
Chapter 1

Introduction

Beta decay is one of the important nuclear reactions in particle physics. Through

this reaction, AZX →A
Z+1 X+e−, an unstable nucleus converts into a stable daugh-

ter nucleus by emitting a beta particle (e−). Energy and momentum conservation

required that all the energy of the reaction, determined by Q-value of the decay,

should be associated to the emitted electron. On the contrary, the energy spec-

trum of the electrons was found to be continuous. This indicated that some part

of total energy of the reaction was missing. In the year 1927 Charles Drummond

and William Alfred Rooster performed an experiment using radioactive element

radium E (bismuth-210). The observations drawn from this experiment confirmed

this unstability in electron energy distribution and hinted at the prospect for de-

velopment of new physics that could provide a better understanding of the same.

This unsettled problem of missing energy got a possible breakthrough due to the

genius of Wolfgang Pauli. According to a letter that he sent to his friends in

the month of December 1930, Pauli mentioned that he believed there might be

another particle being emitted along with electron in β-decay [21]. He went a

little further, with some hesitation, that this particle must be electrically neu-

tral and exhibit weak interactions. Also it became very difficult for theorist and

experimentalists to detect these unknown mysterious particles because of its very

small interactions via weak force. Enrico Fermi, another brilliant minds in physics,

named this particle ’neutrino’ at the Solvay conference in the year 1933. Based

on the hypothesis of Pauli, Fermi developed a new theory of beta decay. This

new theory elegently incorporated the problem of missing energy and provided a
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suitable explanation by associating this energy to neutrinos. As neutrino is an

electrically neutral particle, it is immune to any kind of electromagnetic interac-

tions. Also due to its very feeble weak interaction it becomes immensely difficult

to detect these ghost particles. But situation changed during the second world

war when a new dawn for neutrinos happened. At this time due to great advent

in science, particularly in nuclear power, a large source of radioactive nucleus was

available to the scientific community. This immense supply of radioactive nucleus,

apart from its use in nuclear weapons, became a tremendous source for neutrinos

and increased its number manifold. Despite the tremendous theoretical efforts of

Pauli, Fermi and Pontecarvo there were no signs of neutrinos in any of the ex-

periments. However a remarkable event took place in 1956 when Frederick Reines

and Clyde Cowan detected for the first time electron anti-neutrinos in their ex-

perimental setup which was situated near the Savannah river, South Carolina [22].

Unfortunately Cowan died in 1974 when he was 54 years of age. In recognition

to their profound contribution in neutrino physics, Reines was honored with the

Nobel Prize in 1995. After this groundbreaking discovery, the particle physics

community began studying the nature, origin, and various sources of neutrinos.

Sun is one of the major stellar sources of neutrinos that is close to earth. The

reactions taking place deep in the interior of the sun produces electron neutrinos.

In 1964 Raymond David Jr and John Bahcall decided to examine the number of

neutrinos that were emitted from interactions taking place in the sun. Surpris-

ingly there was a big mismatch between the number they got after examination

to that predicted from solar reactions. They could only observe one third of the

actual predicted value of neutrinos, which implies that majority of them were not

detected. This is called the ”solar neutrino problem” [23]. Later on two other

types of neutrinos, namely muon-neutrino and taon-neutrino were discovered. The

existence of muon-neutrino came into light after the discovery of muon decay,

whereas the third genration of neutrinos (atmospheric neutrinos) was discovered

much later in 2000 at the Fermi Lab [24]. Thus three different types of neutrino

corresponding to three generations of leptons came into being. It was Pontecorvo

who first proposed a solution to the solar neutrino problem. According to him

when a flavor of neutrino travells a distance through space there is a possibility

that it gets converted into other types of neutrino [25, 2]. Mathematically for each
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particle there is a wave associated to it which depends on the mass and speed at

which it is moving. This hypothesis suggested that neutrinos should have masses

and also there should be some mixing between the different flavors. This mech-

anism was termed as neutrino oscillations. But the Standard Model which was

constructed around 1970 required neutrinos to be massless [26, 27, 28]. There-

fore the prospect of new physics Beyond the Standard Model became inevitable.

Moreover experiments at the Super-Kamiokande detectors verified and confirmed

the concept of neutrino oscillation. Finally in the year 2002 Arthur McDonald,

the then professor at Princeton University and his team at the Sadbury Neutrino

Observatory confirmed the change of solar (electron) neutrinos into muon or tau

neutrinos as they travelled through space from the sun. The flux of neutrinos

detected experimentally matched with the theoretical predictions. For this out-

standing contribution, Arthur McDonald and Takaaki Kajita, one of the pioneers

whose work led to the discovery of neutrino oscillations at the Super-Kamiokande

experiments, were honoured with the Nobel Prize in Physics in 2015. [29, 30]

1.1 Current Status of Neutrino

1.1.1 Theoretical Advancements:

The idea of neutrino oscillation put forwarded by one of the greatest minds,

Pontecorvo around 1957 marked a historic theoretical breakthrough in neutrino

physics. This concept of neutrino changing its flavor while travelling grew very

rapidly among particle physicists and gained tremendous significance among both

theorists and experimentalists. In contrast to the Standard Model where neutri-

nos are massless, this theory required them to be massive, thereby advocating

the need to go for physics beyond the Standard Model. The experiments such as

Super-Kamiokande and Sudbury Neutrino Observatory which are associated with

detection of neutrino oscillations gave a new set of results. The interpretation

of these results along with the formulation of a systematic approach can be at-

tributed to a framework consisting of three active neutrinos. In this scenario the

mass eigenstates of the neutrinos can be related to the three flavor eigenstates

through a unitary mixing matrix of order 3 × 3. This matrix named after Pon-
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tecarvo, Maki, Nakagawa and Sakata is commonly referred to as PMNS matrix

or leptonic mixing matrix [31]. This important matrix which defines the mixing

between flavor eigenstates is parameterised by the oscillating parameters: three

mixing angles and a CP-violating phase (δCP ). These mixing angles are solar

mixing angle (θ12), atmospheric mixing angle (θ23) and the reactor mixing angle

(θ13). If the neutrinos are Majorana type then there are two more additional

phases, α and β. At the beginning the reactor mixing angle was considered to be

zero. But later on with the gradual developments in experiments, such as RENO

and DayaBay, θ13 was found to have a non-zero value. Moreover the current

neutrino oscillation experiments are sensitive only to mass-squared differences. As

a result, determining absolute mass of neutrinos is still a challenging issue and

remains undetected till date. There are two mass-squared differences which are

referred to as solar mass splitting (∆m2
21) and atmospheric mass splitting (∆m2

31).

From the results of these experiments it is confirmed that the value of ∆m2
21 > 0.

Surprisingly this is not confirmed for the atmospheric mass splitting which can

take on both + or - sign. Because of this peculiar behavior of atmospheric mass-

squared differences, there are two spectrums of neutrino masses. One of these

is termed as normal hierarchy which refers to the condition m1 << m2 < m3;

whereas the other mass spectrum is called inverted hierarchy and it indicates the

condition m3 << m1 < m2 [8]. However, from the cosmological standpoint, there

is an upper limit on the sum of three neutrino masses. This value given by the

Planck data at the confidence level 95% is found to be
∑
mν ≤ 0.12 eV [20]. The

following Table (1.1) represents the latest 3σ nu-fit values of oscillation parameters

[32].

There has been remarkable developments in particle physics in the last few decades.

The formulation of numerous frameworks Beyond the Standard Model (BSM)

which aims to address neutrino masses and leptonic mixing are a direct manifes-

tation of these developments, as well as understanding of the subject. These are

extensions of Standard Model(SM) which not only explain neutrino phenomenol-

ogy, but also serves as a feasible mechanism for possible explanations of some

of the relevant mysteries in cosmology. In this process, these mechanisms act as

bridges for a possible connection between these two different fields. Some of the
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Parameters bfp±1σ 3σ (NH) bfp±1σ 3σ (IH)

∆m2
21[10

−5eV 2] 7.42+0.21
−0.20 6.82− 8.04 7.42+0.21

−0.20 6.82− 8.04

∆m2
31[10

−3eV 2] +2.514+0.028
−0.027 +2.431−+2.589 −2.497+0.028

−0.028 −2.583− 2.412

sin2θ12/10
−1 3.04+0.013

−0.012 2.69− 3.43 3.04+0.013
−0.012 2.69− 3.43

sin2θ23/10
−1 5.70+0.018

−0.024 4.07− 6.18 5.75+0.017
−0.021 4.11− 6.21

sin2θ13/10
−2 2.221+0.00068

−0.00052 2.034− 2.430 2.240+0.00062
−0.00062 2.053− 2.436

δCP /
0 195+51

−25 107− 403 286+27
−32 192− 360

Table 1.1: Latest nu-fit values of the oscillation parameters.

popular mechanisms include seesaw mechanism [33, 34], radiative seesaw mecha-

nism [35], left-right symmetric model (LRSM) [36], inverse seesaw [37, 38]. The

results obtained from experiments like LSND [39] and MiniBooNE [40, 41] suggest

that a new flavor, called sterile neutrino, exists in nature. Although the mass and

number of generations are yet to be determined, sterile neutrinos play a very sig-

nificant role in physics beyond the Standard Model. Some of these unsolved BSM

phenomena includes neutrinoless double beta decay (NDBD), dark matter (DM),

lepton number violation (LNV), lepton flavor violation (LFV), dark energy etc.

1.1.2 Experimental Advancements:

For a holistic growth of science both theory and experiments should go hand-in-

hand. Neither theory nor experiments alone can justify the happenings in nature.

In a similar manner, with the theoretical developments in neutrino physics, there

were simultaneous progresses made in the experimental sector also. In particu-

lar the solar neutrino experiments (Homestake [42], SAGE [43], GALLEX [44],

Kamiokande [45], Super-Kamiokande [46]), the atmospheric neutrino experiments

(Kamiokande, Super-Kamiokande, MARCO [47], Soudan [48]) and the accelerator

experiments like LSND [39] played a very important role in discovering neutrino

oscillation. This breakthrough discovery of neutrino oscillation confirmed the mas-

siveness of neutrinos and also the important aspect of mixing between the different

flavors. It has to be mentioned that the reactor mixing angle (θ13) was considered

to be zero for a long time. The first signals in support of a non-zero θ13 was
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provided by reactor experiments such as Daya Bay [49], RENO [5] and Double-

Chooz [7]. Also Tokai-to-Kamioka (T2K) [6], which is a long-baseline accelerator

located in Japan, plays a crucial role in this aspect.

In addition to the above discussion, there are ample literatures which suggest the

possibility for existence of a fourth generation/flavor of neutrinos. This extra fla-

vor is called sterile neutrino [50]. Though the number of sterile fermions is not

known, its mass lies in a range extending from eV to keV which are expected

to be detected in future experiments KATRIN [51]. Moreover experimental evi-

dences for the existence of sterile neutrinos can be found in signals provided by

MiniBoone [52], LSND experiments. This hypothetical particle when considered

in a suitable framework has the potential to shed light on some of the BSM

phenomena. For example, a sterile neutrino in the keV range can be a possible

DM candidate [53, 54]. But of course, in order to do so, it has to satisfy dif-

ferent constraints that are given by Lyman-α, X-ray and from the perspective of

structure formation.

In the following sections, we will discuss the most successful model in particle

physics i.e. Standard Model. Subsequently we will talk about its limitations and

shortcomings which demands the need for physics beyond the Standard Model.

Along with these, we will also discuss the popular BSM frameworks, related neu-

trino and cosmological phenomena and symmetry that is used in the thesis.

1.2 Standard Model
It was Glashow, Weinberg and Salam who first proposed the standard model

of particle physics [26, 27, 28]. This relativistic quantum field theory gives a

collective picture of all the known fundamental particles and explains the inter-

actions (except gravitaional force) that govern them. The gauge groups SU(3)C ,

SU(2)L and U(1)Y play a very significant role in development of this model [55].

The group SU(3)C corresponds to the strong interaction that exists between the

quarks and gluons. Similarly, the groups SU(2)L ⊗ U(1)Y together denote the

electroweak interactions of the particles. The subscripts C, L and Y represent
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the color charge of quarks and gluons, left-handed chirality and weak hypercharge

associated with the particles, respectively. After the discovery of Higgs boson at

the LHC experiments in 2012 [1], the SM became very popular among physicists

and was established as one of the most successful theories in particle physics.

The SM contains all the elementary particles, their antiparticles and also the

mediators of different interactions. This pool of fundamental particles can be

broadly classified into three groups: fermions, gauge bosons and scalars. The

strong interaction is mediated by the gluons. They are eight in numbers. The

massive W± and Z bosons are responsible for weak interactions, whereas the

electromagnetic interactions between charged particles are mediated by a massless

vector boson, the photon. These mediators are together called the gauge bosons

of the SM. The fermionic sector includes the spin half quarks, leptons and their

corresponding antiparticle counterparts. Under SU(3)C the quarks transform as

triplets and the leptons which are color neutral transform as singlets. In a similar

manner, the left-handed fermions are considered as doublets under SU(2)L and

right-handed fermions are taken as singlets. In the SM masses of these fermions

and gauge bosons are generated through Higgs mechanism. The scalar Higgs boson

which is doublet under SU(2)L plays a very crucial role in mass generation of the

fundamental particles. The table (1.2) below shows the transformation of particles

under different groups considered in the model.

1.2.1 The Electroweak sector

The electromagnetic and weak interactions collectively form the electroweak sector

of the SM. All the interactions that take place between different fields in this

sector can be explained by the gauge group SU(2)L ⊗ U(1)Y . It is interesting to

note that there is no mixing between strong and electroweak interactions. As a

result they can be discussed separately without any loss of physics. We know that

the Dirac fermions can be expressed by a four component field, ψ. It is possible

to break this field into two different components for left-handed and right-handed

fermions,

ψL =
1− γ5

2
ψ and ψR =

1 + γ5
2

ψ
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Fields SU(3)C SU(2)L U(1)Y Spin Charge

QL =

uL

dL

 3 2 1
3

1
2

 2
3

−1
3


qR = uR 3 1 4

3
1
2

2
3

qR = dR 3 1 -2
3

1
2

-1
3

L =

νeL

eL

 1 2 -1 1
2

 0

−1


lR = eR 1 1 -2 1

2
-1

ϕ =

ϕ+

ϕ0

 1 2 1 0 0

Table 1.2: This table shows the charge assignments of quarks, leptons and Higgs

boson under different goups of SM. The first two rows are for the

left-handed and right-handed quark family. The third and fourth rows

represent the leptons (left-handed doublets and right-handed singlets).

The field in the final row is the Higgs boson.

In the SM a quark doublet is formed under SU(2)L by taking together a left-

handed up-quark and left-handed down-quark. For the leptonic part, a doublet is

formed by a left-handed charged fermion and its corresponding neutrino. All the

right-handed fermions are considered to be singlets under the group SU(2)L. Now

the complete Lagrangian of the electroweak sector of Standard Model consists of

four different parts, each part corresponds to specific interactions of the model.

As a result, the complete Lagrangian can be written in the following way:

LEW = Lfermions + Lgauge + LHiggs + LY ukawa (1.1)

Some of the principles that govern the SM are local gauge symmetry, spontaneous

symmetry breaking and Higgs mechanism. It is important to note that under local

gauge transformation, the Lagrangian of SM remains invariant. The fermionic

part in eq. (1.1) denotes the kinetic energy and interactions of the fermions with

different gauge bosons. This relevant component of SM Lagrangian can be written

as:

Lfermions = iQ̄Lγ
µDL

µQL + iL̄γµDL
µL+ iq̄Rγ

µDR
µ qR + il̄Rγ

µDR
µ lR (1.2)
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In the eq. (1.2) DL
µ and DR

µ are the covariant derivatives for left-handed and

right-handed chiral fields. Mathematically, these covariant derivatives take the

following forms:

DL
µ = (∂µ + ig2T

aW a
µ + ig1

Y

2
Bµ) and DR

µ = (∂µ + ig1
Y

2
Bµ) (1.3)

In the above equation W a
µ and Bµ are the gauge fields associated with the groups

SU(2)L and U(1)Y . These new fields have a significant role in the theory. W a
µ

(a = 1, 2, 3) represents three gauge bosons that correspond to the three genera-

tors of SU(2)L group. Similarly, Bµ denotes the gauge boson related to U(1)Y .

Moreover T a and Y are the generators of these two groups and coupling strength

of electromagnetic and weak interactions are represented by the gauge constants

g1 and g2, respectively. For SU(2)L the generators are 2× 2 matrices, such that

T a = 1
2τ

a, where τa are the Pauli spin matrices,

τ1 =

0 1

1 0

 , τ2 =

0 −i

i 0

 τ3 =

1 0

0 −1

 (1.4)

Again, the weak hypercharge operator Y of U(1)Y group is a linear combination

of the third operator T 3 of SU(2)L and electromagnetic charge operator Q, such

that,
Y

2
= Q− T 3 (1.5)

Similarly the gauge part of the Lagrangian for the gauge bosons can be written

as:

Lgauge = −1

4
W a
µνW

a,µν − 1

4
BµνB

µν (1.6)

where the field tensors W a
µν and Bµν have the form:

W a
µν = ∂µW

a
ν − ∂νW

a
µ − g2ϵ

abcW b
µW

c
ν (1.7)

Bµν = ∂µBν − ∂νBµ (1.8)

ϵabc in eq. (1.7) is the strucutre constant for the group SU(2)L, with the rela-

tion [T a, T b] = iϵabcT c. Another important component of SM formulation is the

invariant Higgs Lagrangian. This sector includes the complex scalar field ϕ, which

is a doublet under SU(2)L transformation. Accordingly, the expression for Higgs

Lagrangian can be written in the following way:

LHiggs = (DL,µϕ)†(DL
µϕ)− V (ϕ) (1.9)
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V (ϕ) in the above equation is the Higgs potential of Standard Model. This

potential can be written as:

V (ϕ) = µ2ϕ†ϕ+ λ(ϕ†ϕ)2 (1.10)

There are some peculiar interactions between the fermions and scalar field ϕ in

the Standard Model. These kind of interactions, which are popularly known as

Yukawa interactions, are described by the Yukawa Lagrangian and can be written

as:

LY ukawa = −Yd(Q̄LϕdR)− Yu(Q̄Lϕ̃uR)− YL(L̄ϕlR) + h.c. (1.11)

The Higgs potential in eq. (1.10) plays a very important role in generating mass

of the fermions and gauge boson of SM. The process of generating masses of these

particles are done through spontaneous symmetry breaking (SSB) and Higgs mech-

anism. As there are no right-handed neutrinos in the SM, therefore, a Yukawa

term for neutrinos is not possible for this model. Consequently these neutral par-

ticles remain massless in the SM. We will discuss the mass generation mechanism

in detail in the following section.

1.2.2 Masses of Fermions and Gauge Bosons

We know that the electroweak theory is a non-abelian theory which is governed by

the gauge group SU(2)L⊗U(1)Y . This theory is responsible to produce the masses

of the gauge bosons and fermions of the SM. The weak interaction has three

massive gauge particles viz. W± and Z bosons. The mediator of electromagnetic

force is the massless photon (γ). In order to explain the massiveness of these

particles, Peter Higgs and his colleagues proposed a special mechanism called the

Higgs mechanism [56, 57]. According to this mechanism, the real part of the

neutral component of Higgs doublet obtains a non-vanishing VEV. This leads to

symmetry breaking of the theory and subsequently gives masses to the particles.

Also this VEV breaks the gauge group SU(2)L ⊗ U(1)Y into the electromagnetic

symmetry group U(1)EM , thereby keeping the theory intact.

The SU(2)L doublet complex scalar field ϕ can be expressed as:

ϕ =

ϕ+
ϕ0

 =

ϕ1+iϕ2√
2

ϕ3+iϕ4√
2

 (1.12)
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where ϕ+ and ϕ0 are the charged and neutral components of the Higgs field.

Under the SM gauge group SU(3)C ⊗ SU(2)L ⊗ U(1)Y the Higgs field transforms

as (1,2,1). The expression in eq. (1.9) represents the gauge invariant Higgs com-

ponent of the SM Lagrangian. This expression contains the important Higgs po-

tential which is given by:

V (ϕ) = µ2ϕ†ϕ+ λ(ϕ†ϕ)2, ϕ†ϕ =
1

2
[ϕ21 + ϕ22 + ϕ23 + ϕ24] (1.13)

The mass of the SM particles are dependent on this potential. In order to gener-

ate the masses, one has to minimise this potential with the condition µ2 < 0 and

λ > 0, such that ϕ obtains a non-zero VEV. For this condition, the minimum of

the potential is found to be |ϕ| =
√
< 0|ϕ†ϕ|0 > =

√
−µ2
2λ = v√

2
. This minimum

value is obtained by the real part ϕ3 and the other three fields do not acquire

any value. The unphysical fields ϕ1, ϕ2, ϕ4 correspond to three Goldstone bosons

which are eventually converted into the massive gauge bosons of weak interactions.

After minimising the Higgs field can be written as:

< ϕ >=
1√
2

0

v

 ; v =

√
−µ2
λ

; [ϕ1 = ϕ2 = ϕ4 = 0, ϕ3 = v] (1.14)

Now the field ϕ is excited about its VEV by a physical field, h. This new field

is called the physical Higgs field. Accordingly the VEV of ϕ transforms as:

< ϕ >=
1√
2

 0

v + h

 (1.15)

Using the expressions in eq. (1.14) and (1.15), the mass terms from Higgs La-

grangian of the SM can be derived as:

LHiggs =M2
WW

+
µ W

−
µ +

1

2
M2
ZZµZ

µ +
1

2
M2
hh (1.16)

where,

W+ =
W 1
µ − iW 2

µ√
2

W− =
W 1
µ + iW 2

µ√
2

Zµ = cosθWW
3
µ − sinθWBW

(1.17)

and

MW =
g1v√
2
, MZ =

g1v

cosθW
, MH = 2v

√
λ. (1.18)
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The Weinberg angle θW is given by tanθW = g1
g2
. Moreover the field (Aµ) of the

massless photon is an orthogonal combination of the fields W 3
µ and Bµ. As a

result the expression for Aµ is [58]:

Aµ = cosθWW
3
µ + sinθWBµ (1.19)

In a similar manner we can obtain the masses of fermions of the SM. For this

purpose we need the Yukawa interactions that take place between the scalar and

fermion fields. The gauge invariant Yukawa interaction of the SM is given by

the eq. (1.11). Thus the masses of the electrons and quarks which are generated

after the scalar ϕ acquires VEV can be written as:

Me = YLv, Mu = Yuv, Md = Ydv (1.20)

YL,u,d in the above equation are the Yukawa couplings of lepton, up-quark and

down-quark, respectively. In this way one can explain how the particles obtain

masses through Higgs mechanism in the SM. However, neutrinos are an exception

in this theory. As right-handed neutrinos are absent in SM, there cannot be

Yukawa interaction for them. Therefore, their mass cannot be generated and

remain massless in the SM.

1.2.3 Shortcomings of Standard Model

The SM is a very successful model in the field of particle physics. In the current

scenerio it has the potential to adequately address the elementary particles and

three of the fundamental interactions that govern the behavior of nature. Though

this seems to be a self-consistent theory, there are many inefficiencies which are

associated with this model. The sources of these relevant inefficiencies can be the-

oretical, experimental, observational etc. For instance, gravitational interaction is

one of the important fundamental forces present in nature. The SM not only fails

to incorporate this interaction, but also cannot provide a suitable justification as

to why the gravitational force is very weak when compared to electromagnetic or

strong forces. Quantum chromodynamics implies the conservation of CP-symmetry

in strong interaction. Due to lack of experimental evidences, the reason for pos-

sible conservation of such symmetry is not yet known. Another limitation can be

found in terms of mass of the neutrinos [59]. Contrary to what the SM dictates,
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neutrino oscillations confirmed that these neutral particles should possess mass i.e.

they are massive in nature. Some other phenomena whose origin cannot be ob-

tained from the SM, but are observed in the universe includes baryon asymmetry

[60], dark matter [61, 62], dark energy [63] etc. All these observations and draw-

backs suggest the possibility of new physics that extend far beyond the Standard

Model. In this thesis, we have studied some of these mysteries which are unsolved

in the SM. Moreover, we have briefly discussed some of these phenomena in the

following sections.

1.3 Neutrino Oscillation
The quantum mechanical phenomena of oscillations among different flavors of neu-

trinos is a path breaking discovery in the field of neutrino physics. This idea of

neutrino oscillation was first proposed by Bruno Pontecarvo in the year 1967 as

a possible solution to explain the solar neutrino problem. This phenomena which

was originally inspired by kaon-antikaon oscillations, apart from successfully ex-

plaining the solar neutrino problem, threw light on new properties of neutrinos

that were earlier thought to be absent in them. In SM neutrinos are considered

to be massless and there is no mixing between them. But according to neutrino

oscillation, neutrinos have a non-zero mass and there is mixing among the three

generations as they propagate in space. Though they are produced at source and

detected in experiments as flavor eigenstates, they travel in between this distance

as a combination of mass eigenstates. As the SM fails to accomodate these rel-

evant properties of neutrinos, therefore, one has to go for BSM frameworks by

extending the Standard Model. By now it is clear that there are two eigenstates

associated with neutrinos: flavor eigenstates and mass eigenstates. These two

forms of neutrino eigenstates are connected by a unitary matrix known as PMNS

matrix or leptonic mixing matrix.
νe(x)

νµ(x)

ντ (x)

 =


Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3



ν1(x)

ν2(x)

ν3(x)

 (1.21)

In the above eq. (1.21) the column matrices on the left and right sides represent

the flavor and mass eigenstates, respectively. This unitary mixing matrix can be
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parameterised in terms of three mixing angles (θ12, θ13, θ23) and Dirac CP-phase

δ. This can be written as:

UPMNS =


c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

UMaj (1.22)

In the above matrix cij = cosθij and sij = sinθij . UMaj = diag(1, eiα, ei(β+δ)) is

the diagonal matrix for Majorana neutrinos with phases α and β.

1.3.1 Neutrino Oscillation in Vacuum:

When a particular flavor of neutrino (say α) travels through a distance in vacuum

it gets converted into some other flavors (say β) for the time it stays on the path

of its journey. Mathematically this propagation can be expressed by the equation:

|να(x) >= Uαie
−ipix|νi(x) > (1.23)

In eq. (1.23) x represents the space-time co-ordinate and pi is the momentum

associated with the mass eigenstate of neutrinos. The amplitude of probability of

this transition for a neutrino travelling a distance L is calculated by the following

equation:

P (να → νβ) = δαβ − 4
∑
i>j

Re[UβiU
∗
αiU

∗
βjUαj ]sin

2(
∆m2

ijL

4E
)

+2
∑
i>j

Im[UβiU
∗
αiU

∗
βjUαj ]sin(

∆m2
ijL

2E
) (1.24)

However for two neutrinos with a single mixing angle the above expression takes

the following form:

P (να → νβ) = sin2(2θij)sin
2(
∆m2

ijL

4E
) (1.25)

∆m2
ij = m2

i −m2
j denotes the mass squared differences of the neutrinos involved

in the process. The above equation shows that for neutrino oscillation to occur

in nature the mixing angle and mass of neutrinos should have non-zero values.

Thus this particluar expression confirms that neutrinos should have some mass.
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1.3. Neutrino Oscillation

1.3.2 Neutrino Oscillation in Matter:

The propagation of neutrinos is dependent on the medium in which it is travel-

ling. In contrast to propagation in vacuum, there are many factors which tend to

alter some of the properties of this process when neutrino travels through mat-

ter. The properties of matter, such as its nature, the number density of different

components, density etc. are described by the effective potential of the medium.

Owing to the difference in charge-current interactions, these effects vary with re-

spect to different flavors of particles. The effective potential essentially explains

the effect that any matter medium can have when neutrinos propagate through

them. For electron neutrino (νe) this effective potential can be expressed in terms

of the Fermi constant GF and electron number density (ne) in the following way:

VC = ±
√
2GFne (1.26)

Similarly the effective potential induced by neutral-current interaction for the ac-

tive neutrinos can be expressed as:

VN = ∓
√
2GFnn (1.27)

nn in eq. (1.27) represents neutron number density. Unlike neutrino propagation

in vacuum, these effective potentials in matter tend to modify the neutrino eigen-

states and affects the flavor evolution in matter. Thus the form of effective mass

becomes:

M2
νe =M2

νe ± 4EVM (1.28)

where,

VM =


Ve = VC + VN 0 0

0 Vµ = VN 0

0 0 Vτ = VN

 (1.29)

Accordingly the expressions for mixing angles and mass eigenvalues can be written

down for desired number of flavors. For the simple case of two flavors of neurinos,

the expression for light neutrino mass is:

M2
ν ≃ OTMdiag

ν O +

A 0

0 0

 (1.30)
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In eq. (1.30) O is an orthogonal mixing matrix which can be taken as:

O =

 cosθ sinθ

−sinθ cosθ

 (1.31)

Accordingly, the mass-squared matrix (M2
ν ) can be written as:

M2
ν =

m0

2

1 0

0 1

+
1

2

A−∆m12cos2θ ∆m12sin2θ

∆m12sin2θ −A+∆m12cos2θ

 (1.32)

Here m0 = m2
1m

2
2 + A and ∆m12 = |m2

1 −m2
2|. Thus the eigenvalues are found to

be:

m1,2 =
m0

2
∓ 1

2

√
(∆m12cos2θ −A)2 +∆m2

12sin
22θ (1.33)

Also the effective mixing angle can be expressed as:

tan2θ =
∆m12sin2θ

∆m12cos2θ −A
(1.34)

These modifications that are observed in neutrino oscillations when they propagate

through matter are well explained by the MSW (Mikheyev, Smirnov, Wolfenstein)

effect [64].

1.3.3 Neutrino mass: Dirac and Majorana

Dirac Mass

All the fermions in SM have two different chiral fields, left-handed and right-

handed components. The mass of these Dirac particles are generated through

the popular Higgs mechanism where both of the chiral fields through Yukawa

interactions with the Higgs boson play a major role. But because of the absence

of right-handed chiral fields the Dirac mass term is not possible for neutrinos

within the Standard Model. Therefore in order to incorporate Dirac mass term

SM has to be augmented with three right-handed neutrinos (νR) such that its

charge assignment under SU(3)C ⊗ SU(2)L ⊗ U(1)Y is (1,1,0). Accordingly the

Yukawa term can be written as:

−LY uk = Yν ν̄Rϕ̃L+ h.c. (1.35)

where ϕ̃ = iσ2ϕ. L and ϕ are the lepton doublets and Higgs boson, respectively.

After electroweak symmetry breaking ϕ acquires VEV and then Dirac mass term
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1.3. Neutrino Oscillation

for neutrinos can be written as:

−LDirac = ν̄RmννL + h.c. (1.36)

Though the above setup seems to be fine in generating neutrino Dirac mass,

but it has a serious drawback. To produce sub-eV neutrino mass, the Yukawa

couplings need to be vey small i.e. of the order of Yν ∼ 10−12. This very small

order of Yukawa coupling does not have any natural explanation and thus led to

the fine tuning problem in SM. Nevertheless, in order to have Dirac mass any

particle should have both the chiral fields.

Majorana Mass

In simple language, if a particle by nature is its own anti-particle then such

particles are called Majorana particles. Neutrinos are the only fermions in SM

which are chargeless and they serve as the best candidate to be a Majorana

particle. The mass associated to these particles are termed as Majorana mass

[65]. One of the interesting features of this type of mass is that they can be

expressed by a single type of chiral field i.e. either by a left-handed or right-

handed field alone. For the case of neutrino, right-handed chiral field can be

expressed as νR = νCL = CνTL . Therefore, Lagrangian for the Majorana mass term

can be written as:

LMajorana = −1

2
mνLν

C
L (1.37)

On careful observation one can find that this term violates the Lepton number by

two units i.e. ∆L = ±2. Because of this reason it is forbidden in the Standard

Model. Moreover the double counting of the identical Hermitian conjugate is taken

into consideration by the factor half present in the expression.

1.3.4 Neutrino Mass Models

Soon after the discovery of neutrino oscillation in various experiments, the idea

that neutrinos should have a tiny non-zero mass gained much popularity among

the neutrino physics community. In absence of right-handed counter parts the SM

fails to provide a suitable mechanism that could give rise to mass of neutrinos.

As a consequence of this failure of Standard Model, people began to explore the
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possible mechanisms outside of the SM regime that could incorporate massive na-

ture of this mysterious particle. Apart from generating the tiny neutrino mass,

these mechanisms must also have the potential to tackle the issue of large mixing

angle in leptonic sector as well as the hierarchical discrepency that exists between

neutrinos and charged lepton masses. These BSM frameworks are essentially ex-

tensions of the SM with new fields being added to its particle content. Many

of these frameworks have been successfully used to include the mass of neutrinos

in different models. Additionally many of these models have provided a way to

study some other Beyond Standard Model phenomena which are observed in the

universe. Among all the frameworks, the most popular theoretical developments

was achieved in formulation of the well-known Seesaw mechanism. This break-

through mechanism is further divided into three categories: Type I [66, 67], Type

II [34] and Type III [33, 68] seesaw. Some other interesting frameworks found

in literatures are inverse seesaw [10], left-right symmetric model (LRSM) [69, 70],

neutrino two Higgs doublet model (ν2HDM) [71] etc. Below we have discussed

briefly some of these mechanisms that are frequently used in constructing models

to describe neutrino phenomenology.

Type I Seesaw: It is also called the conventional seesaw mechanism. The Type I

seesaw framework is formed by adding three gauge singlet right-handed neutrinos

(νR) to the SM. These additional particles interact with the lepton doublets (L)

and the Higgs boson (ϕ) to give Dirac mass for neutrinos. They also have a

Majorana mass (MR) associated with them. The Yukawa interaction term for

this setup is written as:

−LY ukawa = Yν ν̄Rϕ̃L+
1

2
MRν̄Rν

C
R + h.c. (1.38)

After symmetry breaking the scalar ϕ acquires VEV as < ϕ >= v. As a result

the Dirac mass term takes the form MD = Yνv/
√
2, where Yν is a matrix of order

3 × 3. The complete mass matrix for neutrinos can be obatined from eq. (1.38)

as:

Mν =

 0 MD

MT
D MR

 (1.39)

Block diagonalisation of the above mass matrix gives two mass eigenvalues. One

is the Majorana mass term MR and the other eigenvalue denotes the mass of
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1.3. Neutrino Oscillation

active neutrinos mν = −MD.M
−1
R .MT

D. Moreover to generate sub-eV SM neutrino

mass, the right-handed neutrino mass matrix (MR) must be very heavy i.e. of

the order of GUT scale.

Type II Seesaw: Extension of the SM by adding a SU(2)L Higgs triplet field

forms the Type II seesaw mechanism. This triplet scalar field ∆ = (∆++,∆+,∆0)

with unit hypercharge couples with the lepton doublet (L) and plays a very sig-

nificant role in generating mass of the neutrinos. Under the SM gauge group

the three components of ∆ transform as (1,3,1). In a matrix form this triplet is

expressed as:

∆ =

∆+
√
2

∆++

∆0 −∆+
√
2

 (1.40)

The Lagrangian for Type II seesaw mechanism is:

LTypeII = (Y∆L∆L+ µϕ∆ϕ+ h.c.) +M2
∆∆

+∆ (1.41)

Thus the mass of neutrino can be expressed in terms of VEV of the neutral

component of the Higgs triplet, < ∆0 >= v∆√
2

as

mν =
Y∆v∆√

2
(1.42)

Type III Seesaw: This formulation contains a hyperchargeless fermion triplet,

Σ = (Σ+,Σ0,Σ−). This is expressed as:

∑
=

 Σ0
√
2

Σ+

Σ− −Σ0
√
2

 (1.43)

Accordingly the Lagrangian for this mechanism is:

LtypeIII =
1

2

(
ν̄CL Σ̄0

R

)
Mν

 νL

Σ0C

+ h.c. (1.44)

This expression has some resemblance to the Type I seesaw mechanism. Here the

right-handed neutrinos are replaced by the fermion triplet. Thus, the mass matrix

for the active neutrinos can be written as:

mν =MD.M
−1
Σ .MT

D (1.45)

where M∑ is the mass of fermion triplet and the Dirac mass matrix is MD =

YΣv/
√
2.
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Inverse Seesaw: Among the many BSM frameworks, inverse seesaw is one of

the most popular mechanism that is used to generate the tiny neutrino mass.

Along with the right-handed neutrinos, this framework includes sterile fermions

(s) which are singlet under the SM gauge group [72, 73, 74, 38, 75]. Though

the number of these particles vary, each of them are considered to be present

in three generations in the standard notation. One of the salient feature of this

mechanism is the presence of the lepton number violating mass (MS) of the sterile

fermions. Because of this term mass of the SM neutrinos can be produced by

lowering the energy scale of right-handed neutrinos to TeV. The Lagrangian in

the basis (νL, νR, s) can be written as:

LISS = Y Lϕ̃νR +MRν̄Rs+MS s̄s+ h.c. (1.46)

MS in the above equation is the lepton number violating mass of sterile fermions.

From this equation the complete neutrino mass matrix can be expressed as:

Mν =


0 MD 0

MT
D 0 MR

0 MT
R MS

 (1.47)

In eq. (1.47) MD is the Dirac mass and MR is the mass matrix for right-

handed neutrinos. One important condition among the different mass matrices

of this setup is MS << MD < MR. Following this condition Mν can be block

diagonalised to arrive at the expression of the three active neutrinos,

mν =MDM
−1
R MS(M

T
R )

−1MT
D. (1.48)

Minimal Inverse Seesaw, ISS(2,3): ISS(2,3) is a minimal version of the stan-

dard inverse seesaw mechanism. The difference between the two mechanisms lie in

the particle content of ISS(2,3). Unlike inverse seesaw, there are two right-handed

neutrinos and three sterile fermions in ISS(2,3) [76, 77]. As a result, although

the Lagrangian and structure of the complete neutrino mass matrix remains un-

changed, order of the Dirac (MD) and right-handed neutrino mass matrices (MR)

associated with this system changes. The new order for these matrices are: 3× 2

for MD and 2× 3 for MR.

As MR is a rectangular matrix, its inverse is not properly defined. Because of

this limitation the expression for effective mass of the light neutrinos change as
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1.4. Baryon Asymmetry of the Universe

compared to the usual form in eq. (1.48). The modified expression takes the

form:

mν =MD.d.M
T
D (1.49)

where d is a 2 × 2 matrix obtained from the heavy mass matrix MH in the

following way:

M−1
H =

 0 MR

MT
R MS

−1

=

d2×2 .....

.... .....

 (1.50)

1.4 Baryon Asymmetry of the Universe
Observational evidences suggest that the present universe around us is mainly

dominated by matter. This matter domination can be found from the microscopic

regime (atoms, molecules, amoeba, viruses etc.) to the macroscopic level (rivers,

mountains,buildings etc.) and extends to outer space entities, such as planets,

stars, galaxies, cluster of galaxies etc. But the scenario prevalent during early

stages of the universe was very different from the present one. It is believed that

matter and anti-matter both were present in equal numbers in the thermal bath.

The standard Big-Bang theory reveals that the expansion of the universe started

from extremely hot plasma where all the particles were in thermal equilibrium

with each other. In contrast to this matter dominance, the presence of anti-

matter is very very small. Several cosmological observations hint at an imbalance

that occurs in the number of baryons and anti-baryons in the universe. This

inequality may be caused by factors that disturbed the equilibrium state of the

plasma. In cosmology this difference in number between matter and anti-matter

is called Baryon Asymmetry of the Universe (BAU) [78, 79, 80]. From the Planck

satellite observations the latest value of this asymmetry comes out to be:

ηB = (6.04± 0.08)× 10−10 (1.51)

Andrew Sakharov was one of the pioneers who attempted to explain this observed

asymmetry in the universe. Around 1967 in one of his works he pointed out three

most essential ingredients that a mechanism has to fulfill to successfully explain

this asymmetry [15, 81]. These important conditions are: Baryon (B) number

violation, C and CP violation and departure from thermal equilibrium.
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• Baryon number (B) violation is a very trivial requirement which ensures that

in any reaction more number of baryons are produced than anti-baryons to

have a non-zero asymmetry.

• If C and CP are conserved than an equal number of particles and anti-

particles will be produced in any reactions. This is not favored for gener-

ation of the observed asymmetry. A remedy for this problem lies in the

violation of C and CP which ensures that there are no reactions possible

that can produce these particles in equal amounts.

• The out-of-equilibrium decay of heavy particles is a necessary condition to

generate this asymmetry. This departure from the equilibrium state makes

sure that the forward reactions are not counter-balanced by the inverse re-

actions.

The above three conditions are collectively called as Sakharov conditions. As

discussed in literatures [82, 83], one of the mechanisms that respects all the three

conditions and provides a possible explanation of generating this asymmetry of

the universe is baryogenesis. There are several ways of realizing baryogenesis.

Some of the popular mechanisms are GUT baryogenesis, electroweak baryogenesis,

Affleck-Dine mechanism, leptogenesis. Among them baryogenesis via leptogenesis

is the most interesting and popular mechanism. It was first proposed by Fukugita

and Yanagida in their work [60, 84, 85]. This refers to an asymmetry created

in the leptonic sector by decay of heavy fermions which is then transformed into

baryon asymmetry via B + L violating sphaleron process. In this thesis we have

calculated BAU in the framework of resonant leptogenesis, which we have briefly

discussed in the next section.

1.4.1 Resonant Leptogenesis

First proposed by Fukugita and Yanagida in 1986, leptogenesis has been one of

the most favoured processes which is applied to study baryon asymmetry of the

universe. Among its different types, a lot of works have been done in various for-

malisms using resonant leptogenesis. This type of leptogenesis is possible in those

cases where mass of the decaying right-handed neutrinos are almost degenerate,
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such that it is of the order of their decay widths. Also this process can occur

at low energy scales (∼ TeV) and is suitable for mechanisms like inverse seesaw,

linear seesaw etc [86, 87, 88].

In resonant leptogenesis the CP-asymmetry of the decaying right-handed neutrino

N1 is enhanced due to its mass degeneracy with N2. The expression for CP-

asymmetry for the decay of N1 into any lepton flavor is given by [89]:

ϵi =
1

8π

∑
i ̸=j

Im[(hh†)2ij ]

(hh†)ii
fij (1.52)

where fij =
(M2

i −M2
j )MiMj

(M2
i −M2

j )
2+(MiΓi+MjΓj)2

is the self-energy correction term hij are the

Yukawa couplings in diagonal mass basis. Γi represents the decay width of the

particles. The final expression for calculating BAU is [90]:

YB = 10−2
∑

kiϵi (1.53)

where ki is the washout parameter associated with the heavy fermions.

1.5 Dark Matter
In modern cosmology one of the major challenges is to deal with the enigmatic

phenomena of dark matter and also to provide a suitable particle that can serve

as probable candidate. Observations from different sources through satellite, along

with the signals obtained from various experiments in cosmology, demonstrate that

a large portion of the universe is not formed by ordinary matter. These areas

do not interact with radiation and so appear as dark, non-radiative and non-

luminous large patches in space. These regions which constitute around 26% of

the universe is termed as dark matter. Early indications of dark matter was first

made by astronomer Fritz Zwicky in 1933 which was based on the observations

he made in the galaxies of Coma clusters [91]. The discrepencies seen in velocity

distribution of the galactic rotation curves at the centre and far-outer regions of

many spiral galaxies is another indication of the presence of dark matter in the

universe. These spiral galaxies rotate around their vertical axes. According to

Newtonian mechanics, the expression for this velocity distribution at a distance
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“r” from the centre is:

v(r) =

√
GM(r)

r
(1.54)

The above equation clearly demonstrates the dependence of v(r) on the distance

r i.e. v(r) ∝ r
−1
2 . On the same grounds, two astronomers Rubin and Ford in

1970 tried to examine the rotation curves of Andromeda galaxy [92]. To their

surprise they found that at the regions far from the center of the galaxy the

curves did not follow the above relation. Rather they turned out to be flat at

the outer regions of Andromeda galaxy. This crucial observation confirmed that

there must be additional invisible masses which prevents the stars at the periphery

from flying away and also stopping the galaxy from breaking apart.

Gravitational lensing is another prime source of evidence that validates the ex-

istence of DM in the universe. This refers to the effect of observing distorted

images of far away galaxies because of the presence of massive galaxies at the

foreground in outer space. According to Einstein, light coming from a distant

source gets bent when there are massive objects in its path. These large massive

bodies behave as gravitational lens. Different galaxies, cluster of galaxies at the

cosmological scale show these patterns of lensing. Analysing these patterns con-

firms the existence of DM in the universe. The most strong evidence is drawn

from weak lensing effect that is observed in the bullet clusters [93, 94]. This clus-

ter was formed about 150 million years ago due to the collision of two different

clusters that contained a mixture of visible and dark matter, respectively. But

during the formation of bullet clusters this visible and DM got spatially separated.

Also these observations help in determining the density profiles of DM halos.

One of the early pictures of the universe after the Big-Bang is Cosmic Microwave

Background (CMB) [95]. This presents a broad display of the composition of

universe. The fluctuations (photon-baryon fluid) observed in CMB provide infor-

mation about structure formation in the universe. Later on this fluctuations were

found to be negligibly small and failed to account for large scale structure forma-

tions. This discrepency in CMB had to be compensated with a massive neutral

form of matter, thus signaling the existence of DM.

The data that we receive from various cosmological and astrophysical observations
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and experiments tell us the amount of DM present in the universe. It could only

tell how much of dark matter is present and what should be its characteristics.

Though the presence of dark matter is now accepted by all across the community,

but there is no consensus about its composition and what it is made of. The

possible DM candidates include both dense baryonic matter and non-baryonic mat-

ter, the later being more favourable. A section of studies show that DM particles

were in thermal equilibrium with the SM particles during early phases of the uni-

verse. In due course of time when this equilibrium state was disturbed, DM got

annihilated and its number reduced significantly. This number became saturated

once these particles were far apart from each other and reduced the possibility

of interaction among them. This phase is called freeze-out and the number of

particles left at this time are called thermal relics of DM. Another class of stud-

ies believe that there were negligible amount of DM in the early universe. The

interactions(decay) that took place among the Standard Model particles gradually

produced DM particles. This process of DM production is called the freeze-in

mechanism. As per nomenclature DM particles associated with the freeze-out

mechanism are called Weakly interacting massive particles (WIMPs) and those

which are produced through freeze-in are called Feebly interacting massive parti-

cles (FIMPs). As per the latest data obtained from the Planck satellite, current

DM relic abundace in the universe is found to be [96, 78]:

Ωh2 = 0.1199± 0.0027 (1.55)

The baryonic components of dark matter include Massive Astrophysical Compact

Halo Objects (MACHOs), neutron stars, white dwarfs, black holes etc. Baryonic

matter forms a very negligible amount of dark matter and this makes them less

interesting. Most of the dark matter present in the universe is of non-baryonic

nature. These include WIMPs, FIMPs, scalars, vectors etc. Based on large struc-

ture formation and speed of the particles, non-baryonic DM is classified into three

different categories:

Hot Dark Matter(HDM): This type of DM is formed by relativistic particles

whose masses (m < T) is less than their kinetic energy. Neutrinos are a good

example of this category of DM.
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Cold Dark Matter(CDM): This type of DM is formed by slow moving non-

relativistic paricles during the time of freeze-out. They are heavier (m > T) than

their kinetic energies.

Warm Dark Matter(WDM): These are the kind of DM which lie in an inter-

mediate region. They are neither too fast moving nor very slow like CDM.

It is to be noted that among the three categories of DM, Cold Dark Matter

(CDM) is the most popular form of DM among the community. The reason being

its capability to justify and form large structures as seen in different cosmological

experiments and observations. Moreover in recent decades there have been rapid

progess in experimental aspects of various fields. Therefore in near future, there

are high chances of getting more insight about the particle constituent of this

mysterious form of matter which occupies around 26% of the universe.

1.6 Neutrinoless double beta decay (NDBD/0νββ):

Lepton Number Violation
Neutrinoless double beta decay is one of the few reactions that play a very promi-

nent role in particle physics. It is a radioactive reaction that converts a parent

nucleus N(A,Z) into a daughter nucleus N(A,Z + 2) without emitting any neu-

trinos. This reaction can be expressed as:

N(A,Z) → N(A,Z + 2) + 2e− (1.56)

Wendell H Furry was the first person who considered this type of decay processes

in the year 1939. It is evident from the reaction in eq. (1.56) that it is a

lepton number violating decay process. The entire process involves violation of

lepton number by 2 units. From the neutrino perspective, this decay process has

the potential to determine the nature of neutrinos i.e. whether they are Dirac

or Majorana type. This reaction is in support of Majorana nautre of neutrinos.

Therefore, if this decay process is detected in experiments than it will confirm

that neutrinos are Majorana type of fermions. One of the important observable

for a nuclear reaction is its time period. The expression for time period for NDBD
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can be expressed in terms of electron mass (me) and nuclear matrix element (Mν)

as [97]:

Γ0νββ

ln2
= G|Mν

me
|2|mββ |2 (1.57)

In eq. (1.57) G denotes phase-space factors. mββ represents effective mass for

Majorana neutrinos. The value of mββ have contribution from the active neutrinos

and first row elements of the mixing matrix. Mathematically this relation is

expressed as:

mββ = |
3∑
i

miU
2
ei| (1.58)

The above expression is valid for those cases where there are only three gen-

erations of neutrinos in the model. If additional neutrinos are added then the

expression of effective neutrino mass gets modified. For example, in a framework

which contains sterile neutrinos the expression gets modified in the following way

[98]:

mββ = |
3+s∑
i

miU
2
ei

p2

p2 −m2
i

| (1.59)

p2 in the above equation represents virtual momentum of neutrinos. The value

of this quantity is -125 MeV2. Currently there are many ongoing experiments

which are actively looking for neutrinoless double beta decay using different nu-

cleus. Some of these popular experiments are KamLAND-ZEN [17], GERDA [99],

CUROE [19] etc. These experiments also put some stringent bounds on the effec-

tive neutrino mass, mββ < 0.061− 0.165 eV. Inspite of repeated continuous efforts

there has been no success in detecting this type of beta decays till date. But by

increasing the sensitivities of these experiments there might be some possibilities

of detecting this important class of lepton number violating decay reactions in

the future.

1.7 Lepton Flavor Violation (LFV)
In SM there are three generations of leptons viz. electron, muon and taon. To-

gether with their corresponding neutrino partners they are considered as discrete

doublets in the model. Within this regime, the possibility of a reaction where

a charged lepton changes its flavor from one to another generation is very rare.
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This type of interactions are strongly suppressed in the Standard Model. But

with the discovery of neutrino oscillation there has been a shift in viewing these

flavor violating processes. Moreover experiments, such as solar [100, 101], reac-

tor [102, 103, 104] and atmospheric neutrino experiments [3] gave new hints about

the existence of such flavor violating processes. Subsequently these findings opened

up windows for possibilities of charged lepton flavor violation interactions, thereby

creating a demand for physics beyond the Standard Model. The ongoing exper-

iments search for two body (lj → lkγ) and three body (lj → lilklk) lepton flavor

violating decays. µ→ eγ is one of the popular muonic two body decay processes.

Similarly the three body decay reaction for muons is written as µ → eee. An-

other possible class of decays includes muon atom (µ+e−) converting into electron

(µ → e) and the flavor violating decay, µ−e− → e−e−. The two body muonic

decays are investigated by MEG collaboration experiments [105, 106]. These set

of experiments also provide the bounds on the branching ratios of the decay. For

the case of three body muonic decay, SINDRUM II [107] experiment plays a vital

role in determining values of the branching ratios. But more precise bounds come

from the highly sensitive Mu3e [108] collaboration experiments. Other experiments

like Mu2e [109], DeeMe [110], COMET [111] focuses on detecting muon-electron

conversion. Though there are no signals from experiments for µ−e− → e−e− de-

cays, but with improved sensitivity there might be some postitive response from

COMET, Mu2e in near future.

cLFV processes involving the third flavor of leptons (τ) give rise to many decaying

channels that favor flavor violation. Some of the common channels are τ → eγ,

τ → µγ, τ → 3e, τ → 3µ. Apart from these, there are few other rare channels

associated with taon decay that produce hadrons in the final states, τ → lπ0

and τ → lπ+π−. Signals of flavor violation involving taons can also be found

in theoretical model which predict cLFV in muons. Moreover the amplitudes of

branching ratios of these decay channels are enhanced compared to muonic decays.

These challenging decays are searched for in the experiments like BaBar [112, 113],

Belle [114]. The table in (1.3) shows the latest bounds of the different decyas

associated with cLFV.
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cLFV process Present Bound Future Sensitivity

µ → eγ 5.7×10−13 6.0× 10−14

µ → eee 1.0× 10−12 ∼ 10−16

τ → eγ 3.3× 10−8 ∼ 3× 10−9

τ → µγ 4.4× 10−8 ∼ 10−9

τ → eee 2.7× 10−8 ∼ 10−9

Table 1.3: This table shows current bounds of different cLFV processes. It also

highlights the future sensitivities of these processes.

1.8 Flavor Symmetry in Particle Physics
Symmetry is an inseparable segment of high energy physics. It plays a very vital

role in representing the particles and their interactions in a systematic mathemat-

ical order. One of the branches of mathematics i.e. Group theory which helps

to realize symmetry is the backbone of model building in particle physics. The

interactions that exist between different class of particles, such as weak, elec-

tromagnetic and strong interactions can be explained elegantly with the help of

continuous symmetry groups. Common examples of continuous symmetries are

Poincare, Lorentz and gauge groups. In addition to these groups, discrete sym-

metry such as Charge Conjugation (C), Parity (P) and Time Reversal (T) have

significant contribution in simplifying particle physics to its present form.

The gauge groups SU(3)C ⊗ SU(2)L ⊗ U(1)Y govern the dynamics of the Stan-

dard Model. Here SU(N) and U(N) are non-abelian continuous symmetry groups.

However, there are certain exceptions when it comes to neutrino masses and mix-

ings. These massive particles, otherwise considered massless in SM, require ex-

tension of SM for a better understanding of the underlying physics which can

provide an appropriate explanation of the massive nature of neutrinos. In these

BSM frameworks, discrete abelian symmetry groups ZN are very useful in con-

structing different constrains of the model. Along with the ZN groups, there

is another class of discrete groups which are widely used in paticle physics and

play a very important role in BSM frameworks. These groups are non-abelian in
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nature and serve as important tools in determining the flavor structure of any

mechansim. Some of the most popular non-abelian discrete symmetry groups are

AN [115, 116, 117], SN [118, 119, 120], DN [121, 122], T ′ [123, 124] etc. Many

models have been developed using these groups which focus on the studies of

neutirno (quark) masses and mixings. The extra particles (flavons) considered in

these models acquire vacuum expectation value (VEV) at different energy scales.

Moreover these models are successful in producing the masses and mixings of neu-

trinos and quarks which are compatible with the results that are obtained from

different experiments.

In the following sections we briefly discuss some of these groups that we have

used in our work.

1.8.1 Abelian ZN group

ZN is a finite sub-group of the larger SO(2) group [12]. This abelian discrete

symmetry group which is cyclic in nature represents the symmetry of a plane

figure. Any figure which bears this symmetry remains invariant when rotated by

an angle of 2π
n . The simplest group of this symmetry is Z2. It is characterised by

two elements +1 and -1. The Z2 group serves as an important tool in stabilizing

the dark matter candidate in a model. Another important group in this category

is Z3. It has three elements (1, ω, ω2). Here 1 is denotes the identity element and

ω is the cube root of unity i.e. ω = exp(2iπ3 ).

1.8.2 A4 Discrete Symmetry Group

The group A4 is an even permutation of four objects. It is a symmetry group of

the tetrahedron and has (4!/2)=12 elements [125]. These twelve elements can be

generated by repeatedly myltiplying its generators, S = (14)(23) and T = (123).

These two generators of the group satisfy the relations:

S2 = (ST )3 = T 3 = 1

This family of discrete symmetry group has four irreducible representations. Among

these representations, three are singlets (1,1′, 1′′) and one is triplet (3) which is
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further divided into symmetric (3S) and anti-symmetric (3A) parts. These irre-

ducible representations play a very important role in building models in particle

physics. Now in order to build a model, one must be able to determine singlets

from the products of these representations, which will make the Lagrangian of the

model invariant. This can be achieved from the Clebsch-Gordan decomposition

scheme, which leads to the tensor product rules for the irreducible representations

in the following way:

1′ ⊗ 1′ = 1′′, 1′ ⊗ 1′′ = 1, 1′′ ⊗ 1′′ = 1′

3⊗ 3 = 1⊕ 1′ ⊕ 1′′ ⊕ 3S ⊕ 3A

The explicit representations of the product of two triplets can be done in two

ways. These two different ways are known as Ma-Rajasekaran and Altarelli-

Feruglio basis.

Ma-Rajasekaran Basis

In this particular basis, both of the generators of A4 have real entries and S is

considered to be diagonal. They are expressed through the following matrices,

S =


1 0 0

0 −1 0

0 0 −1

 , T =


0 1 0

0 0 1

1 0 0

 (1.60)

For two triplets, a = (a1, a2, a3) and b = (b1, b2, b3), the expressions for singlets

and triplets in Ma-Rajasekaran basis can be written as:

1 ≡ (ab) = a1b1 + a2b2 + a3b3

1′ ≡ (ab)′ = a1b1 + ω2a2b2 + ωa3b3

1′′ ≡ (ab)′′ = a1b1 + ωa2b2 + ω2a3b3

3S ≡ (ab)S = (a2b3, a3b1, a1b2)

3A ≡ (ab)A = (a3b2, a1b3, a2b1)

(1.61)

Altarelli-Feruglio Basis

In Altarelli-Feruglio basis, the generator T ′ is diagonal. The generators (S′, T ′)

of this basis are related to the Ma-Rajasekaran basis through a unitary transfor-
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mation. This relation among the generators of the two basis can be expressed

as:

T ′ = V †TV =


1 0 0

0 ω2 0

0 0 ω

 , S′ = V †SV =
1

3


−1 2 2

2 −1 2

2 2 −1



where V =
1√
3


1 1 1

1 ω2 ω

1 ω ω2


(1.62)

For two triplets, a = (a1, a2, a3) and b = (b1, b2, b3), the expressions for singlets

and triplets in this particular basis can be written as:

1 ≡ (ab) = a1b1 + a2b3 + a3b2

1′ ≡ (ab)′ = a3b3 + a1b2 + a2b1

1′′ ≡ (ab)′′ = a2b2 + a1b3 + a3b1

3S ≡ (ab)S = (2a1b1 − a2b3 − a3b2, 2a3b3 − a1b2 − a2b1, 2a2b2 − a1b3 − a3b1)

3A ≡ (ab)A = (a2b3 − a3b2, a1b2 − a2b1, a1b3 − a3b1)

(1.63)

Both of these basis, Ma-Rajasekaran and Altarelli-Feruglio, are quite popular in

constructing different models in the field of particle physics. In this thesis, we

have focused more on the Altarelli-Feruglio basis and have built the models of

our work using this representation.

1.8.3 Modular Symmetry

In recent times modular symmetry has become quite popular in the study of neu-

trino phenomenology. One of the salient features of this symmetry is its potential

to reduce the number of flavons that are used in a model. There are also in-

stances of such models where no extra flavon has been used. In this group of

symmetry, neutrino masses and Yukawa couplings are not free. Rather they are

modular forms of the complex modulus τ [126, 14, 127]. In general the modular

group Γ(N) (N = 1, 2, 3...) can be defined in the following way:

Γ(N) =


a b

c d

 ∈ SL(2, Z),

a b

c d

 =

1 0

0 1

 (mod N)

 (1.64)
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such that ad− bc = 1. These groups act on the upper half of the complex plane,

(Im(τ)>0) and transforms the complex variable τ linearly as:

τ → aτ + b

cτ + d

The matrix form of the two generators of modular symmetry are:

S =

 0 1

−1 0

 , T =

1 1

0 1

 . (1.65)

These operators act on τ and transform them in the following ways:

S
τ−→ −1

τ
, T

τ−→ 1 + τ. (1.66)

It is interesting to note that the finite modular groups (N ≤ 5) and non-abelian

discrete groups are isomorphic to each other [128, 129]. As a result Γ2 ≈ S3,

Γ3 ≈ A4, Γ4 ≈ S4, Γ5 ≈ A′
5. For a group of level N , the number of modular

forms varies with respect to their weights. The table (1.4) shows how to find out

the number of modular forms that a particular group with a particular level can

have. The modular forms f(τ) of modular level N , weight k transform under the

N No. of modular forms Γ(N)

2 k + 1 S3

3 2k + 1 A4

4 4k + 1 S4

5 10k + 1 A5

6 12k

7 28k − 2

Table 1.4: No. of modular forms of weight 2k.

action of Γ(N) in the following way:

f(γτ) = (cτ + d)kf(τ) (1.67)

These modular forms form a linear space of finite dimension i.e. fi(τ). For a cer-

tain finite modular group, fi(τ) transform under a certain unitary representation

of that group in the following way:

fi(γτ) = (cτ + d)kρij(γ)fj(τ) (1.68)
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where ρij(γ) is the irreducible representation of that particular group in concern.

This particular relation is the foundation of model building of lepton masses and

mixing in modular symmetry.

1.8.4 Γ(3) Modular Group

It is a level three modular group which is isomorphic to discrete symmetry group

A4. As evident from table (1.4), Γ(3) has three Yukawa modular forms of weight

2 and they form a triplet under A4 symmetry group. These modular forms present

in this group are expressed in terms of Dedekind eta-function (η(τ)) as [130, 131]:

Y1(τ) =
i

2π
[
η′( τ3 )

η( τ3 )
+
η′( τ+1

3 )

η( τ+1
3 )

+
η′( τ+2

3 )

η( τ+2
3 )

− 27
η′(3τ)

η(3τ)
]

Y2(τ) =
−i
π
[
η′( τ3 )

η( τ3 )
+ ω2 η

′( τ+1
3 )

η( τ+1
3 )

+ ω
η′( τ+2

3 )

η( τ+2
3 )

]

Y3(τ) =
−i
π
[
η′( τ3 )

η( τ3 )
+ ω

η′( τ+1
3 )

η( τ+1
3 )

+ ω2 η
′( τ+2

3 )

η( τ+2
3 )

]

(1.69)

where η(τ) is the Dedekind eta-function and is defined in the following way:

η(τ) = q
1
24

∞∏
n=1

(1− qn), q = e2πiτ . (1.70)

The eta functions satisfy the equations

η(τ + 1) = expiπ/12 η(τ), η(−1/τ) =
√
−iτη(τ) (1.71)

Another way of expanding these modular forms is the q-expansions, where q is

expressed in terms of τ in the following way q = exp(2iπτ). These expansions

take the form:

Y1(τ) = 1 + 12q + 36q2 + 12q3 + .........

Y2(τ) = −6q1/3(1 + 7q + 8q2 + .......)

Y3(τ) = −18q2/3(1 + 2q + 5q2 + ......)

(1.72)

The above q-expansions play a crucial role in calculating the values of Yukawa

modular forms. One can also have modular forms which have weights greater than

2. These forms can be constructed easily with the help of lower weight modular

forms [132, 133]. For example, weight 4 modular forms can be constructed as:

Y 4
1 = ((Y 2

1 )
3 + 2Y 2

2 Y
2
3 ), Y 4

1′ = ((Y 2
3 )

2 + 2Y 2
1 Y

2
2 )
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Y 4
3 =


(Y 2

1 )
2 − Y 2

2 Y
2
3

(Y 2
3 )

2 − Y 2
1 Y

2
2

(Y 2
2 )

2 − Y 2
1 Y

2
3



Similarly with the help of these lower weight modular forms we can construct

modular forms of higher weights.

1.9 Thesis Outline
This thesis is organised in the following manner:

In Chapter 1 we outline the different theoretical and experimental aspects of

particle physics which served as motivation for our work. We begin by giving a

brief introduction about the mysterious neutral particle called neutrino, followed

by its latest theoretical and experimental developments. We then discuss the

Standard Model which is considered to be one of the most successful theories of

particle physics in present time. We then highlight some of the drawbacks of

SM that presses the need for theories beyond the Standard Model. Thereafter we

discuss the important concept of neutrino oscillation and how it gets modified in

matter. In this section we have discussed some of the important mechanisms that

are able to generate tiny neutrino masses. We proceed ahead with some of the

BSM phenomena, such as baryon asymmetry of the universe, dark matter, lepton

number violation, lepton flavor violation. Study of these events are one of the

main objectives of this thesis. As we know, symmetry plays a very vital role in

the field of model building, so we have described the groups that are used in this

thesis. This mainly includes the abelian Z3 discrete symmetry group, non-abelian

A4 group, modular symmetry and Γ(3) modular group.

In Chapter 2 we have discussed a model that has been built using modular sym-

metry in the framework of minimal inverse seesaw, ISS(2,3). We have used Γ(3)

modular group which is isomorphic to non-Abelian discrete symmetry group A4.

In this group, there are three Yukawa modular forms of weight 2. Due to the

use of modular symmetry, the dependence of our model on flavons reduced sig-

nificantly. Consequently, we have used only a single flavon in our work. The role
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of this flavon is to obtain a desired diagonal charged lepton mass matrix without

affecting the neutrino sector. Along with A4 symmetry group, we have also used

Z3 to restrict certain interaction terms in the Lagrangian. In this model we have

studied neutrino masses and mixings for both normal and inverted hierarchies.

Accordingly, we have evaluated the three neutrino mixing angles i.e. solar, reac-

tor and atmospheric mixing angles, the Jarlskog invariant. The correlations among

these parameters are shown through various plots present in the chapter. Apart

from neutrino phenomenology, we have studied two important BSM phenomena

in this model i.e. neutrinoless double beta decay (NDBD) and lepton flavor vio-

lation (LFV). We have evaluated effective Majorana mass of electron neutrino for

NDBD and calculated the branching ratio of cLFV process µ→ eγ for this model.

Further, we have also checked for possible deviations from unitarity conditions for

the mixing matrix.

In Chapter 3 contains an important part of the thesis. The works discussed

in this chapter are done in a model that has been constructed by extending

the minimal inverse seesaw with Higgs-like scalar triplet field η = (η1, η2, η3). In

order to realize this model, we have used N = 3 modular group, Γ(3). As it

is isomorphic to non-abelian symmetry group A4, therefore, the properties of A4

play a very crucial role in defining the Lagrangian of the model. Henceforth, we

determined the complex variable τ and subsequently those of the Yukawa modular

forms. We then calculated the mixing angles and tried to find a common region of

real and imaginary parts of τ that could accommodate all the three angles. Also

we have shown the variations between these mixing angles and Yukawa modular

forms through different graphs for both normal and inverted orderings. Analysing

these graphs we found a common space of the modular forms that can produce all

the angles. In this model we have also studied dark matter and baryon asymmetry

of the universe (BAU). After symmetry breaking, only one of the η′s acquire VEV

and the other two components remain neutral. These neutral components of η

serve as the probable dark matter candidate for our work. So we calculated their

relic density and checked its consistency with the observed values. In order to

study BAU, We have used the popular resonant leptogenesis mechanism. In our

work, the asymmetry created by decay of the light quasi-Dirac pair is converted
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into the observed asymmetry of the universe. For this purpose, we calculated the

CP-asymmetry associated with the decaying pair and then evaluated the numerical

value of BAU from the model. We found that the outcomes of our model are

consistent with the results obtained from different cosmological observations and

ongoing experiments.

In Chapter 4 we have presented our study on texture zeros of neutrino mass

matrix. For this study we have constructed a model by using the non-abelian

discrete flavor symmetry group A4 in the framework of ISS(2,3). Along with this

group, Z3 plays a crucial role in restricting certain unwanted interactions among

the fields of the model. In this work, along with the Higgs-like triplet scalar field

η = η1, η2, η3, we have used five flavons i.e. ϕ, χ, χ′, ζ, ζ ′. The VEV alignment

of these flavon fields determines the mass matrices of the model. We fixed the

structures of MNS and MS by taking specific VEV alignments of ζ, ζ ′ and then

try to study the origin of neutrino textures by implementing 2-0 conditions on the

Dirac mass matrix (MD) of neutrinos. Out of the fifteen possible 2-0 structures of

MD, only six of them are able to generate 1-0 textures of neutrino mass matrix.

Accordingly we calculated the model parameters and mixing angles for these six

cases. Interestingly, we found that only two among these six cases produced all

the three mixing angles within the 3σ allowed range for normal hierarchy. So we

focused our further studies on these two cases in normal hierarchy. Additionally,

we have also studied dark matter in these two cases. As discussed in the previous

chapter, the neutral components of η also serve as the probable dark matter

candidates for this work. We found that the results obtained from the model,

which have been represented through various graphs in the chapter, are consistent

with those of the experiments.

Finally in chapter 5 we conclude by giving an overview of the entire work of

this thesis. Along with this, we also provide a glimpse of future prospects and

scope of this work.
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