (a) PAb 6, 

(b) PAb 7, (c) PAb 8, and (d) PAb 9. 

 

(e) Immune recognition of the individual purified PAbs towards the 

respective CPs by dot blot assay; (f) Image analyses of dot 

intensities of immune reactivity depicted by the PAbs. CPS 1, 2, 3 

and 4 denotes custom peptide 1, 2, 3 and 4. Error bars indicate 

mean ± S.D (n=3). 

 

(a) Immune-reactivity of the individual PAbs towards MTV, at 1:4, 

1:10, 1:20, 1:40, and 1:60 (MTV: PAb) determined by Indirect 

ELISA. Significance of difference of recognition by PAb 6, 7, and 

9 (1:4, 1:10, 1:20, 1:40, 1:60, MTV: PAb) compared to PAb 8 
*p<0.05. Error bars indicate mean ± S.D. (n=3).  

 

(b) Comparison of the immune cross-reactivity of the four PAbs 

individually and in different combinations towards MTV at 1:40 

(MTV: PAb) determined by Indirect ELISA. Significance of 

difference of PAb individual and PAbF 2,3,4,5,6,7,8,9,10 and 11 

compared to PAbF *p<0.05; MTV immune-recognition by PAb 

individual and PAbF 3,4,5,6,7,8 and 9 compared to PAbF 2, 
δp<0.05; MTV immune-recognition by PAb individual, PAbF 

3,4,5,6,7,8 and 9 compared to PAbF 10, ψp<0.05; MTV immune-

recognition by PAb individual, PAbF 3,4,5,6,7,8 and 9 compared to 

PAbF 11, ωp<0.05. Error bars indicate mean ± S.D (n=3). Error 

bars indicate mean ± S.D (n=3). [PAbF 2 denotes PAb 6+7+8+9 

(1:1:1:1, w/w/w/w), PAbF 3 denotes  PAb 6+7 (1:1, w/w), PAbF 4 

denotes PAb 6+8 (1:1, w/w), PAbF 5 denotes PAb 6+9 (1:1, w/w), 

PAbF 6 denotes PAb 7+8 (1:1, w/w), PAbF 7 denotes PAb 7+9 

(1:1, w/w), PAbF 8 denotes PAb 8+9 (1:1, w/w), PAbF 9  

denotes PAb 6+7+9 (1:1:1, w/w/w), PAbF 10 denotes PAb 8+9+6 

(1:1:1, w/w/w) and PAbF 11 denotes PAb 8+9+7 (1:1:1, w/w/w)].  

 

(c)  Comparison of the immune cross-reactivity between PAbF/ 

commercial ASA towards MTV determined by Indirect ELISA. 

There is a significant difference in the fold change value between 

the immune-reactivity of commercial ASA and PAbF at all the 

MTV doses, *p < 0.05. 
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(d) Dot blot assay to determine immune-recognition of PAbs      

(individual PAb 1, 2, 3, 4, PAbF, PAbF 2, 3, 4, 5, 6, 7, 8, 9, 10, and 

11) using anti-rabbit IgG-HRP and commercial ASA using anti-

horse IgG-HRP; (e) Dot intensities of the immune-recognition 

demonstrated by the secondary antibodies as stated in (d). Error 

bars indicate mean ± SD (n=3).  

 

(f) Dot blot assay of MTV (0.3 ng/µL) spiked rat plasma using the 

PAbs (individual PAb 1, 2, 3, and 4 and in combinations) and 

commercial ASA; (g) Image analyses of dot intensities of immune-

reactivity determined as stated in (f). Significance of difference of 

PAb individual and PAbF 2,3,4,5,6,7,8,9, 10, 11 and commercial 

ASA compared to PAbF *p<0.05; MTV immune-recognition by 

PAb individual and PAbF 2,3,4,5,6,7,8,9,10 and 11 compared to 

commercial ASA, δp<0.05; MTV immune-recognition by PAb 

individual, PAbF 3,4,5,6,7,8,9,10 and 11 and commercial ASA 

compared to PAbF 2, ψp<0.05; MTV immune-recognition by PAb 

7,8,9 and PAbF 3, 5, 7 compared to PAbF 10, ωp<0.05. Error bars 

indicate mean ± S.D. (n=3). 

 

(h) Dot blot assay of MTV (0.3 ng/µL, 0.15 ng/μL and 0.075 

ng/μL) spiked rat plasma using the PAbF. Blot 1 was incubated 

with MTV (0.075 ng/μL) spiked rat plasma; Blot 2 was incubated 

with MTV (0.15 ng/μL) spiked rat plasma, and Blot 3 was 

incubated with MTV (0.3 ng/μL) spiked rat plasma; (i) Image 

analyses of dot intensities were performed using ImageJ software. 

The dot intensities have been normalised against intensities of 

control without antigen. Significance of difference of 0.15 ng/µL 

dose of MTV compared to 0.3 ng/µL dose of MTV *p<0.05. Error 

bars indicate mean ± S.D. (n=3). 

 

(j) Western blot analysis to determine the immune recognition of 

MTV by PAbF. Immunoblot detected by HRP conjugated anti-

rabbit IgG. (k) Western blot analysis to determine the immune 

recognition of MTV by Commercial ASA. Immunoblot detected by 

HRP conjugated anti-horse IgG. Lane MTV represents the 

immunoblot of MTV, and lane M denotes the marker. (l) 

Densitometry analyses of the blot intensities of MTV detected by 

PAbF and commercial ASA. Significance of difference in 

recognition of the MTV by PAbF compared to recognition by 

commercial ASA, *p<0.05. Error bars indicate mean ± SD (n=3). 
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(m)One-site specific binding curve representing 

spectrofluorometric interaction between a fixed concentration of 

MTV and graded concentrations of PAbF and commercial ASA 

(0.01 mg/mL, 0.02 mg/mL, 0.04 mg/mL, 0.08 mg/mL, 0.16 

mg/mL, 0.32 mg/mL, 0.64 mg/mL, 1.28 mg/mL) showing the 

change in maximum fluorescence intensity (λmax) of MTV-PAbF 

and MTV-commercial ASA binding with a fixed concentration of 

MTV. The graphs were plotted using GraphPad Prism 5.0 software 

and shows the mean of five scans. 

 

(a) Dot blot assay comparing the immune-recognition of MTV in 

the plasma of the group I-IVrats by PAbF and commercial ASA 

when the blood was collected at 30 min, 60 min, and 120 min after 

the injection (i.v. and s.c.). Blots 1-3 incubated with control plasma 

(i.v.) collected after 30 min, 60 min, and 120 min recognised by 

PAbF; Blots 4-6 incubated with MTV-treated plasma (i.v.) 

collected after 30 min, 60 min, and 120 min recognised by PAbF; 

Blots 7-9 incubated with control plasma (s.c.) collected after 30 

min, 60 min, and 120 min recognised by PAbF; Blots 10-12 

incubated with MTV-treated plasma (s.c.) collected after 30 min, 

60 min and 120 min recognised by PAbF; Blots 13-15 incubated 

with control plasma (s.c.) collected after 30 min, 60 min and 120 

min recognised by commercial ASA; Blots 16-18 incubated with 

MTV-treated plasma (s.c.) collected after 30 min, 60 min and 120 

min recognised by commercial ASA; (b) Image analyses of dot 

intensities of the group I-IV rats' plasma detection by PAbF and 

commercial ASA. The dot intensities have been normalised against 

intensities of control without antigen. Significance of difference in 

recognition of MTV-treated plasma collected at 30, 60, and 120 

min by PAbF compared to recognition by commercial ASA 

*p<0.05; recognition of MTV-treated plasma (s.c.) collected at 60 

min and 120min PAbF compared to recognition of MTV-treated 

plasma collected at 30 min ɣp<0.05; recognition of MTV-treated 

plasma (s.c.) collected at 30 min and 120 min PAbF compared to 

recognition of MTV-treated plasma collected at 60 min ωp<0.05; 

recognition of MTV-treated plasma (i.v.) collected at 30 min and 

60 min by PAbF compared to recognition of MTV-treated plasma 

collected at 120 min ψp<0.05. Error bars indicate mean ± S.D. 

(n=3). 

 

(c) Comparison of immune cross-reactivity of PAbF towards MTV 

in the LMMPT-enriched MTV-treated and non-enriched plasma of 

envenomed rats. Blot 1 incubated with control non-enriched 
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plasma; Blot 2 incubated with non-enriched MTV-treated plasma; 

Blot 3 incubated with control LMMPT-enriched MTV-treated 

plasma; Blot 4 incubated with LMMPT-enriched MTV-treated 

plasma; (d) Image analyses of dot intensities of the plasma 

detection by the PAbF. The dot intensities have been normalised 

against intensities of control without antigen. Significance of 

difference in recognition of LMMPT-enriched MTV-treated plasma 

compared to non-enriched MTV-treated plasma ɣp<0.05; (e) 

Immune-reactivity of the PAbF towards MTV-treated non-enriched 

plasma and MTV-treated-LMMPT-enriched plasma determined by 

Sandwich ELISA. The absorbance values have been normalised 

against control without antigen. Significance of difference of 

recognition of MTV-treated-LMMPT-enriched plasma compared to 

MTV-treated non-enriched plasma *p<0.05. Error bars indicate 

mean ± S.D. (n=3). 

 

Multiple sequence alignments of the (a) K+ channel toxin, and (b) 

Na+ channel toxin identified by LC-MS/MS analysis and the MTV 

K+ and Na+ channel toxin used for designing the custom peptides. 

 

(a) UV-Vis spectra of AuNP and AuNP conjugated with PAbF. The 

values are the mean of absorbance obtained in triplicates. 

(b) FTIR spectrum of AuNP and AuNP conjugated with PAbF; (c) 

Zeta potential of AuNP, AuNP functionalized with MUA, and 

AuNP conjugated with PAbF. 

 

TEM images of (d) AuNP and (e) AuNP- PAbF conjugate particle 

at 20 nm magnification; Particle size distribution histogram of (f) 

AuNP and (g) AuNP- PAbF conjugate particle in TEM images, 

with Gaussian function, fit using Originpro 8.5. 

 

Topographic 2D AFM images with scanned area 1000 x 1000 nm 

of (h) AuNP, (i) AuNP-PAbF conjugate; Histogram of height 

distribution of (j) AuNP, (k) AuNP-PAbF conjugate, from the 

topographic 2D AFM images with scanned area 1000 x 1000 nm. 

 

(l) Calibration curve for estimating antibody (PAbF) left in the 

supernatant after conjugation to AuNP. Error bars indicate mean ± 

S.D. (n=3). 

 

(a) Absorbance spectra of the AuNP-PAbF conjugate in the 

presence of control (untreated rat plasma), MTV (0.3 ng/µL) spiked 

rat plasma, NnV, and RvV (50 ng/µL) spiked rat plasma. The 
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values are the mean of absorbance obtained in triplicates. 

 

(b) Absorbance spectra of the AuNP-PAbF conjugate in the 

presence of control (untreated, group I and II) and MTV-treated-

LMMPT-enriched plasma from group III and IV rats. 

 

(c) Absorbance spectrum for MTV spiked rat plasma detection. 

Absorbance curves correspond to plasma samples containing 1-5 

ng/μL MTV; (d) Calibration curve for MTV spiked rat plasma 

detection at concentrations 1-5 ng/μL. Error bars indicate mean ± 

S.D. (n=3). 
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ABBREVIATIONS 

Abbreviation Full form 

3D 

3FTx 

20WBCT 

AB-

microELISA 

AChE 

ACN 

APase  

AFM 

ANOVA 

ASPro 

ATP 

ASA 

AuNP 

BLASTp 

BPP 

BSA 

β-BuTx 

cDNA 

ChE 

CP 

CCSEA 

 

CMYK 

CRISP 

CSL 

CTL 

CVF 

DMF 

DNase 

DTT 

Three-dimensional 

Three-finger toxin 

20-min whole blood clotting test 

Avidin-biotin micro enzyme-linked 

immunosorbent assay 

Acetylcholinesterase 

Acetonitrile 

Aminopeptidase  

Atomic force microscopic 

Analysis of variance 

Aspartic protease  

Adenosine triphosphatase 

Commercial equine anti-scorpion antivenom 

Gold nanoparticle 

Protein-protein BLAST 

Bradykinin potentiating peptide 

Bovine serum albumin 

β-bungarotoxin 

Complementary Deoxyribonucleic Acid 

Cholinesterase 

Custom peptide 

Committee for Control and Supervision of Experiments on 

Animals  

Cyan, magenta, yellow and black  

Cysteine-rich secretory protein 

Commonwealth Serum Laboratories 

C-type lectin 

Cobra venom factor  

dimethyl formamide  

Deoxyribonuclease  

Dithiothreitol  
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Abbreviation 

EcV 

ECL 

EDC 

EIA 

EIS 

ELAA 

ELISA 

ExPASy 

FELISA 

Fmoc  

FPAb  

 

FTIR 

GC 

GQDs 

HAP 

HCL 

HMG CoA 

Hya 

HRP 

HSS-Abs 

IgG 

ISFET 

KD 

KLH 

KSPI 

KV 

LAAO 

LC-MS/MS 

LFA 

LMMPT 

LoD 

Full form 

Echis carinatus venom 

Enhanced Chemiluminescence 

1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide 

Enzyme immunoassay 

Electrochemical impedance spectroscopy 

Enzyme-linked aptamer assay 

Enzyme-linked immunosorbent assay 

Expert Protein Analysis System 

Fluorogenic enzyme-linked immunosorbent assay 

9-fluorenylmethoxycarbonyl  

Purified polyclonal snake venom toxin-specific antibody 

formulation 

Fourier-transform infrared spectroscopy 

Glutaminyl cyclase  

Graphene quantum dots 

High-abundance protein 

Hydrochloride 

Hydroxymethylglutaryl-coenzyme A 

Hyaluronidase 

Horse radish peroxidise 

Hemorrhagic species-specific antibodies 

Immunoglobulin G 

Ion-sensitive field-effect transistor 

Dissociation constant 

Keyhole Limpet Hemocyanin 

Kunitz-type proteinase inhibitor 

Bungarus caeruleus venom  

L-amino acid oxidase 

Liquid chromatography-tandem mass spectrometry 

Lateral flow assay 

Low molecular mass peptide toxins 

Limit of detection 



 

xxix 
 

Abbreviation 

LoQ 

LPP 

LSPR 

mAb 

MALDI-TOF 

MBS 

MTV 

MSI  

MUA 

NCBI 

NEI 

NGF 

NHS 

NnV 

NkV 

NP 

NSS-Abs 

OIA 

OLP 

PAb 

PAbF 

 

PAV 

PBS 

PCR 

PDB 

PDE 

PIR 

PLA2 

PLB  

PSVPL 

PVDF 

Full form 

Limit of quantitation 

Lipolysis potentiating peptides 

Localised surface plasmon resonance 

Monoclonal antibody 

Matrix-assisted laser desorption/ionization -Time of flight  

Maleimidobenzoyl-Nhydroxysuccinimide ester 

Mesobuthus tamulus venom 

Match Precursor Intensity  

Mercaptoundecanoic acid  

National Center for Biotechnology Information 

North-East India  

Nerve growth factor 

N-Hydroxysuccinimide 

Naja naja venom 

Naja kaouthia venom 

Natriuretic peptide 

Neurotoxic species-specific antibodies 

Optical immunoassay 

Ohanin-like protein 

Purified polyclonal antibody 

Purified polyclonal scorpion venom toxin-specific antibody 

formulation 

Commercial equine anti-snake antivenom 

Phosphate buffered saline 

Polymerase chain reaction 

Protein Data Bank 

Phosphodiesterase 

Protein Information Resource 

Phospholipase A2 

Phospholipase B 

Premium Serum and Vaccine Pvt. Ltd. 

Polyvinylidne fluoride 
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Abbreviation 

Qdots 

RGB 

RGI-MDS 

RIA 

RP-HPLC 

RT-PCR  

RvV 

SDS-PAGE 

SELEX 

SPI 

SPLP 

SPPS 

SPR 

SSAbs 

SVDK 

SVMP 

SVSP 

SVTLE 

TBS 

TBS-T 

TEM 

TEMED 

TMB/H2O2 

TiO2 

UniProtKB 

UV-Vis 

VDET 

VEGF 

Vesp 

WHO 

Full form 

Quantum dots  

Red, green and blue 

Registrar General of India-Million Death Study 

Radioimmunoassay  

Reversed-phase high-performance liquid chromatography 

Reverse transcription polymerase chain reaction  

Daboia russelii venom 

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis 

Systematic Evolution of Ligands by EXponential  

Serine protease inhibitor 

Serine protease-like protein 

Solid-phase peptide synthesis 

Surface plasmon resonance  

Species-specific antibodies 

Snake venom detection kit 

Snake venom metalloprotease 

Snake venom serine protease 

Snake venom thrombin-like enzyme 

Tris buffered saline 

Tris buffered saline with 0.05% tween-20 

Transmission electron microscope  

Tetramethylethylenediamine 

3,3,5,5’-tetramethylbenzidine/hydrogen peroxide 

Titanium dioxide 

Universal Protein Resource Knowledgebase 

Ultraviolet-visible 

Venom Detection ELISA Test 

Vascular endothelial growth factor  

Vespryn 

World health organization 
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