
Chapter 3

Dark Matter and Baryon

Asymmetry of the Universe in a A4

Modular Symmetric Model in

ISS(2,3)

In this chapter we present our study on baryon asymmetry of the universe and

dark matter by adding a scalar triplet η = (η1, η2, η3) to the particle content of

minimal Inverse seesaw. We have realised this extension of minimal inverse seesaw

with the help of a level 3 modular group, Γ(3). This group is isomorphic to

non-abelian discrete symmetry group A4. After symmetry breaking, the neutral

components of η i.e. η2, η3 are considered as dark matter candidates for this

work. The heavy fermions in ISS(2,3) form two quasi-Dirac pairs. The decay

of the lightest pair paves the way for baryon asymmetry. In order to check the

consistency of our model with various experimental constraints, we have calculated

the relic density of dark matter and tried to evaluate BAU through resonant

leptogenesis. The model is able to produce a large value of these quantities

in the desired range as required by different cosmological observations and also

successfully produces neutrino masses and mixings in the allowed 3σ range. These

results, along with their discussions are shown in later sections of the chapter.
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3.1 Introduction
The shortcomings of Standard Model paved the way for development of many

BSM mechanisms. These mechanisms have their own advantages and are successful

in providing an appropriate roadmap to understand many of the BSM phenomena.

One of the popular among the many different BSM formulations is Inverse seesaw.

The additional particles in this mechanism includes three right-handed neutrinos

and three sterile fermions, which are singlet fields under the SM gauge group. A

minimal version of inverse seesaw contains only two right-handed neutrinos. This

version which acts as the building block of our work is called Minimal Inverse

seesaw, ISS(2,3). Moreover this mechanism enhances the possibility of detecting

right-handed neutrinos by lowering their energy scale to TeV.

It is now an established fact that there is an asymmetry between matter and

anti-matter in the universe. Cosmological observations indicate that the number of

baryons in the universe is not equal to the number of anti-baryons. This difference

in number between baryons and anti-baryons is termed as Baryon Asymmetry of

the Universe (BAU) [160, 161, 86]. At the beginning, as evident from various

considerations, the universe started with an equal number of both the types of

particles i.e. baryons and anti-baryons. As such the asymmetry observed in the

universe occured in much later times and must have been generated through a

dynamical process called baryogenesis. As per Planck data, the value of this

asymmetry, denoted by ηB is found to be [162]

ηB = (6.04± 0.08)× 10−10 (3.1)

As proposed by Sakharov, three important conditions are necessary for baryoge-

nesis: Baryon number violation (B), C and CP violation , interactions out of

thermal equilibrium [163]. In the last couple of decades several attempts have

been made to address the phenomena of BAU. One of the popular and success-

ful theoretical process is baryogenesis via leptogenesis. This mechanism was first

proposed by Fukugita and Yanagida [60]. According to this mechanism, the L-

violating out of equilibrium decays of singlet neutrino creates an asymmetry in the

leptonic sector. This excess in lepton number can be converted into the observed

baryon asymmetry through B+L violating sphaleron processes [164, 165]. In this
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regard, Inverse seesaw contains gauge singlet right-handed neutrinos and sterile

fermions. As a result, the asymmetry generated by decay of one of the quasi-

Dirac pairs formed by these particles can be converted into baryon asymmetry of

the universe.

The presence of dark matter (DM), an inevitable mystery of the universe, has

been well-established through various observations in astrophysics and cosmology.

Some of the strong convictions in this regard are galaxy cluster observations by

Fritz Zwicky [91], galaxy rotation curves [166], recent observation of the Bullet

clusters [167] and cosmological data from the Planck collaboration [168]. All of

these remarks suggest the existence of an unknown, non-luminous, non-baryonic

dark matter which constitutes about 26% of the energy density of the universe

and is approximately five times more than luminous matter. Currently the amount

of dark matter in the universe as found from the Planck data is [78]

Ωh2 = 0.1199± 0.0027 (3.2)

This is called the relic density of dark matter. The properties that a candidate

must have to qualify as a viable dark matter candidate has been highlighted in

[169, 170]. Unfortunately, the SM particles do not possess these required criterias

and so none of them can be considered to be a viable dark matter candidate.

Therefore, from the particle physics view point, one has to extend the SM particle

content by incorporating new fields to find a suitable candidate that could produce

the correct relic abundance.

The discussions included here are the works done in a model which has been

constructed by augmenting ISS(2,3) with a Higgs-type scalar field η = (η1, η2, η3),

which is considered as triplet under A4. Similar to the model discussed in first

chapter, we have used a flavon field ϕ whose role is to make the charged lep-

ton mass matrix diagonal. As mentioned earlier, the neutral components of η,

after symmetry breaking, serves as the dark matter candidates for this work. In

order to formulate the interactions among different fields, we have used A4 mod-

ular symmetry and Z3 discrete group. The development of this model has been

discussed in detail in later sections of the chapter.

We have organised this chapter in the following manner: in section (3.2) we have
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presented a detailed discussion about the model. Section (3.3) contains the process

of leptogenesis in minimal inverse seesaw. Here we have discussed the methods

that we have used to study and evaluate BAU in this work. In section (3.4)

we provide the roadmap that we have adopted to calculate the relic density of

dark matter. The analysis and discussion of the results of the work have been

presented in section (3.5). Finally in section (3.6) we conclude this chapter by

providing a brief summary of the work.

3.2 Description of the Model
Here in this section we will discuss in detail about the model related to the work

of this chapter. In this case, we have extended the particle content of ISS(2,3)

by adding an extra particle to it. This new addition is a Higgs-type triplet scalar

field η = (η1, η2, η3). The motivation behind the inclusion of this scalar field lies in

the possibility of its neutral components being a probable dark matter candidate

for our work. The level N = 3 modular group Γ(3) which is isomorphic to A4,

plays a crucial role in development of the model. Because of this reason we have

extensively used the discrete symmetry A4 group in the model. Along with this

symmetry group, Z3 also facilitates to get the desired terms of the Lagrangian of

the work.

In comparison to the conventional inverse seesaw, there are two right-handed neu-

trinos (N1, N2) and three singlet sterile fermions (S1, S2, S3) in the minimal inverse

seesaw mechanism. Due to this reason the order of MD, MNS changes to 3 × 2

and 2 × 3; whereas for MS it remains unchanged. The VEV alignment of the

flavon ϕ facilitates to get a diagonal charged lepton mass matrix. As such the

role of this flavon is restricted only to the charged lepton sector without affecting

the neutrino sector. The three weight 2 modular forms (Y1, Y2, Y3) of Γ(3) are

considered as triplets under A4 symmetry. The right-handed neutrinos (N1 and

N2) in the model are taken as singlets under A4 and they transform as 1′ and

1′′, respectively; while the sterile neutrinos (Si) and lepton doublets (L) are con-

sidered as triplets. The modular weight of the right-handed neutrinos is taken as

-3, the lepton doublets (L) is +1 where as for sterile neutrinos and η it is taken
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to be zero. We have introduced two weighton fields, β1 and β2, in this model.

These are Standard Model singlet fields with non-zero modular weights and are

associated with the mass terms of right-handed neutrinos [127]. In our work we

have taken the weightons to be singlet under A4 and their modular weight is

+1. The above discussions about how the different fields transform under various

groups in the model have been highlighted in Table (3.1).

Fields L N1 N2 Si H ϕ η

A4 3 1′ 1′′ 3 1 1 3

Z3 ω2 1 1 1 ω2 ω ω

KI 1 -3 -3 0 -1 2 0

Table 3.1: Charge assignments of the particles under the various groups consid-

ered in the model. KI refers to the modular weights.

As we have considered a DM candidate in our model, it is necessary to intro-

duce a discrete symmetry Z2 in order to maintain stability of the DM candidate.

The SM particles remain Z2 even whereas the right handed neutrino and the

newly added field eta are odd under this symmetry. After electroweak symmetry

breaking, one of the η’s acquire VEV and their form can be written as [171, 172]:

η1 =

 η+1
vη+h1+iA1√

2

 , η2 =

 η+2
h2+iA2√

2

 , η3 =

 η+3
h3+iA3√

2

 (3.3)

As mentioned in [172], the VEV alignment of η can be written as η = vη(1, 0, 0)

and η2, η3 will be the dark matter candidates. Moreover we get a diagonal charge

lepton mass matrix when the VEV of ϕ is taken as ϕ = (u, 0, 0) [14]. So the

Lagrangian for the charged leptons can be written as:

LL = α1E
c
1Hd(Lϕ)1 + α2E

c
2Hd(Lϕ)1′ + α3E

c
3Hd(Lϕ)1′′ (3.4)

In the above equation, the parameters α1, α2, α3 can be adjusted to get the desired

masses of the charged leptons. Accordingly the mass matrix is found to be:

ML = diag(α1, α2, α3)uv. Here v is the vaccum expectation value of the Higgs

field. Now based on the above discussions about relevant charge assignmets, the

Yukawa Lagrangian for the neutrino sector can be written as:

L = N1(LY )3η +N2(LY )3η + β1N1(SY )1′′ + β2N2(SY )1′ + µ0(SS)1 (3.5)
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The first two terms in the Lagrangian denotes the interaction between left-handed

and right-handed neutrinos. The next two terms represents the interaction be-

tween N ’s and S’s while the last term denotes the interaction between the sterile

fermions. With the help of eq. (3.5), we can write down the corresponding neu-

trino mass matrices in the following way. The Dirac mass matrix of order 3×2

for the neutrinos can be written as:

MD = vη


−Y1 −Y2

2Y2 −Y1

−Y1 2Y3

 (3.6)

vη in eq. (3.6) is the VEV of η. Similarly, following the A4 multiplication rules,

the Majorana mass matrix for right-handed neutrino and sterile fermions, and the

lepton number violating mass term for the sterile fermions can be written as:

MNS =

β1Y3 β1Y2 β1Y1

β2Y2 β2Y1 β2Y3

 , MS = µ0


1 0 0

0 0 1

0 1 0

 (3.7)

Following the methods as mentioned earlier, the full 8 × 8 neutrino mass matrix

for ISS(2,3) can be written as:

M =


0 MT

D 0

MD 0 MNS

0 MT
NS MS


8×8

(3.8)

This 8×8 matrix M in eq (3.8) can be diagonalised with the help of an Unitary

matrix, U as

UT MU =Mdiag = diag(m1,m2,m3, ....,m8) (3.9)

where mi’s in the above equation are masses of the particles of the model. In

order to obatin the mass matrix for the active neutrinos one can use the expres-

sion given by eq. (2.12). Diagonalising this 3×3 matrix will yield the eigenvalues

for the three active neutrinos. Thus we have constructed this model using A4

modular symmetry in the framework of ISS(2,3). The scalar field η is the new

particle added to this model. Apart from producing the neutrino parameters in

the allowed experimental ranges, we have also used this model to study BAU and

dark matter.
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3.3 Leptogenesis in ISS(2,3)
In order to validate our model considering the cosmological constraints, we try

to generate the observed baryon asymmetry of the universe through leptogenesis.

There are five heavy neutrinos in ISS(2,3). As already mentioned, two of them

are right handed neutrinos (N1, N2) and the other three are gauge singlet neutral

sterile fermions (Si). Four of these heavy particles form two pairs, called quasi-

Dirac pairs, and one of them gets decoupled. Interestingly, the mass splitting

between these pairs is comparable to their decay width. Among them the out-of-

equilibrium decay of the lightest pair to any lepton flavor creates an asymmetry

in the leptonic sector. This asymmetry created by decay of the lightest heavy

neutrinos can be converted into baryon asymmetry through sphaleron processes

[148, 173, 174]. On the other hand, asymmetry generated by decay of the heavier

pair is washed out by lepton number violating scatterings of the lightest pair,

thereby, it does not contribute to the asymmetry produced.

3.3.1 Computation of CP asymmetry

To calculate the CP-asymmetry we need the mass matrix for the heavy neutrinos.

This matrix can be written as:

MH =

 0 MNS

MT
NS MS

 (3.10)

Now on diagonalising the above matrix, one can get masses of the five heavy

neutrinos. Also the mass splitting between the degenerate pairs is proportional to

MS .

Mdiag = V TMHV = diag(m1,m2,m3,m4,m5) (3.11)

To diagonalise this 5× 5 matrix analytically is a challenging and formidable task.

So we opt for numerical diagonalisation so as to simplify our analysis. Again

for the calculation of CP-asymmetry, a particular basis is preferred in which the

matrix MH becomes diagonal. In this basis the Lagrangian takes the form:

LS = hiαNiηLα +MiN
T
i C

−1Ni + h.c. (3.12)

where hiα corresponds to the couplings in diagonal mass basis and Ni are the

mass eigenstates of the four non-decoupled heavy fermions. Their relation to the
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couplings in the flavor basis are represented by the following expressions [175, 90]:

h1α = V ∗
11 y1α + V ∗

12 y2α

h2α = V ∗
21 y1α + V ∗

22 y2α

h3α = V ∗
13 y1α + V ∗

23 y2α

h4α = V ∗
14 y1α + V ∗

24 y2α

(3.13)

For the decay Ni → lαη (l̄αη), the formula for calculating the CP asymmetry ϵi

by summing over the SM flavor α is given by [176]

ϵi =

∑
α[Γ(ψ̃ → lαη)− Γ(ψ̃ → l̄αη

†)]∑
α[Γ(ψ̃ → lαη) + Γ(ψ̃ → l̄αη†)]

=
1

8π

∑
i ̸=j

Im[(hh†)2ij ]

(hh†)ii
fij (3.14)

For the case of resonant leptogenesis, fij is the self energy correction term. Its

expression is fij =
(M2

i −M2
j )MiMj

(M2
i −M2

j )
2+(MiΓi+MjΓj)2

. Mi and Mj are the real and positive

eigenvalues of the heavy neutrino mass matrix. Γi is the decay width of one

of the quasi-Dirac pair which is expressed as Γi =
Mi
8π (hh)

†
ii. Thus the explicit

form of CP parameter for the decay of a quasi-Dirac pair, say (N1, S1), can be

expressed as:

ϵ1 =
1

8π(hh†)11
Im[(hh†)212f12 + (hh†)213f13 + (hh†)214f14]

ϵ2 =
1

8π(hh†)22
Im[(hh†)221f21 + (hh†)223f23 + (hh†)224f24]

(3.15)

As already mentioned, the asymmetry produced by decay of the heavier pair is

washed out. Thus the wash out parameter for such decays, in terms of the Hubble

parameter H, is written as:

Ki =
Γi
H

=
Mi

8π
(hh)†ii ×

Mpl

1.66
√
g∗M2

i

(3.16)

In the above equation, Mpl is the Planck mass and g∗ denotes the effective num-

ber of relativistic degrees of freedom. The final expression for BAU can be written

as:

YB = 10−2
∑

κiϵi (3.17)

where κi is the dilution factor responsible for washout out of the asymmetry

associated with the heavy pair. ϵi is the CP asymmetry generated in the leptonic

sector. The expressions for κi depends on the values of washout factor in eq
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(3.16). These relations can be summarised as [177]:

−κ ≈
√
0.1K exp[

−4

3(0.1K)0.25
], forK ≥ 106

≈ 0.3

K(lnK)0.6
, for 10 ≤ K ≤ 106

≈ 1

2
√
K2 + 9

, for 0 ≤ K ≤ 10

(3.18)

Thus, we use eq (3.17) to calculate the value of BAU in the framework of ISS(2,3).

In our work we have computed the values of this asymmetry for both the hier-

archies. We have highlighted our findings in the results and discussion section of

the chapter. We find that for both the hierarchies there are a large number of

points that satisfy the Planck value of BAU.

3.4 Dark matter
At the beginning of the universe the particles present in the thermal pool were

in thermal equilibrium with each other. This implies that the rate at which

lighter particles combined to form heavy particles and vice-versa was the same.

During the course of evolution, the conditions that were required to maintain

this equilibrium state were disturbed. As a result, after a certain temperature

the density of some particle species became too low. Once this is achieved, the

abundance of those particle remains the same and their density becomes constant.

This phase of the particle species is called freeze-out and the density hereafter is

referred to as relic density. For a particle χ, which was in thermal equilibrium,

the relic density can be obtained from the Boltzman equations [178, 179]:

dnχ
dt

+ 3Hnχ = −<σv>
(
n2χ −

(
neqbχ

)2
)

(3.19)

In the above equation nχ is the number density of the dark matter particle

whereas neqbχ is the density of χ when it was in equilibrium with the thermal

bath. Here H represents the Hubble constant and <σv> is the thermally averaged

annihilation cross-section of the dark matter candidate. For the interactions in eq.

(3.5), the cross-section formula can be writtern as [180]:

<σv> =
v2y4m2

χ

48π(m2
χ +m2

ψ)
2

(3.20)
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where the parameters mχ,mψ and y represent the mass of the relic particle,

mass of the Majorana fermion and the interaction between the dark matter and

fermions in the model. v in the above expression represents the relative velocity

of the relic particles whose value at the time of freeze-out is taken to be 0.3c.

The solution of eq. (3.19) in terms of reduced Hubble constant (h), as found in

[181], can be written as:

Ωχh
2 =

3× 10−27cm3s−1

<σv>
(3.21)

The above expression of Ωχh
2 gives the relic density of dark matter particle. It is

found that the self annihilation between dark matter and next to lightest neutral

component of η contributes to the annihilation cross-section. For low mass region

i.e. mDM<MW , the cross-section for the self annihilation of either η2 or η3 into

Standard Model particles via the Higgs boson can be written as [182]:

σxx =
|Yf |2|λx|2

16πs

(s− 4m2
f )

3
2√

s− 4m2
x((s−m2

h)
2 +m2

hΓ
2
h)

(3.22)

where x is the dark matter particle (η2, η3) and λx is the coupling of x with

the SM Higgs boson h. In eq. (3.22) Yf represents the Yukawa couplings of the

fermions. Γh represents the decay width of the SM Higgs and mh is equal to 125

GeV. And s in the expression represents the thermally averaged center of mass

squared energy and is given by s = 4m2
x +m2

xv
2, mx is mass of the relic. In our

work the neutral component of the scalar triplet η is the dark matter candidate.

Moreover for the low mass region, the mass of the DM particle should be less

than the mass of W boson, MW [183]. The results that we have found in this

work and their corresponding analysis are shown in the next section.

3.5 Numerical Analysis and Results
In this section we present the methodology and results of this work. Accordingly

we diagonalise the 3× 3 light neutrino mass matrix (mν) of the model by using

the unitary mixing matrix, UPMNS , to get the mass eigenvalues (m1,m2,m3) of

the active neutrinos. These eigenvalues which can be expressed in terms of solar

and atmospheric mass squared differences have different forms for the two mass
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hierarchy of neutrinos. For normal hierarchy they can be written in the form

of a matrix as diag(0,
√
m2

1 +∆m2
solar,

√
m2

1 +∆m2
atm), whereas in the inverted

ordering it takes the form diag(
√
m2

3 +∆m2
atm,

√
∆m2

atm +∆m2
solar, 0) [184]. For

numerical calculations, we have used the 3σ values of the oscillation parameters

which are given in Table (2.3). Additional constraints on the model come from

the two mass squared differences and sum of neutrino masses. Moreover the

expressions in eq. (2.20) are used to calculate the three neutrino mixing angles.

For this work we find the real and imaginary components of the complex modulus

τ in the range: Re(τ)→[-0.9, 0.9] and Im(τ)→[0.2, 6]. These ranges of the two

components lie within the fundamental domain of τ . With these values of τ we

can compute the Yukawa modular forms for both normal and inverted ordering.

For further calculations we have taken µ0 in the range [10, 20] KeV and vη

is considered in between (30 − 50) GeV. In a similar way, we have taken the

values of β1 and β2 in the ranges [105, 106] GeV and [102, 103] GeV, respectively,

so as to obtain the values of different quantities in the allowed ranges. In the

following parts of this section we will show the different plots and then discuss

the respective results of this work.

3.5.1 Relation between the components of τ and mixing

angles

Here we have demonstrated the relation that exists between Re(τ), Im(τ) of the

complex modulus τ and the neutrino mixing angles for both the orderings. We

find some specific regions for the former two quantities which could accomodate

most of the values of these angles. The figures in (3.1) highlights these important

observations. Although the real component of τ remains same for all the cases,

the region for Im(τ) changes with respect to the angle in consideration. From the

top two figures, we find that the allowed values of the atmospheric mixing angle

(θ23) lie in between (0.2 to 1.2) of Im(τ) for normal ordering, whereas for inverted

ordering this range is found to be (0.4 to 1.0). The two figures in the middle

is for solar mixing angle (θ12). Interestingly for both the orderings the range of

Im(τ) which fits the allowed data is found to be almost similar i.e. (0.3 to 6).

From the bottom two figures we can find that the reactor mixing angle (θ13) is
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Figure 3.1: Corelation between real and imaginary parts of τ with the mixing

angles for both the orderings.

confined to the region (0.8 to 1) of Im(τ). Consequently we can find a common

space of Re(τ) and Im(τ) for the three mixing angles: −0.9 ≤ Re(τ) ≤ 0.9 and

0.7 ≤ Im(τ) ≤ 1.0.

3.5.2 Corelation between sin2θ12 and Yukawa modular forms

In the Fig. (3.2) we show the corelation between the Yukawa modular forms

(Y1, Y2, Y3) and solar mixing angle (θ12). The two figures on the left are the

contour plots for (Y1, Y2) with the mixing angle θ12, the middle images are for

(Y1, Y3) and the figures on the right are for (Y2, Y3). From these figures the ranges

of the Yukawa modular forms can be found as: 0.9 ≤ |Y1| ≤ 1.2, 0.1 ≤ |Y2| ≤ 2 ,

0.1 ≤ |Y3| ≤ 1.5 for normal ordering and 0.9 ≤ |Y1| ≤ 1.2, 0.1 ≤ |Y2| ≤ 1.8, 0.1 ≤

|Y3| ≤ 1.5 for inverted ordering.
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Figure 3.2: Contour plots of the Yukawa modular forms with the solar mixing

angle (θ12).

3.5.3 Corelation between sin2θ13/sin
2θ23 and Yukawa mod-

ular forms

Similarly in Fig. (3.3) and (3.4) we show the contour plots of the Yukawa modular

forms, reactor mixing angle (θ13) and atmospheric mixing angle (θ23). Accordingly

we can find the ranges of Y1, Y2, Y3 corresponding to the mixing angles from these

figures. For the reactor mixing angle these ranges are: 1.024 ≤ |Y1| ≤ 1.045, 0.6 ≤

|Y2| ≤ 0.9, 0.2 ≤ |Y3| ≤ 0.4 for both normal and inverted ordering, whereas for the

atmospheric mixing angle these ranges are found to be : 0.94 ≤ |Y1| ≤ 1.02, 0.5 ≤

|Y2| ≤ 1.2, 0.2 ≤ |Y3| ≤ 0.9 for normal ordering and 0.94 ≤ |Y1| ≤ 1.02, 0.5 ≤ |Y2| ≤

1.1, 0.2 ≤ |Y3| ≤ 0.7 for inverted ordering. These values of the modular forms have

been summarised in the Table (3.2). It is clear that the region of intersection for

both the orderings lie around 0.9 to 1.2.

3.5.4 Contribution of η to BAU

In Fig. (3.5) we show the relation between the VEV of η and BAU. For normal

ordering it can be seen that the Planck value of BAU does not have any corre-

spondence to the mass of the scalar η. In other words, we can say that it does
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Normal Ordering Inverted Ordering

|Y1| 0.9-1.2 0.9-1.2

|Y2| 0.5-1.8 0.1-1.8

|Y3| 0.1-1.5 0.1-0.9

Table 3.2: This table shows the range of the modular forms corresponding to the

mixing angles for both normal and inverted hierarchy.

Figure 3.3: Contour plots of the Yukawa modular forms with the reactor mixing

angle (θ13).

not contribute to the study of leptogenesis. But for the case of inverted ordering,

there are sufficient values of BAU within the Planck limit that corresponds to the

mass of the scalar. This implies that for inverted ordering the scalar has some

contribution to leptogenesis.

3.5.5 Corelation between BAU and lightest RHN M1

In Fig. (3.6) we show the relation between BAU and lightest right-handed neu-

trino mass, M1. We performed the calculations for both the hierarchies. From

these graphs it is clear that for both the type of hierarchies there are sufficient
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Figure 3.4: Contour plots of the Yukawa modular forms with the atmospheric

mixing angle (θ23).

Figure 3.5: Variation between <η> and Baryon asymmetry of the universe.

values of BAU which satisfy the Planck limit. This value of BAU for normal

ordering is mainly concentrated in between (100-1000) GeV of M1. Beyond this

mass range the values of asymmetry is very less. But for inverted ordering this

mass range is found to lie in between (100-5000) GeV. From this discussion it is

clear that the values of baryon asymmetry of the universe can be obtained for

both the hierarchies from this model.
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Figure 3.6: The figures above show the corelation between BAU and M1 for

both the hierarchies. In these figures, the horizontal lines represent

the Planck value of BAU.

3.5.6 Relation of relic density of DM and < σv > with M1

Now in Fig. (3.7) and (3.8) we show the variation of dark matter relic density

and thermally averaged annihilation cross-section with respect to lightest heavy

neutrino M1. It can be seen that for M1 in between (100-450) GeV, the values

of relic density is more prominent for both the hierarchies. However, in case of

inverted hierarchy, there are certain areas of mass that produce the observed relic

density. As for the thermally averaged cross-section, we see that for almost the

entire mass range of M1, the values of the scattering cross section is consistent

with the indirect detection limits [185].

Figure 3.7: The above figure shows the variation between DM relic density and

lightest right-handed neutrino M1. The horizontal line represents the

current dark matter abundance in the universe.
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3.5. Numerical Analysis and Results

Figure 3.8: The above figure shows the corelation between cross-section <σv>

and M1.

Figure 3.9: The figures above illustrate the corelation between
∑
mν and meff .

The vertical and horizontal lines represent their upper bounds.

3.5.7 Variation between meff and
∑

mν

We have also studied the effect of NDBD in this work. For this we have eval-

uated the Majorana effective mass (meff ) of electron neutrino. In Fig. (3.9) we

have shown the relation between sum of neutrino mass (
∑
mν) and effecive mass

(meff ) in our work. The recent cosmological findings provide the upper bound of∑
mν ≤ 0.12 eV, whereas the allowed range for the effective neutrino mass for

NDBD as given by KamLAND-ZEN is found to be ≤ 0.165 eV. The horizontal

line in the figure represents the upper bound of effective electron neutrino mass,

whereas the vertical line represents the upper bound for sum of neutrino mass.

It is quite evident from both the graphs that the model is able to generate suffi-

cient parameter space within the allowed range for both the normal and inverted

orderings.
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3.6 Conclusion
In this chapter of the thesis we have presented our work on baryon asymmetry of

the universe and dark matter. Accordingly we have extended the minimal inverse

seesaw by adding an extra Higgs-type scalar triplet (η) to its particle content.

We have used A4 modular symmetry and Z3 symmetry group in our work. On

studying BAU in this model, we have obtained a satisfying parameter space cor-

responding to M1 which abide by the Planck limit for both NO/IO. Again, we

have extended our investigation to dark matter sector as well by calculating the

relic abundance and annihilation cross section of the DM candidate. From plots

in Fig. 3.7 and 3.8, we have obtained a certain region for M1 mass which gener-

ates the observed relic abundance. Also, we have sufficient points which showcase

very small scattering cross section. Thus, from the study of various phenomena

that we have carried out in this work, we can have a conclusive idea that this

model is a viable one.
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