
Chapter 2

Neutrinoless Double Beta Decay

(NDBD) and Lepton Flavor

Violation (LFV) using A4 Modular

Symmetry in Minimal Inverse

Seesaw

In this chapter of the thesis we will discuss two of the important BSM phenomena

i.e. neutrinoless double-beta decay (NDBD) and lepton flavor violating processes

(LFV). These two processes are a crucial part of this thesis. NDBD is related to

the decay processes where lepton number is violated by two units, ∆L = ±2. It

is clear from various literatures that for a better understanding and explanation

of these relevant topics, one has to extend the SM with additional particles.

Accordingly we have carried out our work in one of such extensions, known as

minimal inverse seesaw, ISS(2,3). Apart from the particles present in the SM,

this mechanism is augmented with two right-handed neutrinos and three sterile

fermions which are singlet under the SM gauge group SU(3)C ⊗ SU(2)L ⊗U(1)Y .

These additional particles facilitate to obtain tiny neutrino masses and the related

phenomenological quantities in the desired 3σ range. Using this mechanism we

have constructed a model by applying Γ(3) modular group. This finite modular
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group Γ(3) of level N = 3 is isomorphic to the discrete symmetry group A4.

Consequently the group A4 plays a vital role in developing the model of our

work. To study the effect of neutrinoless double beta decay, we have calculated

the Majorana effective mass (meff/mee) of electron neutrino for this model. As

predicted by different NDBD experiments the value of meff is found to lie around

≤ 0.165 eV. In this work we have also studied the lepton flavor violating process

µ→ eγ. For this purpose we have calculated the branching ratio and found that

it lies within the range allowed by the relevant experiments i.e. BR(µ → eγ) <

5.7 × 10−13. Along with these two prominent BSM phenomena, we have also

evaluated the neutrino parameters in this work.

2.1 Introduction
Inverse seesaw (ISS) is one of the important frameworks that is used to explore

new physics which are out of reach of the Standard Model. This extension of SM

contains right-handed neutrinos and sterile fermions. Although in the standard

notation there are three families for each of these particles, this number varies

according to the need of the setup. For example, in some instances there may be

two right-handed neutrinos and two sterile fermions in the framework. In some

other cases there may be more number of right-handed neutrinos than sterile

fermions and vice-versa. One such version of this mechanism is called minimal

inverse seesaw, ISS(2,3). As stated earlier, it contains two right-handed neutrinos

and three sterile fermions. In this thesis most of the work is done in this variant

of inverse seesaw. One of the prime advantages of ISS over the other mechanisms

is its ability to bring down the mass of right-handed neutrinos to TeV scale.

This is possible because of the presence of sterile fermions in the mechanism. A

detailed study on inverse seesaw and its different variants can be found in the

literatures [134, 135, 136, 8, 137].

The quantum phenomenon of neutrino oscillation established two important prop-

erties of neutrinos. This process showed that there must be mixing among the

neutrinos as they propagate through space. It also highlighted the need for exis-

tence of tiny mass of neutrino for successful oscillation of one flavor to another.
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For the active neutrinos there are three mixing angles and two mass-squared dif-

ferences in the standard scenario. These angles associated with neutrinos are

named as solar mixing angle (θ12), atmospheric mixing angle (θ23) and reactor

mixing angle (θ13) [49, 138]. It is interesting to note that the solar and atmo-

spheric mixing angles are reasonably large, whereas the reactor mixing angle is

relatively small. In fact the angle θ13 was found to have a non-zero value recently

in the year 2012. Prior to this it was considered to be zero. On the other hand,

only two mass-squared differences are measured at the experiments. This leads to

two types of mass orderings of neutrinos, normal and inverted ordering/hierarchy

[139, 140]. Though the absolute mass of individual neutrinos are not known, cos-

mological observations suggest that the sum of absolute mass of the neutrinos

should be
∑
mν ≤ 0.12 eV.

In this chapter we emphasize a detailed study of lepton number violating process

in minimal inverse seesaw. This LNV process holds the answer to the question

about nature of neutrinos: whether they are Dirac or Majorana particles. One

of the parameters that characterises this process is the effective Majorana mass

of electron neutrino. As per KamLAND-ZEN and other experiments which are

searching for NDBD, the latest bound on effective mass is found to be < 0.165

eV. In ISS(2,3) the mixing that takes place between light and heavy neutrinos

alters the usual expression of effective mass. We have discussed this modification

in later sections of the chapter. Along with NDBD we have also studied the

processes where violation of flavor of the charged leptons are observed. These

cLFV processes remain highly suppressed in Standard Model. But some of the

current experiments like MEG collaboration, SINDRUM II etc. hint at the pres-

ence of such flavor violating decays. In our work we have analysed the common

two-body cLFV decay channel µ → eγ. The important quantity that describes

this type of decays is their branching ratio. Accordingly in this work we have

calculated the branching ratio for the decay of our interest. Likewise for NDBD

we have evaluated the effective mass of electron neutrino. We have assessed these

two interesting processes for the model of our work.

This chapter contains one of the models that we have constructed in the frame-

work of minimal inverse seesaw. In order to determine the interactions among
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different fields of the model we have used the popular A4 modular symmetry.

One of the prime motivation of using modular symmetry is to tackle the problem

of many flavons that are needed in case of discrete flavor symmetry [141, 142].

With modular symmetry the number of flavons required in a work is significantly

reduced. Accordingly, in our models we needed only a single flavon to construct

the desired Lagrangian. Moreover the Yukawa couplings are expressed as functions

of the complex modulus τ . A brief introduction of modular symmetry is given in

the first chapter of the thesis.

This chapter is arranged as follows: section (2.2) contains about the setup of our

work. Here we have discussed in great detail about the development of the model

of our work. In sections (2.3) and (2.4) we have discussed about the neutrinoless

double beta decay and non-unitarity condition of the mixing matrix. A brief

summary about LFV processes is present in section (2.5). All the findings and

discussions about the results are presented in section (2.6). Lastly in section (2.7)

we present a brief summary of the entire work.

2.2 Description of the Model
This section of the chapter contains the first model that we have constructed

in our thesis. The mechanism of minimal inverse seesaw serves as the basis for

building this model. As we know, the ISS(2,3) contains a pair of SU(2)⊗U(1) sin-

glet right-handed neutrinos, Ni(i = 1, 2) and three neutral gauge singlet fermions,

Si(i = 1, 2, 3). In our work discrete modular symmetry plays a very crucial role in

developing the Lagrangian of the model. In particular we have extensively used

A4 modular symmetry in our work. Apart from A4 modular group, we have also

used Z3 symmetry in this work. In the next paragraph we will discuss about the

particles present in this model and the charges assigned to them under different

groups which are used to obtain the desired interaction terms of this formalism.

As evident in various articles [143, 144, 145], the level N = 3 modular group

Γ(3) is isomorphic to the discrete symmetry group A4. This non-abelian group

plays a very crucial role in model building. It has four irreducible representations,
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three of which are singlets and one of them denotes triplet representation. The

notation for the singlets are 1, 1′, 1′′. The triplet is further divided into symmet-

ric and anti-symmetric components, 3S and 3A. As per convenience, we assign

these representations to the different particles present in the model. Accordingly,

the lepton doublets (L) transform as A4 triplets and right handed charged lep-

tons Ei(i = e, µ, τ) transforms as 1, 1′′ and 1′, respectively. The two right-handed

neutrinos N1 and N2 are considered as 1′ and 1′′, whereas the Higgs doublets

(Hd, Hu) transform as trivial singlet (1) under A4. The neutral singlet gauge

fermions Si(i = 1, 2, 3) transform as triplets representation of the A4 group. In

addition to these particles, we have used a flavon ϕ in our work. The purpose

of including this flavon is to get a diagonal charged lepton mass matrix with-

out affecting the neutrino sector. Thus this flavon field is considered to be a

triplet under A4. Modular weights is an integral part of modular symmetry. In

any model it is very important to assign the appropriate modular weights to its

particle content. Accordingly in this work, we have taken the modular weights

of lepton doublets to be zero and for the right-handed charged leptons it is -2.

Similarly the right-handed neutrinos are assigned modular weights of -2 and rest

of the particles (Si, Hu, Hd) are taken to be of zero modular weights. The flavon

is assigned a weight of 2. The charge assignments of the particles under different

symmetry groups and their corresponding modular weights have been highlighted

in Table (2.1).

L Ei N1 N2 Si Hu Hd ϕ

SU(2)L 2 1 1 1 1 2 2 1

A4 3 1, 1′′, 1′ 1′ 1′′ 3 1 1 3

KI 0 -2 -2 -2 0 0 0 2

Z3 ω2 1 ω ω 1 1 ω ω

Table 2.1: The above table shows the charge assignments and modular weights

of the particles considered in the model. KI denotes modular weights

of the particles.

As mentioned in (1.8.4) of the first chapter, Γ(3) modular group has three Yukawa
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modular forms of weight two. These Yukawa couplings Y = (Y1, Y2, Y3)
T are

functions of the complex modular field τ . Under the symmetry group A4 these

modular forms transform as a triplet. Table (2.2) highlights these informations.

Y (Modular forms)

A4 3

KI 2

Z3 ω2

Table 2.2: The charge assignments and weight of Yukawa modular forms for dif-

ferent groups are shown in the above table.

Based on the above discussions on charge assignments, the Lagrangian of the

model for the leptonic sector can be written in the following way:

−L = LL + LD + LNS + LS (2.1)

where LL is the mass term for charged leptons, LD is the Dirac mass term

connecting left-handed (νL) and right-handed (NR) components of neutrinos. LNS

represents the mixing term between right-handed neutrinos and sterile fermions

(Si) and LS is the Majorana mass term among gauge singlet sterile fermions

(Si). All the terms of the Lagrangian must be invariant under A4 symmetry

group and sum of the modular weights of each term must be zero. Here we

denote the vacuum expectation value of Hd and Hu as
〈
H
〉
= v.

The VEV of the flavon is chosen in the following way [14]:

〈
ϕ
〉
= (u, 0, 0). (2.2)

The Lagrangian for charged leptons take the form:

LL = α1E
c
1Hd(Lϕ)1 + α2E

c
2Hd(Lϕ)1′ + α3E

c
3Hd(Lϕ)1′′ (2.3)

The parameters α1, α2, α3 can be adjusted to get the desired charged lepton

masses. With the VEV of the flavon mentioned above, the diagonal mass matrix

is obtained as:

ML = diag(α1, α2, α3)uv (2.4)
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Following the above discussions, the relevant Dirac mass term of the model can

be written as follows :

LD = [N1(LY )1′′Hu]1 + [N2(LY )1′Hu]1 (2.5)

where subscripts (1′, 1′′, 1) represents the irreducible representations of the discrete

symmetry group A4. Subsequently the Dirac mass matrix for the neutrinos is

obtained from equation (2.5) in the following form:

MD = v


Y3 Y2

Y2 Y1

Y1 Y3

 (2.6)

The Majorana mass term for the gauge singlet fermion is:

LS = Λ (SS)1 (2.7)

The mass matrix from equation (2.7) can be written as:

MS = Λ


1 0 0

0 0 1

0 1 0

 (2.8)

Similarly, the mixing mass term between the right-handed neutrinos and gauge

singlet neutral fermions can be expressed as:

LNS = β [{N1(SY )1′′}+ {N2(SY )1′}] (2.9)

In equations (2.7) and (2.9) , Λ and β are free parameters. From this Lagrangian

mass matrix for the mixing term is obtained as:

MNS = β

Y3 Y2 Y1

Y2 Y1 Y3

 (2.10)

Taking all the mass terms together, we can express the entire Lagrangian in a

single 8× 8 neutrino mass matrix in the basis (νi, Nj , Si)
T , where (i = 1, 2, 3) and

(j = 1, 2). The eigenvalues of this matrix correspond to the mass of the eight

fermions, respectively. Finally this single neutrino matrix, in terms of MD, MNS

and MS can be written as:

Mν =


0 MD 0

MD
T 0 MNS

0 MNS
T MS

 (2.11)
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After block diagonalising Mν , the active light neutrino mass matrix can be written

from equation (1.49) in the following way [11, 146, 147]:

mν =MD . d . MD
T (2.12)

In this way, in the framework of ISS(2,3), we built the first model of this thesis

using modular symmetry. Along with A4 symmetry group, to constrain and re-

strict certain interaction terms in the Lagrangian, Z3 is used. Using this model

we have calculated the three neutrino mixing angles and its masses. We have

also studied the phenomena of neutrinoless double-beta decay and lepton flavor

violation in this setup.

2.3 Lepton Number Violation
It has been mentioned that ISS(2,3) contains five extra heavy states which may

have significant contributions to lepton number violating processes like neutrinoless

double beta decay(NDBD/0νββ) [98, 148]. We have studied the effective electron

neutrino Majorana mass mee/meff [149, 150] characterising 0νββ in this model.

Experiments like KamLAND-ZEN, GERDA, CUORE and EX0-200 provide strin-

gent bounds on mee/meff which can be found in [151, 152, 18].

The decay width of the process is proportional to the effective electron neutrino

Majorana mass mee. In the absence of any sterile neutrino, the standard contri-

bution to mee can be written as,

mee =
∣∣∣ 3∑
i=1

Uei
2mi

∣∣∣ (2.13)

But due to the presence of sterile neutrinos in ISS(2,3), the expression for effective

electron neutrino Majorana mass gets modified. As a result, the new expression

of mee after considering the contributions from the heavy fermions can be written

as [149]:

mee =
∣∣∣ 3∑
i=1

Uei
2mi

∣∣∣ + ∣∣∣ 5∑
j=1

Uej
2 Mj

p2 +M2
j

| < p > |2
∣∣∣ (2.14)

where Uej represents the coupling of the heavy neutrinos to the electron neutrino

and Mj represents the mass of the respective heavy neutrinos. | < p > | is known

as neutrino virtuality momentum with value | < p > | ≃ 190 MeV.
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2.4 Non-Unitarity
In this section, we summarise in short about the non-unitarity of the neutrino

mixing matrix. This occurs due to mixing between the light and heavy neutral

fermions. In conventional scenerio, this deviation from unitarity can be expressed

as

U ′ = (1−Θ)UPMNS (2.15)

where Θ ≃ 1
2FF† and F ≡ (MT

NS)
−1MD represents the mixing between light and

heavy fermions. But due to rectangular shape of MNS and MD in ISS (2,3), the

form of Θ can be written in the following way [153]:

Θ ≃MD

(
MNSM

T
NS

)−1
MT
D/2 (2.16)

Several experimental results such as the W boson mass, electroweak universality,

CKM unitarity bounds etc. provide constraints on the non-unitarity parameters

[154, 155]. In our work, we find that for both the hierarchies, the approximated

values of Θ lies in the range (10−6 − 10−11).

2.5 Lepton Flavor Violation
There are many processes which have been observed in this physical world that

have led to pathbreaking scientific discoveries and developments. One of such

processes in the field of particle physics are the lepton flavor violating interactions

which advocate for a new dimension of physics that surpasses the Standard Model.

Through these flavor violating processes, a particular flavor of lepton converts

into another flavor. They come in the form of two-body and three-body decay

channels. The popular two-body charged lepton flavor violating decay processes

are: µ → eγ, τ → eγ, τ → µγ. Similarly the three-body decay channels include

µ → eee, τ → eee etc. The MEG collaboration experiments, SINDRUM II put

bounds on the branching ratios of these decay channels [105, 156].

In ISS(2,3) the 8 × 8 neutrino mass matrix Mν can be diagonalised using an

unitary matrix to give masses of the eight particles (m1,m2.......,m8), where the

heavy particles are (m4,m5.....m8). The mass eigenstates of these eight particles

can be represented as Ni, where (i = 1, 2, ....8). The flavor eigenstates of light
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active neutrinos (νlL) can be expressed as a linear combination of these mass

eigenstates as:

νlL =

8∑
i=1

UliNi (2.17)

The mixing matrix in the above equation is non-unitary. This provides a path to

study the charged lepton flavor violating processes in our model.

In this work we have studied the lepton flavor violating decay, µ → eγ. Several

experiments with improved sensitivity are searching for this decay mode. Among

them the current limit on its branching ratio comes from MEG collaboration,

BR(µ → eγ)<5.7 × 10−13 [105]. As a result of mixing between active and heavy

neutrinos, there is a sizeable contribution to this decay mode in our work. This

BR(µ→ eγ) can be computed in the following way [157, 76]:

BR(µ→ eγ) =
α3 sin2 θW
256π2

(
mµ

mW

)4 mµ

Γµ
|Gµe|2 (2.18)

where mµ,mW are masses of µ and W-boson. Γµ is the decay width of muon.

Gµe is the loop function given by

Gµe =
∑
i

U∗
µiUei Gγ

(
m2
i

m2
W

)
Gγ(x) =

10− 43x+ 78x2 − 49x3 + 4x4 + 18x3 log(x)

3(x− 1)4

(2.19)

With the help of the above relations, we have calculated the BR for the decay

µ→ eγ. We have presented the results in the following sections of this chapter.

2.6 Numerical Analysis and Results
In this section of the chapter we discuss the processes that we have followed to

determine the results of our work. We have discussed them in detail and also

have shown the variations among different quantities calculated from the model.

For numerical evaluation we have considered the 3σ experimental values of neu-

trino oscillation parameters [158]. These values have been highlighted in Table

(2.3).

Next we diagonalise the light neutrino mass matrix using the relation, mν =

U. mdiag. U
T , where U is a 3×3 unitary mixing matrix and mdiag= diag(m1,m2,m3).
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Parameters Normal Ordering Inverted Ordering

sin2 θ12 [0.269,0.343] [0.269,0.343]

sin2 θ23 [0.407,0.618] [0.411.0.621]

sin2 θ13 [0.02034,0.02430] [0.02053,0.02436]

∆m2
21/10

−5eV 2 [6.82,8.04] [6.82,8.04]

∆m2
31/10

−3eV 2 [2.431,2.598] [2.412,2.583]

Table 2.3: The above table shows the latest 3σ values of neutrino oscillation

parameters.

The eigenvalues m1,m2,m3 correspond to mass of the three neutrinos. The mix-

ing angles can be expressed in terms of certain elements of the unitary matrix

U . Accordingly, we can write down the relations between the elements of U and

mixing angles in the following way [159]:

sin2 θ13 = |Ue3|2, sin2 θ23 =
|Uµ3|2

1− |Ue3|2
, sin2 θ12 =

|Ue2|2

1− |Ue3|2
(2.20)

Another important parameter that controls the size of CP violation in quark and

lepton sector is the Jarlskog invariant (JCP ). It can also be calculated from the

elements of the mixing matrix U in the following way:

Jcp = Im[Ue1Uµ2U
∗
e2U

∗
µ1] = s23c23s12c12s13c

2
13 sin δcp (2.21)

In order to fit the neutrino oscillation data, we have taken the following range of

values for the model parameters:

Re(τ) → [0, 3], Im(τ) → [0.5, 2.8], v = 125 GeV

Λ → [10, 20]KeV, β → [10, 100]TeV

As the charged lepton mass matrix in this work is diagonal, it has no contribution

to the neutrino mixing matrix. Consequently the mixing matrix for neutral sector

is governed by the famous PMNS matrix, UPMNS . With the help of this ma-

trix we diagonalise the light neutrino mass matrix for both normal and inverted

ordering of neutrino mass spectrum. The solar and atmospheric mass squared

differences provide necessary constraints for the model. The values of Λ are taken
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in the range (10-20) KeV. Using q-expansions of the modular forms in eq. (1.72),

we find out the real and imaginary parts of complex modulus τ , which are found

to lie in the range: Re(τ) → [0, 3] and Im(τ) → [0.5, 2.8]. The mixing angles

from the model can be obtained using the relations given in equation (2.18). The

figures representing the corelations among different quantities have been shown in

the following sections.

2.6.1 Variation between
∑

mν and mixing angles

From cosmological observations it has been found that the latest value for sum

of the masses of three neutrinos should be
∑
mν ≤ 0.12 eV. Any model that

aims to study neutrino phenomenology must be able to produce this value in the

desired range. In figures (2.1) and (2.2), we have shown the variation between

sum of neutrino masses (
∑
mν) and mixing angles sin2 θ12/ sin2 θ23 and sin2 θ13,

respectively. From these figures it is evident that for both the mass orderings a

large number of values are present within the allowed region as defined by the

sum of neutrino masses (
∑
mν < 0.12eV ) and mixing angles. Also it can be seen

from Fig.(2.1) that the allowed region of space for atmospheric mixing angle in

inverted ordering is much less as compared to normal ordering. This observation

indicates that normal ordering is more preferred over the inverted scenario. The

lower bound for sum of neutrino masses is found to be around 0.04 eV for both

the mass spectrum.

Figure 2.1: The correlation between sum of neutrino masses(
∑
mν) and mixing

angles, sin2 θ23 and sin2 θ12 for NO (left) and IO(right).
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Figure 2.2: The variation of mixing angle, sin2 θ13 as a function of sum of neu-

trino masses (
∑
mν) for NO (left) and IO(right).

2.6.2 Relation among the Yukawa modular forms

In this work we have tried to find favourable regions of the three Yukawa modular

forms present in the model. For this purpose, we have studied the variations

among Y1, Y2 and Y3 to determine a common region between them. The figures

in (2.3) and (2.4) represent this variation between the Yukawa modular forms. It

can be seen from Fig. (2.3) that the value of |Y1| and |Y2| in case of NO lie

within (0.1-1.6) and (0.07-1). While for the IO case, |Y1| mostly lie in the region

(0.5-3) and |Y2| lie in the region (0.01-1). Similarly from Fig. (2.4), we find that

these values for |Y3| lie within the region (0.009-0.99) and (0.05-1.99) for both

normal and inverted ordering, respectively. These values of the yukawa couplings

have been summarised below in table (2.4):

Figure 2.3: Variation between the Yukawa couplings |Y1| and |Y2| for both normal

and inverted ordering.
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Figure 2.4: The figures show variation between the Yukawa couplings |Y2| and

|Y3| for both normal and inverted ordering.

Normal Ordering Inverted Ordering

|Y1| 0.1 - 1.6 0.5 - 3

|Y2| 0.07 - 1 0.01 - 1

|Y3| 0.009 - 0.99 0.05 - 1.99

Table 2.4: Values (range) of the Yukawa couplings obtained from the model.

2.6.3 Corelation between Yukawa forms and components

of τ

In Fig (2.5) we show the variation between Yukawa couplings and real part of

the complex modulus, τ for both the mass orderings. It can be observed from

the plots that there are certain regions of Re(τ) where the Yukawa couplings are

more concentrated. For NO these regions lie near (0.3-0.5) and (2.4-2.8), while

for IO it is distributed along the range of Re(τ). The parameter space for the

Yukawa coupligs decreases towards right and is mainly confined to the region <

1.5. Similarly, the variations of imaginary part of τ with respect to the Yukawa

couplings are shown in Fig. (2.6). Here we find that Yukawa couplings are

confined mainly to region (0.8-2.0) of Im(τ) for both the cases. The corelation

between Jarlskog invariant and sin2 θ23 is shown in Fig. (2.7). For both the

ordering, there are sufficient values of Jcp which lie within the allowed range

(-0.04-0.04).
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Figure 2.5: Variation of the Yukawa couplings as a function of the real part of

τ for NO (left) and for IO(right).

Figure 2.6: Variation of the Yukawa couplings as a function of the imaginary

part of τ for NO (left) and for IO(right).

Figure 2.7: Correlation between Jcp and sin2 θ23 for NO (left) and for IO(right).
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Figure 2.8: Correlation between yukawa couplings (|Y1| and |Y3|) and
∑
mν for

NO (left) and for IO(right).

Finally we show the variations between Yukawa couplings, (|Y1|, |Y2|, |Y3|) with

sum of neutrino masses (
∑
mν) in Fig. (2.8). For normal ordering, most of the

values of |Y1| is found to lie in the region (0.5-1) and decreases thereafter. While

that of |Y2| and |Y3| lie in the regions (0.1-0.4) and (0-0.2). While for inverted

ordering, the Yukawa coupling |Y1| is mostly confined to the region above 0.5 and

that of |Y2| and |Y3| is mainly spanned in the region (0.1-0.5).

2.6.4 Variation between virtual momentum (p) and mee

We have calculated the effective electron neutrino Majorana mass (mee) for both

the mass hierarchies. This important parameter is related to neutrinoless double-

beta decay which, if detected, has the potential to solve the problem of nature

of the neutrinos. In Fig (2.9) we depict the prediction of this model on effective

Figure 2.9: Effective mass as a function of parameter p for both normal and

inverted hierarchy.
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mass characterizing NDBD process for both NO and IO. From these figures we

observe that the values of mee obtained from our work is well below the upper

bound of 0.165 eV. For normal ordering the values of mee are mainly concentrated

in the region (5× 10−4 to 0.008) eV, whereas for inverted ordering it lies around

(0.02 to 0.05) eV.

2.6.5 Corelation between BR (µ → eγ ) and RHN M2

Finally we show the results for cLFV process µ → eγ in the figures (2.10). We

have calculated the BR of this process and tried to show its relation with a heavy

fermion, M2. We find that for both the mass hierarchies, a considerable range of

its values lie below the current upper bound of BR for µ → eγ i.e. 5.7 × 10−13.

The parameter space below upper bound for inverted hierarchy is concentrated

mainly around BR value of 10−16. So the predicted branching ratio is well below

the upper limit.

Figure 2.10: The above figures show the corelation between BR (µ → eγ) and

M2 for NH and IH.

2.7 Conclusion
This chapter contains a part of the thesis which includes our work on evaluation

of different neutrino parameters i.e mixing angles, sum of neutrino masses and

analysis of NDBD and cLFV processes. For this purpose we have constructed a

model in the framework of minimal inverse seesaw, ISS(2,3). As we have used A4

modular symmetry in this model, the number of flavons is significantly reduced

and we needed only one flavon in this work. This is a major adavantage of using
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modular symmetry in model building. In addition to A4 group, we have also used

the abelian discrete symmetry group Z3 which acts as filter to remove certain

unwanted interactions of the models. We have studied the neutrino parameters

for both normal as well as inverted hierarchy. A reasonable range of the sum of

active neutrino mass (
∑
mν) is found to lie within the upper bound i.e. 0.12 eV.

Also a possible lower value is found to lie around 0.03 eV. The predicted allowed

parameter space consistent with the experimental value of atmospheric mixing

angle is found to be larger in normal hierarchy than the one corresponding to

inverted hierarchy. The Yukawa couplings are constrained and found to lie mostly

in the region (0.08-0.5). Also we have studied NDBD and cLFV for both the

hierarchies. Accordingly we have calculated the effective mass of electron neutrino

for both the mass hierarchies. Similarly we have found out the branching ratio

for the cLFV process µ → eγ in this model. We find that the values of these

parameters lie within the allowed range as predicted by different experiments,

thereby, justifying the validity of this model.
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