
Chapter 4

Texture Zeros using Discrete Flavor

Symmetry in ISS(2,3)

In this work we have realized texture zero structures of neutrino mass matrix

through our study of neutrino phenomenology and dark matter. For analysing

these processes, we have constructed a model in minimal inverse seesaw, ISS(2,3)

by using non-abelian A4 discrete symmetry group. The particles of ISS(2.3) has

been augmented by a scalar triplet η = (η1, η2, η3), along with the flavons ϕ, χ, χ′, ζ

and ζ ′. The probable dark matter candidates in this model are the neutral com-

ponents of η. The three mass matices of ISS(2,3), MD, MNS and MS contribute

to the structure of light neutrino mass matrix mν . Here we try to examine the

impact on texture structures of mν due to different possible 2-0 structures of MD.

To examine further possible contraints, we have evaluated the neutrino parame-

ters and calculated relic density of dark matter for the favourable cases. From

our analysis we find that out of the fifteen possible 2-0 structures, only two of

them (MD3 and MD6) successfully generates all the mixing angles in the allowed

ranges.

4.1 Introduction
Over the past few decades, particle physics has achieved significant advancements,

especially in the field of neutrino physics. The landmark discovery of neutrino

oscillation revealed critical insights about the nature of neutrinos and their prop-
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erties. It showed that neutrinos should be massive in nature which challenged the

idea of it being massless in the Standard Model. It also highlighted the fact that

a possible change of one flavor of neutrinos into another during its propagation

through space demands the existence of mixing angles. These new developments

emphasized the role of neutrinos in different cosmological and astrophysical pro-

cesses. Moreover, these findings are one of the many reasons which compelled

physicists to opt for beyond Standard Model frameworks.

Although many of the neutrino parameters, including the mixing angles and mass-

squared differences, have been precisely measured in experiments, there are some

aspects that remain unanswered till date [59]. Prominent among them are about

the dynamics and source of neutrino mass and flavor structures of the family of

fermions. In this regard, symmetry plays a very crucial role in defining the dy-

namics of the leptons. It becomes very necessary to understand the underlying

symmetry that can explain the generation of tiny neutrino mass and their mix-

ing angles. In the absence of flavor symmetry, the BSM frameworks produces a

general structure of light neutrino mass matrix with many free parameters. As a

result, it becomes important to have a specific process that can connect two or

more of them and reduce the number of free parameters, thereby increasing the

predictive power of the models. One of the possible remedy is to impose texture

zeros in the mass matrix by using flavor symmetry [186, 187, 188, 189]. For a

symmetric mass matrix mν , there are six independent entries. If we consider n

of them to be zero then there are 6Cn different texture structures for mν . This

approach of applying texture zeros has been a feasible mechanism in studying

fermion masses and mixings. Moreove, texture zeros for n > 2 are found to be

inconsistent with the experimental data. As a result, one-zero and two-zero tex-

ture conditions are more popular in literatures. A detailed study on texture zero

can be found in the literatures [190, 191, 192, 193, 194, 195, 196].

In this chapter we present the effect of texture zeros in our model that we have

constructed by using A4 flavor symmetry in minimal inverse seesaw. We have

extended ISS(2,3) with five flavons and a Higgs-type scalar field η. Here we have

tried to produce the texture zero conditions of mν by imposing 2-0 conditions on

Dirac mass matrix (MD) of the neutral sector. Also we have fixed the structures
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of MNS and MS by taking specific VEV alignments of the flavons ζ and ζ ′.

Finally we have evaluated the neutrino mixing angles and studied the effect of

dark matter in this model. For analysing the relic density of dark matter we

have used the same methodology as discussed in the previous chapter.

This chapter is organised in the following manner: in section (4.2) we have dis-

cussed the model of this chapter in detail. Section (4.3) contains the fifteen

possible 2-0 conditions of MD. Here we have also shown the six cases of MD

which successfully produces 1-0 textures of neutrino mass matrix. In section (4.4)

we have discussed the results of this work. Finally we conclude this chapter by

giving an overview in section (4.5).

4.2 The Model
In this work we have extended the mechanism of minimal inverse seesaw, ISS(2.3),

with a Higgs-type scalar triplet η = (η1, η2, η3). This new addition plays a vital

role in our study of neutrino phenomenology and aids in testing possible con-

straints from dark matter. Apart from this, we have used a few flavons which

form important interactions with other fields of the model. These flavon fields are

ϕ, χ, χ′, ζ and ζ ′. In order to describe the relevant interactions among differ-

ent particles we have considered the non-abelian discrete symmetry group A4. For

this purpose the particles of the model have specific assignments of the irreducible

representation of the group. Accordingly, the lepton doublets (L), sterile fermions

(Si), scalar field η and the flavons (χ, χ′, ζ, ζ ′) are considered to be triplets

under the group A4. The right-handed neutrinos (N1, N2) transform as 1′ and

1′′; whereas the Higgs field H transforms as trivial singlet (1) under this group.

Along with A4 we have also used the abelian symmetry group Z3 in this work.

The assignment of charges to particles have been highlighted in Table (4.1).

One of the aim of this work is to study the effect of dark matter in our setup. For

this case the neutral components of η are the probable dark matter candidates.

We know that the discrete symmetry group Z2 plays a crucial role in stabilizing

the dark matter candidate. Under Z2 group, all the Standard Model particles are
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Fields L N1 N2 Si H ϕ η χ χ′ ζ ζ ′

A4 3 1′ 1′′ 3 1 1 3 3 3 3 3

Z3 ω2 ω ω 1 ω ω ω2 ω ω ω2 ω2

Table 4.1: Charge assignments of the particles under the various groups consid-

ered in the model.

considered even and rest of the extra additional particles are taken to be odd.

After electroweak symmetry breaking, only one component of η acquires VEV and

the other two components do not acquire any such value [172, 171]. At this state

the η fields can be expressed as:

η1 =

 η+1
vη+h1+iA1√

2

 , η2 =

 η+2
h2+iA2√

2

 , η3 =

 η+3
h3+iA3√

2

 (4.1)

From eq. (4.1) we see that only one of the η’s acquire VEV i.e. <η> = vη(1, 0, 0).

Now the Lagrangian for charged lepton sector can be written as:

LL = a1E
c
1Hd(Lϕ)1 + a2E

c
2Hd(Lϕ)1′ + a3E

c
3Hd(Lϕ)1′′ (4.2)

For obtaining a diagonal charged lepton mass matrix, VEV of ϕ is considered as

ϕ = (u, 0, 0). So the mass matrix takes: ML = diag(a1, a2, a3)uv. Moreover the

parameters a1, a2, a3 can be adjusted as per the need of the model. Finally the

Yukawa Lagrangian for the neutrinos can be written as:

L =
y1
Λ
N1(Lχ)3η +

y2
Λ
N2(Lχ

′)3η + γ1N1(Sζ)1′′ + γ2N2(Sζ
′)1′ + p(SS)1 (4.3)

In eq.(4.3) y1, y2, γ1, γ2 are the coupling constants. Λ which is present in the

above equation is the cut-off scale. The first two terms in the equation represents

the Dirac mass term MD. Third and the fourth terms are for mixing between

right-handed neutrinos and sterile fermions MNS . The final part denotes the mass

term for sterile fermions (MS). Following the A4 multiplication rules, along with

the VEV of < χ >= (χ1, χ2, χ3) and < χ′ >= (χ′
1, χ

′
2, χ

′
3), matrix for the Dirac

mass can be written as:

MD =
vη
Λ


−χ3y1 −χ′

2y2

2χ2y1 −χ′
1y2

−χ1y1 2χ′
3y2

 =


a b

2c d

e 2f

 (4.4)
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where a = −vη
Λ χ3y1, b = −vη

Λ χ
′
2y2, c =

vη
Λ χ2y1, d = −vη

Λ χ
′
1y2, e = −vη

Λ χ1y1 and

f =
vη
Λ χ

′
3y2.

In a similar way, VEV alignment of the flavons ζ and ζ ′ are considered to be

< ζ >= vζ(1, 0, 1) and < ζ ′ >= vζ′(1, 0, 0). With the help of these alignments, we

can express the matrices MNS and MS in the following way:

MNS =

γ1vζ 0 γ1vζ

0 γ2vζ′ 0

 =

g 0 g

0 h 0

 , MS = p


1 0 0

0 0 1

0 1 0

 (4.5)

In the above eq. (4.5) , g = γ1vζ and h = γ2vζ′ . Now using these three matrices,

we can construct the 8× 8 neutrino mass matrix. For ISS(2,3) this matrix takes

the following form:

M =


0 MT

D 0

MD 0 MNS

0 MT
NS MS


8×8

(4.6)

This 8 × 8 matrix can be diagonalised with the help of a unitary matrix. The

eight eigenvalues obtained after diagonalisation will correspond to the mass of the

eight particles that are involved in the matrix. From eq. (4.5) it can be seen that

MNS is a rectangular matrix. As a result, inverse of this matrix is not possible.

Due to this issue, the expression for light neutrino mass matrix slightly changes

to that in eq. (4.3). So in minimal inverse seesaw this expression is written as:

mν =MD.d.M
T
D (4.7)

In the above equation, d is a 2× 2 matrix which can be derived from the 5× 5

heavy neutrino mass matrix MH . The form of d can be obtained in the following

way:

M−1
H =

 0 MNS

MT
NS MS

−1

=

d2×2 .....

...... .....

 (4.8)

The matrix mν is symmetric in nature. Thus the elements of mν in terms of
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model parameters can be written as:

m11 = −2abp

gh
+
b2p

h2

m12 = −bcp
gh

+
bdp

h2
− adp

gh

m13 = −bep
gh

+
bfp

h2
− afp

gh

m22 = −2cdp

gh
+
d2p

h2

m23 = −dep
gh

+
dfp

h2
− cfp

gh

m33 = −2efp

gh
+
f2p

h2

(4.9)

In this way, by using A4 symmetry group, we have constructed a model in the

mechanism of ISS(2,3). The eigenvalues of eq. (4.7) are the masses of three

light neutrinos. Once this is done, it will be helpful to study other related phe-

nomenologies.

4.3 Texture Zero Structures of the Matrices
Texture zeros is an effective method that helps to reduce the number of free pa-

rameters associated with the light neutrino mass matrix. These texture structures

are classified as one-zero, two-zero, three-zero etc [197, 198]. This classification

is based on the number of elements of the mass matrix that are considered to

be zero. However, as stated earlier, only one-zero and two-zero textures are able

to produce the neutrino parameters; the other texture structures are discarded

as they are not compatible with the current experimental data [187, 199]. In

this work we try to find out the impact on these texture structures by applying

two-zero textures to Dirac mass matrix MD i.e. two elements of MD are simulta-

neously taken to be zero. We find that there are fifteen such possibilites of MD.

These are presented in the table (4.2).

It is interesting to note that out of all the fifteen possibilities, only six of them

are able to produce one-zero textures of neutrino mass matrix. These structures

are MD3, MD5, MD6, MD8, MD12 and MD13. They successfully produce diagonal

one-zero textures of the mass matrix. Below we divide them into six different

cases and try to explain the texture origin of neutrino mass matrix for our work.
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Possible two zero textures of Dirac mass matrix MD

MD1 =


0 0

c d

e f

 MD2 =


0 b

0 d

e f

 MD3 =


0 b

c 0

e f



MD4 =


0 b

c d

0 f

 MD5 =


0 b

c d

e 0

 MD6 =


a 0

0 d

e f



MD7 =


a 0

c 0

e f

 MD8 =


a 0

c d

0 f

 MD9 =


a 0

c d

e 0



MD10 =


a b

0 0

e f

 MD11 =


a b

0 d

0 f

 MD12 =


a b

0 d

e 0



MD13 =


a b

c 0

0 f

 MD14 =


a b

c 0

e 0

 MD15 =


a b

c d

0 0


Table 4.2: The possible two zero textures of Dirac mass matrix MD.

Case 1:

For the Dirac mass matrix of the form MD3, the VEV of the flavons after sym-

metry breaking must be in the order:

< χ >= vχ(1, 1, 0) < χ′ >= vχ′(0, 1, 1)

This particular VEV alignment gives 1-0 texture at (2,2) position,


X X X

X 0 X

X X X


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Case 2:

For the matrix of the form MD5, the required VEV alignments of the flavons are:

< χ >= vχ(1, 1, 0) < χ′ >= vχ′(1, 1, 0)

This VEV arrangement of the flavons produces 1-0 textures at (3,3) position,
X X X

X X X

X X 0



Case 3:

For the Dirac mass matrix of the form MD6, the VEV of the flavons after sym-

metry breaking must be in the order:

< χ >= vχ(1, 0, 1) < χ′ >= vχ′(1, 0, 1)

This particular VEV alignment gives 1-0 texture at (1,1) position,
0 X X

X X X

X X X



Case 4:

For the matrix of the form MD8, the required VEV alignments of the flavons are:

< χ >= vχ(0, 1, 1) < χ′ >= vχ′(1, 0, 1)

This VEV arrangement of the flavons produces 1-0 textures at (1,1) position,
0 X X

X X X

X X X



Case 5:

For the Dirac mass matrix of the form MD12, the VEV of the flavons after

symmetry breaking must be in the order:

< χ >= vχ(1, 0, 1) < χ′ >= vχ′(1, 1, 0)
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This particular VEV alignment gives 1-0 texture at (3,3) position,
X X X

X X X

X X 0


Case 6:

For the Dirac mass matrix of the form MD13, the VEV of the flavons after

symmetry breaking must be in the order:

< χ >= vχ(0, 1, 1) < χ′ >= vχ′(0, 1, 1)

This particular VEV alignment gives 1-0 texture at (2,2) position,
X X X

X 0 X

X X X


We perform our study on these six different cases. We try to find further con-

straints on these matrices based on our study of neutrino parameters, mixing

angles and masses. This work is also extended to probe the effect of dark matter

in this system.

4.4 Results and Discussions
In this section we present the results of our work. For numerical evaluation of

different quantities of the model, we have used the latest 3σ nu-fit values of

neutrino oscillation parameters [158]. These values are highlighted in table (4.3).

In our model the charged lepton mass matrix is diagonal. Therefore the mixing

matrix in this case is the unitary PMNS matrix, UPMNS . Using this unitary mix-

ing matrix, we diagonalise the light neutrino mass matrix of the model via the

standard relation mν = UTdiag(m1,m2,m3)U , where m1,m2,m3 are the masses of

the active neutrinos. These masses have different forms for normal and inverted

hierarchies. For normal hierarchy these are expressed as: diag(0,
√
m2

1 +∆m2
solar,√

m2
1 +∆m2

atm) and it becomes diag(
√
m2

3 +∆m2
atm,

√
∆m2

atm +∆m2
solar, 0) for in-

verted hierarchy [184]. Through this process we can calculate the masses of
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Oscillation parameters Normal Ordering Inverted Ordering

sin2θ12 [0.269,0.343] [0.269,0.343]

sin2θ23 [0.407,0.618] [0.411,0.621]

sin2θ13 [0.02034,0.02430] [0.020530,0.02436]

∆m2
21/10

−5eV2 [6.28,8.04] [6.82,8.04]

∆m2
31/10

−3eV2 [2.431,2.598] [2.412,2.583]

Table 4.3: The latest 3σ nu-fit values of oscillation parameters.

neutrinos, their mixing angles and other parameters of the model. Additional

constraints for these quantities come from solar and atmospheric mass squared

differences. Once these values are obtained, they are then used to study the cos-

mological event of dark matter from the model. Furthermore, we have considered

the values of p in the range (10-20) KeV and VEV of η is taken to be (1-10)

GeV. The mixing angles can be calculated from the elements of mixing matrix.

Thus, they can be expressed as:

sin2θ13 = |Ue3|2, sin2θ23 =
|Uµ3|2

1− |Ue3|2
, sin2θ12 =

|Ue2|2

1− |Ue3|2
, (4.10)

As mentioned earlier, only six of the two-zero structures of Dirac mass matrix

are able to produce 1-0 texture conditions of light neutrino matrix. We have

performed our study in these six cases and have used the expressions in eq.

(4.10) to find out the values of mixing angles for all these possible cases in both

normal and inverted hierarcy. Also the parameters g and h are considered in the

ranges [105, 106] GeV and [103, 104] GeV. Interestingly we found that only two

of the 1-0 textures corresponding to MD3 and MD6 structures of Dirac matrix

successfully produce all the three mixing angles in the allowed range for normal

hierarchy. The other cases fail to produce one or two of these angles. Of the

three mixing angles, two of them are possible in these cases, while the third is

not possible and vice versa. This is true for both normal and inverted hierarchy.

Because of this reason, we focus our study on normal hierarchy of the two cases

that can generate all the mixing angles. In Table (4.4) we have highlighted the

possibilities of obtaining the mixing angles in different 2-0 textures of Dirac mass

matrix. In the following paragraphs we have presented the plots that describe the
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Dirac Mass 1-0 Texture
Normal Hi-

erarchy

Inverted

Hierarchy

θ12 θ13 θ23 θ12 θ13 θ23

MD3 =


0 b

c 0

e f



X X X

X 0 X

X X X

 ✔ ✔ ✔ ✔ ✘ ✔

MD5 =


0 b

c d

e 0



X X X

X X X

X X 0

 ✘ ✘ ✔ ✘ ✘ ✔

MD6 =


a 0

0 d

e f




0 X X

X X X

X X X

 ✔ ✔ ✔ ✘ ✘ ✘

MD8 =


a 0

c d

0 f




0 X X

X X X

X X X

 ✘ ✘ ✔ ✘ ✘ ✔

MD12 =


a b

0 d

e 0



X X X

X X X

X X 0

 ✘ ✔ ✘ ✘ ✘ ✘

MD13 =


a b

c 0

0 f



X X X

X 0 X

X X X

 ✔ ✘ ✔ ✔ ✘ ✔

Table 4.4: The table above shows the possibility of occurence of mixing angles

for the six 2-0 textures of MD.

variations among different parameters of the model.

4.4.1 Possible Values of Model Parameters

In Fig. (4.1) we have shown the variation of model parameters with respect to

sum of neutrino mass (
∑
mν). From cosmological observations it is found that

the upper limit for
∑
mν is ≤ 0.12 eV. From the figures we see that there are
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sufficient amounts of these parameters within the allowed range. For b this range

is found to be aroung (0.02-1) eV. The lower limit of the parameters c and e are

almost same, around 5 eV. But the upper limit for c is about 500 eV, whereas for

e it is around 900 eV. Also the range for f is found to be (0.1-10) eV. Similarly

the figures in (4.2) show the relation between model parameters and
∑
mν for

Case 3 (MD6) of Dirac mass matrix. We find that b lies in the range (0.05-1) eV.

For this case, the parameters c and e lie in the same range (5-500) eV. Finally

the values of d are restricted in the region (0.2-10) eV. The common region of

space for these parameters have been highlighted in Table (4.5).

Model Parameters Common Region (NH)

b (0.05 - 1) eV

c (5 - 500) eV

d (0.2 - 10) eV

e (5 - 500) eV

f (0.1 - 10) eV

Table 4.5: This table shows the favourable space of the model parameters.

4.4.2 Analysis of DM for MD3 and MD6

The plots in Fig. (4.3) and (4.4) shows the relation between relic density of dark

matter (Ωh2) with respect to sum of neutrino mass and lightest right-handed

neutrino M1 for both the 2-0 textures of Dirac mass matrix. From the figures

it is clear that there are reasonable amounts of these quantities in the allowed

range. In other words, the model is able to generate the relic density of dark

matter for both the cases of MD3 and MD6. Also for the right-handed neutrino,

the relic density is producible for a range of about (1000-5000) GeV of its mass.

4.5 Conclusions
Here we have realized the texture zero structures of neutrino mass matrix by

implementing 2-0 conditions in Dirac mass matrix. For this purpose we have

constructed a model in the framework of minimal inverse seesaw using the non-
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Figure 4.1: Corelation between the model parameters and
∑
mν for Case 1 i.e.

MD3.

Figure 4.2: Corelation between the model parameters and
∑
mν for Case 3 i.e.

MD6.
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Figure 4.3: Corelation between relic density (Ωh2) and sum of neutrino mass

(
∑
mν). The left (right) figure is for MD3 (MD6).

Figure 4.4: Corelation between relic density (Ωh2) and right-handed neutrino M1.

The left (right) figure is for MD3 (MD6).

abelian discrete symmetry group A4. There are five flavons present in this model

χ, χ′, ζ, ζ ′, ϕ. We find that out of the fifteen possible 2-0 structures of MD, only

six of them are able to generate diagonal 1-0 texture structures of light neutrino

mass matrix. Accordingly we evaluated the model parameters for these cases. Fur-

thermore we calculated the three mixing angles and masses to obtain any possible

constraints on them. Interestingly we find that only two of the structures of MD

i.e. MD3 and MD6 favourably produce all the mixing angles in the allowed ranges

for normal hierarchy. The other cases could generate two of the angles, but failed

to produce the third angle and vice versa. As a result, we concentrated our study

of dark matter in these two cases and found that they generated relic density in

the desired range. So we can say that these results validate the compatibility of

this model and it can be used to explore other phenomenological studies.
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