TABLE OF CONTENTS

Contents	Page No.
Abstract Declaration	i-iv
Certificate	
Acknowledgements	v-vi
Table of Contents	vii-xi
List of Tables	xii-xiii
List of Figures	xiiv-xxv
Abbreviations	xxvii-xxx
CHAPTER I	
INTRODUCTION	1-35
1.1 Snake envenomation: A neglected tropical disease	1
1.1.1 Global burden of snake envenomation	1-4
1.1.2 Indian scenario of snake envenomation	4-5
1.2 Scorpion envenomation: a neglected tropical disease	6
1.2.1 Global burden of scorpion envenomation	6-7
1.2.2 Indian scenario of scorpion envenomation	8
1.3 Classical or contemporary methods for detection	9
1.3.1 Snake envenomation	9
1.3.2 Scorpion envenomation	9-10
1.3.3 Key issues about clinical diagnosis of snake and scorpion	10-12
envenomation	
1.4 Proteome composition	12
1.4.1 Indian snake venoms	12-14
1.4.2 Indian red scorpion venom	15-16
1.5 Peptide antigens and antibodies in detection	16
1.5.1 Antigenic peptide design and synthesis	16-17
1.5.2 Antigenic peptide antibody	18
1.6 Gold nanoparticles as colorimetric sensor	18-19
1.7 Colorimetric assays	19-20
1.8 Gap in the study	21
1.9 Aim of the present study	21
Bibliography	22-35

Contents TABLE OF CONTENTS	Page No.
CHAPTER II	
REVIEW OF LITERATURE	36-66
2.1 Analytical tools and techniques for rapid detection of s	snake 36
envenomation	
2.1.1 Radioimmunoassay (RIA)	36
2.1.2 Agglutination assay	36
2.1.3 Enzyme-linked immunosorbent assay (ELISA)	36-39
2.1.4 ISFET-based immunosensor	40
2.1.5 Optical immunoassay	40
2.1.6 Single-bead-based immunofluorescence assay	40
2.1.7 Application of PCR technology for the identification of senvenomation	snake 41
2.1.8 Enzyme-linked aptamer assay	41-42
2.1.9 Gold nanoparticle-based lateral flow assay	42-44
2.1.10 Dot-blot ELISA	44-45
2.1.11Biophysical techniques for determination of s	snake 45
envenomation	
2.1.11.1 Impedimetric immunosensor	45
2.1.11.2 Surface plasmon resonance spectroscopy (SPR)) 45
2.1.11.3 Mass spectrometry-based identification of s	
envenomation	
2.1.11.4 Infrared thermal imaging	46
2.1.12 Currently available diagnostic kit for clinical diagnos	sis of 54-55
snake envenomation	
2.2 Immunodiagnostic tests for the detection of scorpion venom	55-59
Bibliography	61-66
CHAPTER III	∠ ₩ 0.1
MATERIALS AND METHODS	67-91
3.1 Materials	67
3.1.1 Venoms and commercial antivenoms3.1.2 Synthetic custom peptides and polyclonal antibodies	67
3.1.3 Animals	67-68
3.1.4 Other fine chemicals	68
3.2 Methods	68-69
3.2.1. Identification and designing of the antigenic epitopes	from 69
snake and scorpion toxins	69
3.2.1.1 Antigenic epitopes from principal toxins of NnV,	60.50
KV, RvV, EcV and MTV	69-70
3.2.2. Raising polyclonal antibodies against the toxin-epi	tope- 70
specific custom peptides	70
3.2.2.1 KLH conjugation of the custom peptides	70

Contents	TABLE OF CONTENTS	Page No.
	3.2.2.2. Raising and purifying custom peptide-specific	70-72
	antibodies by immunizing rabbits with KLH-	
	conjugated custom peptides	
3.2.3.	Determination of in vitro immune cross-reactivity of	72
	individual PAbs, PAb formulations and commercial anti-	
	snake PAV towards snake venoms	
	3.2.3.1 Dot blot analysis	72-74
	3.2.3.2 Western blot analysis	74-75
	3.2.3.3 Spectrofluorometric analysis to determine the venom-	75-76
	antibody interactions	
3.2.4.	Determination of <i>in vivo</i> immune cross-reactivity of the FPAb	76
	and commercial anti-snake PAV towards snake venoms in the	
	plasma of envenomed animal model	
	3.2.4.1 Envenomation of animal model	76-77
	3.2.4.2 Determination of immune-reactivity of the FPAb	77
	and commercial anti-snake PAV towards Indian	
	snake venoms in the plasma of envenomed animal model	
3.2.5.	Gold nanoparticle-based detection of snake venom in the	78
0.2.01	plasma of envenomed animals	, 0
	3.2.5.1 Synthesis of gold nanoparticles (AuNPs)	78
	3.2.5.2 Synthesis of AuNP-FPAb conjugates	78-79
	3.2.5.3 Detection of snake venom using AuNP-FPAb	79-80
	conjugate	,,,
3.2.6.	Determination of <i>in vitro</i> immune cross-reactivity of	81
	individual PAbs, PAb formulations and commercial anti-	
	scorpion antivenom (commercial ASA) towards MTV	
	3.2.6.1 Indirect ELISA	81-82
	3.2.6.2 Dot blot analysis	82-83
	3.2.6.3 Western blot analysis	83
	3.2.6.4 Spectrofluorometric analysis to determine the	83-84
	venom-antibody interactions	
3.2.7.	•	84-85
0.2.,.	PAbF and commercial ASA towards MTV in the plasma of	0.00
	envenomed animal model	
	3.2.7.1 Envenomation of animal model	85-86
	3.2.7.2 Determination of immune-reactivity of the PAbF	86
	and commercial ASA towards MTV in the plasma of	
	envenomed animal model	
	3.2.7.3 A process for enriching low molecular mass peptides	86-87
	in plasma	00 07
	3.2.7.4 Proteomics analysis to determine the presence of	87-88
	MTV major toxins in LMMPT fraction of envenomed	0, 00

Contents	TABLE OF CONTENTS	Page No.
	plasma	
3.2.8.	Gold nanoparticle-based detection of MTV in the plasma of	88
	envenomed animals	
	3.2.8.1 Characterization of AuNPs and AuNP-PAbF	88
	conjugate	
	3.2.8.2 Determination of selectivity of the AuNP-PAbF	88-89
	conjugate with the MTV spiked rat plasma (in vitro) and	
	LMMPT-enriched plasma from envenomed animals (in vivo)	
3.2.9.	Statistical analysis	89
Bibliog	raphy	89-91
CHAPTE	R IV	
Diagnosis	of Indian Big Four and Monocled Cobra Snakebites in	
Envenome	ed Plasma Using Smartphone-Based Digital Imaging	
Colourim	etry Method	92-133
4.1 Results	3	92
4.1.1	Custom peptides (CPs) designed from major toxins of 'Big	92-94
	Four' venomous snakes	
	4.1.1.1 Dot blot study demonstrated ability of PAbs to	94-96
	recognize CPs	
	4.1.1.2 Protein-protein BLAST analysis shows similarity of	96-97
	CP and Naja kaouthia PLA ₂	
4.1.2	Immunoassays and spectrofluorometric analysis exhibit	97-102
	superior immune recognition of FPAb towards Indian snake	
	venoms as compared to commercial PAV (in vitro)	
4.1.3	The FPAb demonstrated better immune-recognition towards	102-110
	the Indian snake venoms as compared to commercial anti-	
	snake PAV in envenomed rat plasma	
4.1.4	Biophysical characterisation demonstrated conjugation of	110-114
	FPAb with AuNPs	
4.1.5	Detection of Indian snake venoms in envenomed Wistar	114-122
	strain rats (in vivo) by AuNP-FPAb conjugate using digital	
	image colourimetry	
4.2 Discussion		122-127
Bibliography		128-133

Contents	TABLE OF CONTENTS	Page No.
CHAPTEI	RV	
Developme	ent of a Gold Nanoparticle-Based Novel Diagnostic	
Prototype	for in vivo Detection of Indian Red Scorpion (Mesobuthus	
Tamulus)	Venom	134-160
5.1. Results		134
5.1.1	Custom peptides (CPs) designed from major toxins of Mesobuthus tamulus	134-135
	5.1.1.1 Dot blot study demonstrated ability of PAbs to recognize CPs	135-136
5.1.2	Immunoassays and spectrofluorometric analysis exhibit superior immune recognition of PAbF towards MTV as compared to commercial ASA (<i>in vitro</i>)	136-143
5.1.3	The PAbF could better immune recognise the MTV enriched plasma sample compared to the non-enriched plasma sample from the envenomed Wistar rats	143-146
5.1.4	Mass spectrometry analysis demonstrated the protocol developed in this study enriches the low molecular mass MTV toxins in MTV-treated rat plasma	146
5.1.5	Biophysical characterisation demonstrated conjugation of PAbF with AuNPs	147-150
5.1.6	Detection of MTV in spiked serum (<i>in vitro</i>) and enriched plasma from envenomed Wistar strain rats (<i>in vivo</i>) by AuNP-PAbF conjugate and quantitation of MTV in	151-153
	envenomed plasma	153-157
5.2. Discus		157-160
Biblio	graphy	10, 100
Chapter V CONCLUS	I SIONS AND FUTURE PERSPECTIVES	161-163
6.1. Concl	usions	161-162
6.2. Future perspectives		162-163
	ns, Patents and Conferences/Seminars	164-171
Appendix		172