Computational approaches to understand the interactions of small bioactive compounds and cell surface receptors with the SARS-CoV-2 viral proteins by Chainee Das **Submission date:** 03-Apr-2025 11:51AM (UTC+0530) **Submission ID:** 2627766033 File name: nd_cell_surface_receptors_with_the_SARS-CoV-2_viral_proteins.pdf (2M) Word count: 62082 Character count: 337610 Computational approaches to understand the interactions of small bioactive compounds and cell surface receptors with the SARS-CoV-2 viral proteins | SAR | S-CoV-2 vi | ral proteins | | ' | | |-------------|---|--|--|-----------------------------|--------| | ORIGINA | ALITY REPORT | | | | | | 7
SIMILA | %
ARITY INDEX | 0% INTERNET SOURCES | 7 % PUBLICATIONS | 2%
STUDENT F | PAPERS | | PRIMAR | Y SOURCES | | | | | | 1 | Submitt
(JNU)
Student Pape | ed to Jawaharla | l Nehru Unive | ersity | <1% | | 2 | Dongyou Liu. "Molecular Detection of Human Viral Pathogens", CRC Press, 2019 Publication | | | | <1% | | 3 | Cheng Peng, Zhengdan Zhu, Yulong Shi, Xiaoyu Wang, Kaijie Mu, Yanqing Yang, Xinben Zhang, Zhijian Xu, weiliang zhu. "Computational study of the strong binding mechanism of SARS-CoV-2 spike and ACE2", American Chemical Society (ACS), 2020 Publication | | | | <1% | | 4 | Nazmul Islam, Savaş Kaya. "Conceptual
Density Functional Theory and Its Application
in the Chemical Domain", CRC Press, 2018
Publication | | | | <1% | | 5 | Kumar,
dynamic
reveal N | Ahmad, Piyush
Ravi Kant Patha
s simulation an
F-κB as a promi
or COVID-19", Re | k et al. "Mole
d docking stu
ising therape | cular
udies
utic drug | <1% | Publication Platform LLC, 2021