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Materials and Methods 

3.1. Tools and Techniques: 

 
To study the structural dynamics as well as interaction profile of S protein with its primary 

receptor ACE2 and other alternative or co-receptor, as well as Mpro bound to the small 

molecule inhibitors, we used MD simulation. The principle and theory of MD simulation                  

is discussed below. 

3.1.1. Molecular dynamics (MD) simulation: 
 

Molecular dynamics (MD) simulations play a crucial role in understanding the 

fundamental physics governing the structure and function of biological macromolecules. 

These simulations have been extensively employed to explore the structure and dynamics 

of macromolecules, such as proteins and nucleic acids. By bridging the gap between 

theoretical models and experimental observations, MD simulations replicate experiments, 

reveal unseen microscopic details, and provide deeper insights into experimental findings. 

In an MD simulation, the classical equations of motion are numerically solved in a 

stepwise manner, enabling a comprehensive analysis of molecular interactions. This 

approach is widely used to investigate the time-dependent behavior of a system composed 

of particles, typically atoms or molecules with known properties. MD simulations have a 

broad range of applications, including modeling molecular interactions between 

therapeutic drugs and biomolecules, simulating the microscopic mechanism of water 

droplet freezing, calculating the thermodynamic and rheological properties of various 

hydrocarbon mixtures and simulating the effects of a particular combination of organic 

molecules on properties that affect solar cell efficiency. Quantum MD simulations, 

representing a significant advancement over classical methods, provide valuable insights 

into various biological challenges [1].  

3.1.1.1. History of Simulation: 
 

The MD simulation method was first introduced in the late 1950s by Alder and 

Wainwright to investigate the interactions of hard spheres [2,3]. Their work led to several 

significant discoveries regarding the behavior of simple liquids. A major breakthrough in 

MD simulations occurred in 1964 when Rahman conducted the first simulation using a 

realistic potential for liquid argon [4]. Further progress was made in 1974 when Rahman 

and Stillinger performed the first MD simulation of a realistic system, specifically liquid 
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water [5]. In 1977, the first protein simulations were documented, including the simulation 

of the bovine pancreatic trypsin inhibitor (BPTI) [6]. Today, MD simulations are widely 

used to study solvated proteins, lipid systems, and protein-DNA complexes, addressing 

challenges such as ligand binding thermodynamics and the folding of small proteins. The 

field has expanded significantly with the introduction of combined quantum mechanical-

classical simulations, which are essential for gaining insights into enzymatic processes 

within the context of entire proteins. Additionally, MD simulation techniques are 

extensively utilized in various experimental methods, including X-ray crystallography and 

NMR structure determination. 

3.1.1.2. Theory of molecular dynamics simulation: 

 
The MD simulation method is based on the equation of motion. Newton's second law of 

motion, expressed as F=ma, where ‘m’ represents the mass of a particle, ‘a’ denotes its 

acceleration, and ‘F’ is the applied force, serves as the basis for this method. However, if 

the force acting on each atom in the system is known, then one should be able to calculate 

the acceleration for each atom. Newton’s equations of motion enable the prediction of an 

atom’s spatial position over time. Although MD modeling techniques may require 

significant computational time and resources, continuous advancements in technology are 

reducing both costs and processing times. In protein-solvent simulations, temporal 

calculations now extend to the millisecond scale. The equation of motion based on 

Newton’s law can be stated as: -  

Fi = miai……………………………………. (3.1) 

F = ma……..……………………………… (3.2) 

F = −
ⅆ

ⅆ𝑟
μ…………..……………………… (3.3) 

 

In this equation, Fi defines the force exerted on particle i, mi as the mass of particle i, ai as 

the acceleration of particle i and μ is a scalar potential function. The Newton’s force, Fi 

can also be expressed as the potential energy gradient as:   

 

                      Fi = −∇iV……………………………..…… (3.4) 
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By combining the two equations given,  

−∇iV = 𝑚𝑖

ⅆ𝑟𝑖
2

ⅆ𝑡2
(1 + 𝑥)𝑛 = 1 +

𝑛𝑥

1!
+

𝑛(𝑛−1)𝑥2

2!
+ ⋯…………………. (3.5) 

Where, ri is the position vector of particle i and 
ⅆ𝑟𝑖

2

ⅆ𝑡2
  is the second derivative of position 

with respect to time, which represents the acceleration of the particle. The system's 

potential energy, or V, is defined here. There is a connection between Newton's equation 

of motion and the potential energy derivative that is utilized to explain position changes 

in time. The main objective of the numerical integration for Newton's equation of motion 

is to find a formula that may define position ri (t+∆t) at time t+∆t in relation to the locations 

that are known at time t. However, the Velocity Verlet technique employs the positions 

and accelerations at time t as well as the positions from time t-∆𝑡 to get the new locations 

at time t+∆𝑡. The velocities in this procedure are not produced directly. Although their 

knowledge is not required for evolution, it is required to calculate the kinetic energy K. 

Throughout the route, the entire energy E=K+U should be preserved. The position of atom 

in every Δt time step:  

               ri(t+Δt) =ri(t)+vi(t)Δt + 
1

2
ai(t)Δt2 …………………... (3.6) 

The velocity is used as a half time step: -  

                   ri(t + Δt) = ri (t −
Δt

2
) + ri(t)

Δt

2
………………………. (3.7)  

The velocities can be computed from the Δt time step: - 

                      ri(t) =
ri(t+

Δt

2
)

2
+ri(t−

Δt

2
)

2

2
…………………………..…. (3.8)  

It is significant that when kinetic energy is required at time t, then the velocity rescaling 

is required. Also, the required atomic positions are obtained from:  

                      ri(t + Δt) = ri(t) + ri(t + Δt)
Δt

2
………….…………. (3.9) 

 Where, ri(t) is Position at time t, ri (t+Δt) is the position at time t+Δt, vi(t) is velocity at 

time t and ai(t) is the acceleration at time t.  

Force fields are utilized to describe the variations in bond lengths, bond angles, torsional 

movements, and non-bonding interactions, such as van der Waals and electrostatic 

forces, between atoms over time. Designed to mimic molecular geometry and capture 

specific characteristics of the studied structures, a force field consists of a collection of 

linked constants and equations. 
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3.1.1.3. Force Fields:  
 

In mathematics, a force field (FF) represents an expression that defines how a system's 

energy varies based on the positions of its constituent particles. It comprises an analytical 

interatomic potential energy function, U (r1, r2... rN), along with a set of associated 

parameters. These parameters are generally derived from semi-empirical quantum 

mechanical methods, ab-initio calculations, or by fitting experimental data obtained 

through techniques such as X-ray, neutron, and electron diffraction, as well as infrared, 

NMR, Raman, and neutron spectroscopy. Within this framework, molecules are modeled 

as assemblies of atoms connected by simple elastic (harmonic) forces. Instead of using 

the true potential, the FF employs a simplified representation that remains valid within 

the simulation domain. Ideally, the system of interest should be complex enough to 

capture essential properties while remaining computationally efficient for rapid 

evaluation. Various force fields exist in the literature, each tailored to specific types of 

systems and differing in their level of complexity. A classical FF expression might look 

like this: 

𝑉(𝑟𝑁) = ∑
𝑘𝑖

2
(𝑙𝑖 − 𝑙𝑖,0)

2

𝑏𝑜𝑛ⅆ𝑠
+ ∑

𝑘𝑖

2
(𝜃𝑖 − 𝜃𝑖,0)

2

𝑎𝑛𝑔𝑙𝑒𝑠
+ ∑

𝑉𝑛

2
(1 + cos(𝑛𝜙 − 𝜙0))

𝑡𝑜𝑟𝑠𝑖𝑜𝑛𝑠
+

𝛴𝑖=1
𝑁  ∑ (4𝜀𝑖𝑗 [(

𝜎𝑖𝑗

𝑟𝑖𝑗
)

12

− (
𝜎𝑖𝑗

𝑟𝑖𝑗
)

6

] +
𝑞𝑖𝑞𝑗

4𝜋𝜀𝑜𝜀𝑟𝑟𝑖𝑗
)𝑁

𝑗=𝑖+1 …………………………… (3.10) 

Here, 

V (rN): potential energy as a function of the positions (r) of N atoms; 

ki → force constant, li → Bond length, li,0  → Equilibrium bond length. 

θi → Bond angle, θi,0 → Equilibrium bond angle. 

Vn → Barrier height, n → Periodicity of torsional rotation, ϕ → Torsion angle and                      

ϕ0 → Reference torsion angle. 

ϵij → Depth of the potential well (interaction strength), σij → Distance where the 

potential is zero, rij → Distance between particles i and j. 

qi, qj → Charges on particles i and j, ϵ0  → Permittivity of free space, ϵr → Relative 

permittivity (dielectric constant). 

 

The potential energy function is mainly composed of bond lengths, bond angles, 

torsional rotations, and non-bonded interactions, including van der Waals forces and 

electrostatic interactions. Figure 3.1 provides a graphical representation of the various 

interaction types. 
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  Figure 3.1. Schematic illustration of the main contribution to the 

potential energy function (Taken from [7]). 

 

The initial four terms in the equation represent the local or intramolecular contributions 

to the total energy, including bond stretching, angle bending, dihedral torsions, and 

improper torsions. The last two terms of the equation account for repulsive van der Waals 

interactions and Coulombic forces. 

3.1.1.4. Long range interactions: Ewald sum:                       

The Ewald Summation is a widely utilized technique for calculating electrostatic 

interactions in computer simulations of condensed-matter systems [8]. This method 

examines the errors introduced by truncating the infinite real-space and Fourier-space 

lattice sums in the formulation of the Ewald Sum. An optimal screening parameter of 7 is 

identified for the Fourier-space cutoff. Typically, it has been observed that the number of 

Fourier space vectors required to achieve a specific level of accuracy scales with 7/3. 

However, the proposed method offers a way to efficiently regulate computational 

parameters for Ewald sums, assess the accuracy of different Ewald-sum implementations, 

and compare various approaches. It remains one of the most frequently employed 

techniques for evaluating long-range interactions in MD simulations. 

The fundamental concept underlying the Ewald sum is to analyze a charge distribution for 

each site's opposite sign. This additional charge distribution helps reveal interactions 

between nearby atoms. However, the observed interactions are short-range and can be 

precisely controlled using a cutoff scheme. To compensate for the additional charge 
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distribution, the equal charge distribution with the opposite sign and short-range 

interaction is averaged in the reciprocal space. As the electrostatic potential due to the 

screened charge is a quickly decreasing function of r, it is straightforward to calculate the 

contribution of a group of screened charges to the electrostatic potential at a specific 

location ri using direct summation. The total potential energy for the long-range Coulomb 

interaction is given by the expression:  

                            𝜇𝑐 = 𝜇𝑞(𝛼) − 𝜇𝑠𝑒𝑙𝑓(𝛼) + 𝛥𝜇(𝛼)..…………….. (3.11)  

Where, μc → Corrected Chemical Potential, μq(α) → Uncorrected Chemical Potential 

of the Charged System and μself(α) → Self-Interaction Energy Correction.  

In the Equation 3.11, the greater the value of α, the sharper the distribution. However, a 

higher value narrows the screened potential range, allowing us to use a smaller cutoff 

radius. Additionally, the efficiency of the Ewald summation can be improved by 

incorporating the Fast Fourier Transform (FFT) in the reciprocal summation evaluation. 

Meanwhile, the Particle Mesh-based method applies a fixed cutoff for the direct space sum 

and utilizes an FFT-based approximation, which scales as N log(N) for the reciprocal 

space summation. 

3.1.1.5. Dealing with molecules: SHAKE algorithm: 

The selection of the time step in a molecular system is restricted by the varying time scales 

associated with vibrational degrees of freedom, including bond vibrations, angle 

stretching, and torsional motion. Bonds involving hydrogen exhibit faster vibrational 

modes, limiting the integration time step to approximately 1 femtosecond (fs). However, 

by constraining these rapid degrees of freedom, a longer time step can be employed while 

solving for the unconstrained degrees of freedom. Since hydrogen bonds have the highest 

vibrational frequency, they can be constrained during MD simulations using the SHAKE 

algorithm, which was developed by Ryckaert et al. [9]. The SHAKE algorithm begins by 

applying the equations of motion to an atomic system without any initial constraints. 

Additionally, it utilizes the Lagrange multiplier formalism to ensure that bond lengths 

remain constant throughout the simulation. Assuming Nc, the constraint is given by:  

                        𝛼𝑘 = 𝑟𝑘1𝑘2

2 − 𝑅𝑘1𝑘2

2 = 0      Where k = 1, 2, 3……. Nc ……… (3.12)  

The term 𝛼𝑘 is constraint function, 𝑅k1k2 is considered a constrained distance and rk1k2 is 

the squared instantaneous distance between  the k1 and k2 atoms.  
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The modified constrained equation of motion is defined as: 

                   𝑚𝑖
ⅆ2𝑟𝑖(𝑡)

ⅆ𝑡2 = −
𝜕

𝜕𝑟𝑖

[𝑉(𝑟1 … … 𝑟𝑁) + ∑ 𝜏𝑘(𝑡)𝛼𝑘(𝑟1 … … 𝑟𝑁)𝑁𝑐
𝑘=1 ]…..….. (3.13) 

 In this case, mi is referred to as the mass of the ith particle, V (r1…rN) is the Potential 

energy function, τk is the Lagrange multiplier (unknown) for the kth constraint and αk (r1

…...rN) is the constraint function. However, by resolving Nc quadratic linked equations, 

the unknown multiplier in this modified constrained equation of motion can be determined. 

Finally, the motion equation has been discovered as shown below:  

𝑟𝑘1(𝑡 + 𝛥𝑡) = 𝑟𝑘1
𝑢𝐶(𝑡 + 𝛥𝑡) − 2(𝛥𝑡)2𝑚𝑘1

−1𝜏𝑘(𝑡)𝑟𝑘1𝑘2(𝑡)…………. (3.14) 

 In the Equation 3.14, rk1 is corrected position of atom k1 and 𝑟𝑢𝑐 is the position updates 

with unconstrained force only. This method is however repetitive till the defined tolerance 

is specified.  

The SHAKE algorithm avoids explicit matrix inversion by iteratively adjusting particle 

coordinates until all constraints are met within a predefined tolerance. In addition to 

maintaining rigid bonds, constraint algorithms must also address constraint decay, which 

refers to deviations from ideal bond lengths caused by the accumulation of numerical 

errors. However, iterative algorithms inherently manage constraint decay by enforcing 

convergence within a specified tolerance at each time step. Regular corrections and 

verifications are performed to minimize deviations from the original bond distances. In 

contrast, non-iterative algorithms require an explicit mechanism to counteract constraint 

degradation, as they lack an inherent feedback system to detect and correct distance 

variations. 

3.1.1.6. Periodic Boundary conditions:  
 

To understand periodic boundary conditions, we consider a system comprising N 

interacting particles at a temperature T and confined within a volume V. To ensure that 

the system remains bounded by its own replicas, periodic boundary constraints, similar to 

those in the 2D Ising model, must be applied. As a result, it can be seen that given a system 

of particles, when a particle exits the central box from one side, it must re-enter from the 

opposite side. As illustrated in Figure 3.2, the atoms of the molecules are arranged within 

an imaginary box surrounded by translated copies of their coordinates. In this 

configuration, multiple replicas of particle 3, present within the central box, can  
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theoretically interact with particle 1 inside the same box. Furthermore, when considering 

interactions between particles 1 and 3, it is logical to select the interaction corresponding 

to the shortest interatomic distance. This method is referred to as the nearest image 

convention. The inner cell is known to be surrounded by a periodic 3-dimensional array. 

When an atom crosses a barrier and enters from the other side with the same velocity, it 

is substituted by an image atom. Consequently, the number of particles within the core box 

remains unchanged. However, to manage non-bonded interactions, a non-bonded cutoff is 

typically employed, ensuring that each atom interacts with only one image of every other 

atom within the system.  

 

Figure 3.2. Periodic boundary conditions in two dimensions. The simulation cell (dark 

color) is surrounded by translated copies of itself (light color) (Taken from [10]) 

3.1.1.7. Temperature and Pressure computation and control: 

 

The initial temperature of the system is determined by coupling it to a Berendsen thermal 

bath [11]. This bath functions as a thermal energy reservoir, supplying or removing heat 

as needed to regulate the system's temperature. The system temperature T(t) that deviates 

from the bath temperature T0 is corrected according to: 

 

ⅆ𝑇(𝑡)

ⅆ𝑡
=

1

𝜏
{𝑇0 − 𝑇(𝑡)}…………………… (3.15) 

where τ (time constant) determines the strength of the coupling between the bath and the 

system. The temperature of the system is corrected by scaling the atom velocities at each 

step by a factor χ, given by: 
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𝜒 = [1 +
𝛥𝑡

𝜏𝑇
[

𝑇0

𝑇(𝑡)
− 1]]…………………………. (3.16) 

The strength of the coupling can be varied by changing the time constant τ. 

The pressure regulation method operates similarly to temperature control. By coupling the 

system to a barostat, the pressure can be stabilized at a constant value through periodic 

adjustments of the simulation cell size and atomic positions using a scaling factor μ: 

𝜇 = 1 − 𝜔
𝛥𝑡

𝜏𝑝
(𝑃 − 𝑃𝑜)…………………………… (3.17) 

where ω represents the isothermal compressibility, τp represents the relaxation constant, 

P0 is the pressure of the barostat, P is the momentary pressure at time t and ∆t is the time 

of step.  

        In this study, the standard simulation package AMBER14 is utilized [12,13]. MD 

simulations are performed using Particle Mesh Ewald Molecular Dynamics (PMEMD), 

one of the AMBER modules. The different steps involved in setting up and executing an 

MD simulation are illustrated schematically, as shown in Figure 3.3.  

 

Figure 3.3. Schematic flowchart of steps involved in MD Simulation (Taken from [7]). 
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3.1.1.8. Water molecule models:  

 

Computer simulations of biomolecular systems play a crucial role in research, offering insights 

into the structure, dynamics, and energetics of biomolecules that are often beyond the reach of 

experimental techniques. However, various molecular models have been developed to describe 

water in MD simulations. These models are characterized by factors such as site count, 

polarization effects, and structural flexibility (rigid or flexible). The significance of water 

models lies in their ability to accurately predict the physical properties of liquid water based on 

a hypothetical computational representation. This is because such models replicate the unknown 

structural characteristics of liquid water. The trade-off in selecting a model involves balancing 

computational complexity, the system size that can be feasibly simulated within a reasonable 

time frame, and accuracy. Despite the continuous advancement in computational power, 

limitations imposed by system size, time constraints, and model complexity persist. Among the 

various water models, 3-site models are the most commonly used in MD simulations due to 

their simplicity, thermodynamic accuracy, computational efficiency, and logical structure. 

These models allow the three atoms of the water molecule to interact through three specific 

sites, each with a designated point charge. Out of all the atoms, oxygen is the only one with 

Lennard-Jones characteristics that allow for interaction. Lennard-Jones interactions play a vital 

role in defining molecular size; at very close distances, they exhibit repulsive behavior, 

preventing the structural collapse of the system due to electrostatic forces. It is extremely 

attractive yet non-directional at intermediate distances and competes with directionally 

attractive electrostatic interactions. Several well-known 3-site models include the simple point 

charge (SPC), extended simple point charge (SPC/E), and transferable intermolecular potential 

three-point (TIP3P) models [14]. Despite their differences, all these models maintain a geometry 

that aligns with the experimentally known structure of a water molecule. In this study, the TIP3P 

water model is employed. The O-H bond length (rOH) and H-O-H bond angle (θHOH) in the 

TIP3P model used here are found to be consistent with experimental gas-phase values, 

measuring 0.9572 Å and 104.52°, respectively. Figure 3.4 depicts the structure of a simple 

TIP3P water model.  
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Figure 3.4. Schematic representation of TIP3P water model (Taken from [7]) 

 

3.1.1.9. Molecular Dynamics steps:  
 

In order to execute the MD simulation for any given system, it involves the following 

four phases:  

1. Energy Minimization  

2. Heating 

3. Equilibration  

4. Production Dynamics 

 

1. Energy Minimization: To initiate molecular dynamics, it is essential to identify a stable point 

or minimum on the potential energy surface by utilizing the force field assigned to the atoms of 

the system. Although these minimized structures represent the fundamental configurations 

associated with fluctuations occurring during dynamics, they serve as a valuable starting point 

for structural analysis [15,16]. At a point of minimal potential energy, the net force acting on 

each atom is zero. During both minimization and dynamics, constraints can be applied. These 

constraints may be derived from experimental data, such as nuclear Overhauser effects (NOEs) 

obtained from NMR experiments, or they may be enforced using a template to guide a ligand 

toward adopting a structure that closely resembles a target molecule. Minimization requires a 

function provided by the force field, along with an initial set of coordinates or an estimated 

structure. The magnitude of the first derivative helps determine both the direction and magnitude 

of the step (i.e., coordinate adjustment) necessary to approach a minimized configuration. 

Additionally, convergence can be rigorously defined in terms of both its magnitude and the size 

of the first derivative. 

       The process of molecular structure energy minimization consists of two main steps. The 

(A) 
(B) 
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first step involves constructing and evaluating an equation that expresses the system's energy as 

a function of its atomic coordinates for a given conformation. Figure 3.5 illustrates the several 

stages that an energy-saving operation might go through.  

 

 

Figure 3.5. A schematic representation of the different phases of a molecule during 

minimization of its energy (Adapted from [17])  

 

Moreover, the energy minimization can be addressed using the following approach. It must 

be demonstrated that, given a function f and one or more independent variables (x1, x2...... 

xi), the values of each independent variable can be found by taking the minimum value of 

f. For any variable, the first derivative of the function at its lowest point is 0, while its 

second derivatives are positive:  

𝜕𝑓

𝜕𝑥𝑖
= 0 ; 

𝜕2𝑓

𝜕2𝑥𝑖
> 0 ………………. (3.18) 

The direction of the initial derivative of the energy determines the location of the 

minimum, while the magnitude of the gradient indicates the steepness of the local slope. 

By enabling each atom to move in response to the applied force, the system’s energy can 

be minimized when the force is equal to the negative gradient. Additionally, second 

derivatives provide insights into the curvature of the function, along with information that 

can help predict when the function will change direction, such as passing through a 

minimum or another stationary point. 

             In molecular modeling, the two most commonly employed techniques for first-

order minimization are the steepest descent and conjugate gradient methods. When the 

derivatives are near zero, minimum energy converges. Prior to initiating an MD 

simulation, it is crucial to perform energy minimization on the structure to eliminate 
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unfavorable interactions that could otherwise lead to structural distortions. The three 

primary minimization methods include Newton-Raphson, conjugate gradient, and steepest 

descent approaches. 

             (i)The Steepest Descents Method: This approach determines which path leads to 

the minimum by taking the first derivative, moving in a direction parallel to the net force. 

his direction is represented as a 3N-dimensional unit vector with 3N Cartesian coordinates. 

Once the direction of movement is established, the next step is to determine the distance 

to be travelled along the gradient. 

Figure 3.5 illustrates the two-dimensional energy surface [17]. Initially, the gradient 

follows a specific direction along a line. If we imagine slicing through the surface along 

this line, the function will first reach a minimum before increasing again, as depicted in 

Figures 3.6 and 3.7 [18,19]. 

 

Figure 3.6. Comparison of three optimization methods—(a) Steepest Descent, (b) Newton’s 

Method, and (c) Conjugate Gradient—on a quadratic function. The contour plots illustrate the 

convergence behaviour of each technique, showing different iterative steps towards the 

minimum (indicated by a star). (Adapted from [18]) 

 

 
Figure 3.7. A line search is used to locate the minimum in the function in the direction 

of the gradient (Taken from [19])  
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                 (ii) Minimization of Conjugate Gradients: In energy minimization, the 

conjugate gradient method produces a series of directions that avoid both the steepest 

descent and oscillatory behavior in narrow valleys. Although the directions in this approach 

are conjugate, the gradients remain orthogonal at each point. For a quadratic function with 

M variables, the minimum can be reached in M steps using a set of conjugate directions. 

Beginning at point 𝒙𝑘, the conjugate gradient approach proceeds in the direction v𝑘. The 

gradient at the point and the preceding direction vector v𝑘−1 are used to determine v𝑘 [20].  

vk=gk+γkvk−1…………………………... (3.19) 

Here, vk → Conjugate Direction at Iteration k, gk → Gradient at Iteration k (Residual 

Vector) and γk→ Conjugate Coefficient (Update Factor) 

              

The scalar constant γ𝑘 in the above equation is provided by:  

𝛾𝑘 =
‖𝑔𝑘‖2

‖𝑔𝑘−1‖2
……………………….... (3.20) 

              (iii) The Newton-Raphson method: The Newton-Raphson method utilizes both 

first and second derivatives. The curvature is utilized not just to use gradient information, 

but also to predict where the direction will change along the function's gradient. This 

technique demands significant computational power to achieve energy minimization. If 

additional water molecules are needed to enhance the system's solubility before 

minimization, they are introduced. A preheated water reservoir at the same temperature is 

used for solvation, ensuring the system is fully immersed. The water box surrounds the 

entire system, eliminating any water molecules that come into direct contact with proteins. 

The mathematical model of Newton-Raphson equation is as follows:  

𝑟𝑚𝑖𝑛 = 𝑟0 − 𝐴0𝐴2−1⋅𝛻(𝑟0)……………….……. (3.21)  

where Ao is the matrix of second partial derivatives of the energy with respect to the 

coordinates at ro (also known as the Hessian matrix), 𝑟𝑚𝑖𝑛 is the anticipated minimum, 𝑟𝑜 is 

an arbitrary starting point, and ∇(𝑟𝑜) is the gradient of the potential energy at ro. 

2. Heating: During the heating phase, Newton's equations of motion, which describe the 

system's time evolution, are numerically integrated. Initially, each atom in the system is 

assigned velocities corresponding to a temperature of 0 K. At short, predefined intervals, 

new velocities are assigned, gradually increasing the temperature in small increments. The 

simulation continues until the desired temperature, typically 300 K, is reached. As the 

system heats up, structural stresses are alleviated, and force constraints on different 
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subdomains of the simulation are progressively removed. Heating dynamics are typically 

conducted under constant volume conditions (NVT ensemble). 

3. Equilibration: As a system progresses from its initial configuration, it undergoes an 

equilibration phase, during which equilibrium is achieved. Ideally, equilibration should 

continue indefinitely or at least until the values of monitored properties stabilize. Key 

measured properties include thermodynamic variables such as energy, temperature, and 

pressure, as well as structural characteristics. In liquid-state simulations, the initial structure 

often resembles a solid lattice. To ensure accurate results, it is crucial to allow the lattice to 

"melt" before beginning the production phase. Order parameters can be used to determine 

when the liquid state has been fully reached. These parameters measure the degree of order 

within a system. In a crystal lattice simulation, atoms typically remain in fixed positions, 

maintaining a high level of order. Conversely, in a liquid state, the constituent species 

exhibit significant movement, leading to translational disorder. MD involves solving the 

equations of motion for an atomic system. The solution to these equations provides the 

molecular trajectories and temporal evolution of atomic movements. Depending on the 

simulation temperature, MD allows for overcoming energy barriers and exploring various 

conformational possibilities. To initiate MD, initial velocities must be assigned, which is 

achieved using a random number generator constrained by the Maxwell-Boltzmann 

distribution. Equation 3.22 is the formula of the system's internal energy. Equation 3.23 is 

the formula for kinetic energy.  

𝑈 = (
3

2
) 𝑁𝑘𝐵𝑇……………………………… (3.22) 

𝑈 = (
1

2
) 𝑁𝑚𝑣2…………………………….. (3.23) 

Here, U → Represents the total kinetic energy of all molecules in a system 

          N → Number of Particles (Molecules) 

           𝑘𝐵 → Boltzmann’s Constant 

           T → Absolute Temperature (Kelvin) 

           m → Mass of a Single Molecule 

           v2 → Mean Squared Velocity 

The temperature of the system can be determined by averaging the velocities of all atoms 

present. Once the initial velocities are assigned, the Maxwell-Boltzmann distribution can 

be maintained throughout the simulation. After energy minimization, the system's 

temperature is effectively considered to be at absolute zero (0 K). Before reaching the 

target temperature, the system must first undergo initialization. To achieve this, velocities 
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are assigned at a low temperature, and molecular dynamics is performed following the 

equations of motion. Over multiple iterations, the temperature is gradually increased 

using scaling methods. Under atomic constraints, a controlled heating process is carried 

out over 20 ps, progressively raising the temperature from 0 K to 300 K. Among various 

temperature scaling techniques, velocity scaling is the most commonly used. For 

equilibration time steps of 1 fs, a minimum simulation run of 5 ps (5000 time steps) is 

typically required, though runs of 10 to 20 ps are often preferred. Following the heating 

phase, dynamic equilibration is conducted for an additional 100 ps to ensure system 

stability. 

4. Production dynamics: During the dynamics phase, thermodynamic averages are 

calculated, and new configurations are explored to better understand the system’s behaviour 

over time. This stage, commonly referred to as production dynamics, is where these 

calculations and structural assessments take place. Throughout this phase, various 

thermodynamic parameters, such as temperature, pressure, and energy fluctuations, can be 

evaluated to ensure the stability and accuracy of the simulation. The duration of a production 

run depends on the complexity of the system and the desired level of accuracy. Typically, 

production runs extend over a timescale ranging from hundreds of picoseconds to several 

nanoseconds. Longer simulations allow for more accurate statistical averaging and a better 

representation of the system's equilibrium properties. These extended simulations help 

capture molecular interactions, conformational changes, and other essential dynamic 

behaviours, making them a crucial step in molecular modelling studies. 

3.1.2. Potential of mean force (PMF):  

The potential of mean force (PMF) [21] is a fundamental concept used to describe change 

in free energy as a function of inter- or intra-molecular coordinates in molecular systems. 

The reaction coordinate, which can represent the distance between two atoms or the torsion 

angle of a bond, is intrinsically associated with its corresponding distribution function. 

When a system is immersed in a solvent, the PMF accounts for both the solvent effects and 

the intrinsic interactions between the two particles involved. Additionally, the rate constant 

of a process can be determined from its transition state. There are multiple approaches to 

calculating the PMF, each offering different levels of computational complexity and 

accuracy. The simplest form of PMF is defined as the change in free energy along a reaction 

coordinate, typically represented by the variation in separation distance (r) between two 

interacting particles [7]. It is denoted as:  
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𝐴(𝑟) = −𝑘𝐵𝑇 𝑙𝑛 𝑔(𝑟) + constant.................................... (3.24) 

Here, A(r) is Potential of Mean Force (PMF) 

            kB is Boltzmann Constant 

            g(r) is Radial Distribution Function (RDF) 

Due to the logarithmic relationship between the potential of mean force (PMF) and the radial 

distribution function, even a minor variation in free energy can correspond to a significant 

change in g(r), potentially altering it by an order of magnitude from its most probable value. 

However, in regions where this discrepancy is substantial, the radial distribution function is 

often inadequately sampled by MD simulations. This insufficient sampling leads to 

inaccuracies in PMF estimations. 

To address this limitation, various enhanced sampling techniques have been developed, with 

umbrella sampling (US) being one of the most widely utilized methods [7]. Umbrella 

sampling helps improve sampling efficiency by applying biasing potentials, thereby 

ensuring a more accurate representation of free energy landscapes. 

 3.1.2.1. Umbrella Sampling (US):  

Umbrella sampling (US) addresses the sampling problem by constraining the system to 

specific regions of its conformational space. This is done by modifying the potential 

function, allowing for adequate sampling of otherwise unfavorable states. By introducing 

biasing potentials, this technique ensures that rare or high-energy conformations are 

properly explored, leading to more accurate free energy calculations and overcoming the 

limitations of insufficient sampling in MD simulations. The expression for the modification 

of the potential function is:  

P′ (𝑟𝑁) = 𝖯 (𝑟𝑁) + 𝑊 (𝑟𝑁) ………………….………………...… (3.25) 

Where, P′(rN) is the biased probability distribution of the system under the influence of an 

added weighting function, P(rN) is the true (unbiased) probability distribution of the system 

without any external bias and W (rN) is a weighting function, which takes a quadratic form:  

𝑊(𝑟𝑁) = 𝑘𝑊(𝑟𝑁 − 𝑟0
𝑁)2…………………………..…………. (3.26) 

Where, kW is the force constant (or biasing strength), rN is the current configuration of the 

system. For those configurations that are distant from equilibrium state 𝑟0
𝑁 the weighting 
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function shall be large, hence a simulation by using the modified energy function 𝖯′ (𝑟𝑁) 

will be biased away from the configuration 𝑟0
𝑁, along with some relevant ‘reaction 

coordinate’ (RC). The resulting distribution will, of course, be non-Boltzmann. Torrie and 

Valleau [22] introduced a method for extracting the corresponding Boltzmann averages 

from non-Boltzmann distributions. The result is:  

<A> = 
⟨𝐴(𝑟𝑁) 𝑒𝑥𝑝[+𝑊

𝑟𝑁

𝑘𝐵𝑇
]⟩𝑊

⟨𝑒𝑥𝑝[+
𝑊(𝑟𝑁)

𝑘𝐵𝑇
]⟩

𝑤   …...……………………. (3.27) 

Here, ⟨A⟩ denoted the unbiased ensemble average of the observable A over the true 

probability distribution. A(rN) denotes the observable of interest evaluated at 

configuration rN and kB is the Boltzmann constant. 

Most of the time, an umbrella sampling calculation is done in stages. Each stage has a 

certain value for the coordinate and a certain value for the forcing potential W(rN). But if 

the forcing potential is very large, then the denominator in Equation 3.27 is dominated 

by contributions from only a few configurations with especially high values of exp [W 

(rN)] and the average takes too long to converge.  

3.1.2.2. Running the umbrella sampling calculations:  

Once a stable starting structure is obtained, MD simulations can be performed on 

individual umbrella windows. An important consideration when determining the number of 

windows is ensuring that adjacent windows have sufficient overlap. This means that the 

configurations sampled in window 1 should partially coincide with those in window 2, and 

so forth. Similarly, the selection of the force constant plays a crucial role that it must be 

sufficiently large to confine sampling within a specific region of phase space, yet not 

excessively strong, as this could result in overly narrow windows that fail to overlap 

adequately (Figure 3.8).  
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Figure 3.8. Working principle of Umbrella Sampling. (Taken from [22]). 

"\" = lower bound linear response region  

"/" = lower bound linear response region 

 "…" = parabola  

"_" = flat region  

Typically, the size of the windows and the constraints can be adjusted based on their position 

along the pathway. It is essential to ensure that each window undergoes sufficient simulation 

time to achieve convergence in sampling. To specify the harmonic restraint a reference file 

is employed where R1, R2, R3, R4 define a flat-welled parabola which becomes linear 

beyond a specified distance. Essentially between R1 and R2 it will be harmonic with force 

constant Rk2, between R2 and R3 it will be flat and between R3 and R4 it will be harmonic 

with force constant Rk3.  

3.1.2.3. The Weighted Histogram Analysis Method (WHAM) 

for free energy calculations:  

The Weighted Histogram Analysis Method (WHAM) [23] is an advanced extension of the 

conventional umbrella sampling (US) technique, offering several advantages over the 

standard approach. One of its key benefits is the enhanced connection between multiple 

simulations, allowing for more accurate estimations of free-energy differences by enabling 

multiple overlaps of probability distributions. In cases where three or more distributions 

contribute to the overlap region, the conventional method of generating a single distribution 

function by enforcing coincidence at a specific point fails to yield unique free-energy values. 
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The WHAM method incorporates an error estimation feature, providing researchers with 

objective guidance on the optimal placement and duration of subsequent simulations to 

improve accuracy. By considering all simulations that produce overlapping distributions, 

the WHAM approach effectively links these simulations through their shared histograms. 

Furthermore, the WHAM equations facilitate the construction of potential of mean force 

(PMF) profiles and free-energy calculations as a function of coupling parameters and/or 

temperature. This is particularly advantageous, as simulations performed at various 

temperatures can enhance conformational sampling, with results being interpolated or 

extrapolated to the target temperature [24]. 

3.1.3. Molecular Docking:  

Predicting protein-protein and protein-small molecule interactions through computational 

methods remains one of the most challenging tasks in structural biology. Reliable and 

precise interaction predictions can significantly benefit various biological research fields, 

both in academia and industry. The primary challenge in protein-protein docking lies in 

correctly associating two interacting molecules, which relies on accurately identifying the 

residues involved in the target interaction. Several docking methodologies have been 

developed over time [25-29]. However, only a limited number of these algorithms are 

freely available for online use. Most of the differences between the algorithms are found 

in the search strategy used and in how the resolved complexes are assessed in the six-

dimensional transformation space.  

Molecular docking is a widely used approach for modeling interactions at the atomic level, 

whether between a protein and a small molecule or between two proteins. This technique 

helps in understanding how small molecules behave at the target protein’s binding site and 

in identifying the interface residues involved in protein-protein interactions [30]. The 

docking process consists of two primary stages. In the first stage, the ligand's position 

within the binding site is determined. In the second stage, the ligand conformers are ranked 

using a scoring function based on binding affinity. For effective docking, the scoring 

function must successfully prioritize the experimental binding mode as the most 

favourable among all generated conformations. 

In this Thesis, we utilized the PatchDock server [31] for protein-small molecule docking, 

the HADDOCK server [32,33] for protein-protein docking, and the ClusPro server [34] 

for protein-peptide docking. 
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3.1.3.1. PatchDock:  

PatchDock is an online docking tool designed for rigid docking of molecules, including 

protein-protein and protein-drug interactions, while considering surface adaptations 

during intermolecular penetration [31]. Based on geometric molecular docking, it 

identifies transformations with high shape complementarity, minimizing steric clashes 

while maximizing interface regions. The method analyses concave, convex, and flat 

patches using the Connolly dot surface representation and matches complementary patches 

to generate docking configurations. Each candidate solution is evaluated based on 

geometric compatibility and atomic desolvation energy, with redundancy eliminated via 

the root mean square deviation (RMSD) clustering algorithm. PatchDock’s efficiency 

stems from its rapid transformation search, which leverages local feature matching instead 

of exhaustive scanning of the six-dimensional transformation space. Advanced data 

structures and spatial pattern recognition techniques, such as geometric hashing and pose 

clustering, further enhance computational speed. The docking process is highly optimized, 

with a runtime of approximately 10 minutes for standard protein inputs (≈300 amino 

acids). Rooted in the Kuntz algorithm for local shape feature matching [35], PatchDock 

ensures accurate docking by identifying high-probability molecular surface regions at 

binding sites, making it effective for docking large proteins with small drug molecules. 

 

Input for PatchDock: 

The docking algorithm requires two molecules in PDB format as input. These molecules 

can either be retrieved directly from the Protein Data Bank or uploaded by the user. In the 

latter case, the user only needs to provide the PDB code. If docking involves specific 

chains, the relevant chain ID(s) must be specified. Additionally, the user must enter a valid 

email address to receive the docking results. In addition, the docking request form has four 

more optional fields.  

(i) Clustering RMSD: This positive value represents the root mean square 

deviation (RMSD) clustering radius in angstroms. It is primarily used in the final 

clustering step of the algorithm. The clustering RMSD value determines the 

minimum distance between any two solutions in the output. By default, this 

parameter is set to 4 Å. 

(ii) Complex Type: PatchDock offers different parameter settings to optimize 

docking for various types of molecular interactions. If this field is left unspecified, 



CHAPTER 3 | 2025 
 

CHAINEE DAS 103 

 

the software applies the default configuration. For enzyme-inhibitor complexes, 

the algorithm restricts the search space to enzyme cavities. In the case of 

antibody-antigen complexes, it focuses on the complementarity-determining 

regions of the antibody. For protein-small ligand docking, the parameter settings 

are adjusted specifically for small molecules. 

(iii) Potential Binding Sites for Ligands and (iv) Receptors: If biological data 

indicate specific residues as part of a potential binding site, users can input this 

information into the algorithm. The list of residues associated with possible 

binding sites must be provided in an uploaded file. The format of this file should 

match the PDB structure, with each line containing the chain ID and residue index 

separated by a space. Figure 3.9 illustrates the PatchDock user interface. 

 

 

Figure 3.9. The PatchDock user interface: The receptor molecule and the ligand 

molecule are given either by the PDB code of the molecule (chain IDs are optional) or 

by uploading a file in PDB format. (Taken from [31]). 

 

Output for PatchDock:  

 The PatchDock server automatically generates the top 20 docking solutions, which are 

accessible via a link sent to the user’s email (https://bioinfo3d.cs.tau.ac.il/PatchDock/). 

These solutions are typically displayed in a table format, showing key parameters such 

as the geometrical shape complementarity score, interface size, desolvation energy, and 

the rigid transformation details. Each docking solution includes a corresponding PDB 

file, which users can view or download via the provided URL. To enhance the accuracy 

of docking results, structures obtained from PatchDock can be further refined using 

FireDock, a web server designed for rapid optimization of molecular docking interactions 
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3.1.3.2. ClusPro web server: 

ClusPro, a web-based docking server, was first introduced in 2004 [36, 37] and has since 

undergone extensive modifications and enhancements [38-40]. This platform enables the 

direct docking of two interacting proteins [34] by requiring input in the form of two PDB-

format protein files. The docking process on ClusPro involves three main computational 

steps: 

(i) Rigid body docking: The server samples billions of possible conformations. 

(ii) Clustering based on RMSD: Among the sampled structures, the 1000 lowest-energy 

conformations are grouped to identify the largest clusters, representing the most likely 

complex models. 

(iii) Energy minimization: The selected structures are refined to enhance their accuracy. 

During the rigid body docking stage, ClusPro employs PIPER [41], a docking tool that 

utilizes the Fast Fourier Transform (FFT) correlation technique to efficiently explore 

molecular interactions (Figure 3.10). 

 

 
 

Figure 3.10. Representation of the ClusPro algorithm, the number of structures 

retained after each step is shown in a blue box. (Taken from [34]). 

 

3.1.3.3. Haddock server:  

HADDOCK is a widely used docking program that employs a data-driven approach, 

integrating various types of experimental data to enhance docking accuracy. Its primary web 

interface is designed for ease of use, requiring only the structural input of individual 
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molecular components and a list of interacting residues. For advanced users, additional web 

interfaces provide access to a broader range of experimental data and allow customization 

of the docking process. The HADDOCK server operates on a dedicated computational 

cluster and utilizes the e-NMR GRID infrastructure for enhanced performance [32]. 

During docking, HADDOCK incorporates non-structural experimental data to guide the 

process through multiple stages, including rigid-body energy minimization, semi-flexible 

refinement, and water-based refinement. These refinement stages introduce flexibility, 

enabling movement in all DNA nucleotides and protein residues at the predicted interaction 

interface, thereby improving docking accuracy [33]. The Haddock user interface is shown 

step by step in Figure 3.11. 

 

(A) Input (For molecule 1):  

 

                   

(B) Input (For molecule 2):  

 

Figure 3.11. The Haddock user interface: (A) Entries required for the molecule 1 and 

(B) Entries required for the molecule 2 
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3.1.4. Binding free energy calculation using Molecular Mechanics 

energies combined with the Poisson-Boltzmann or Generalized Born 

and Surface Area continuum solvation method (MM- PBSA/GBSA): 

 
3.1.4.1. Free energy calculation using Perl Script (mm_pbsa.pl): 

 

To determine the binding free energy (BFE) of small ligands (small molecules) with 

receptor proteins or protein-protein complexes, researchers commonly employ the MM-

PBSA and MM-GBSA methods [42-44]. These techniques, which rely on MD 

simulations of the protein-ligand complex, are widely recognized for their high 

reproducibility and accuracy. 

In simple terms, to calculate the absolute BFE for a complex made of two molecules: A 

and B bonded non-covalently: 

      [𝐴]𝑎𝑞 + [𝐵]𝑎𝑞 ⇔ [𝐴∗𝐵∗]𝑎𝑞…………………….……… (3.28) 

where [A]aq refers to the molecule A dynamical structure free in the solution, [B]aq refers 

to the molecule B dynamical structure free in the solution, and [A* B*]aq refers to the 

complex formed by A and B molecules; the BFE is calculated using the second law of 

thermodynamics: 

           ∆G = ∆H -T∆S …………………………………….…. (3.29) 

wherein, ∆H is the enthalpy, ∆S represents entropy and T is the temperature of the 

system at 300 Kelvin.  

In MM-PBSA or MM-GBSA, the BFE (ΔGbind/ΔGbinding) between a receptor and a 

ligand to form a protein-ligand complex is calculated as: 

ΔGbind/ΔGbinding = ΔGcomplex, solv – (ΔGprotein, solv + ΔGligand, solv) …… (3.30) 

where, ΔGcomplex,solv, ΔGprotein,solv, and ΔGligand,solv represent the differences in free energy 

for the complex, the protein, and the ligand, respectively, with or without solvent. 

   ΔGbind/ΔGbinding = [EMM + ΔGsolvation] – TΔStotal ……………… (3.31) 

                                 EMM = Eintra + Eelec + EvdW…………………….…... (3.32) 
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                 Einternal = Ebond + Eangle – Etorsion…………………………...…… (3.33) 

             ΔGsolvation =ΔGPB/GB solvation–elec + ΔGSASA,nonpolar ………………… (3.34) 

 

The molecular mechanics (MM) energy, denoted as EMM, represents the energy derived 

from the force field in the absence of a solvent. The internal energy, Einternal (intra) 

comprises three intramolecular components: Ebond, Eangle, and Etorsion. The intermolecular 

interaction energies include Eelec, which accounts for electrostatic interactions, and EvdW, 

which represents van der Waals forces. ΔGsolvation is the solvation free energy which 

comprises of the ΔGPB/GB, solvation-elec which denotes the electrostatic contribution to 

solvation free energy, calculated using GB/PB and the nonpolar solvation energy 

(ΔGSASA,nonpolar) is determined based on the solvent-accessible surface area (SASA). 

Additionally, T and Ssolute represent the temperature and the entropy of the solute, 

respectively. We show the relationship for each energy in Figure 3.12. 

 

Figure 3.12. Computational schemes of the binding free energies based on MM- 

PBSA/GBSA. The free energies colored in black are directly calculated, while the free 

energy of interest colored in blue is indirectly did using the thermodynamic cycle 

of other free energies. (Modified from [45]). 

 

The electrostatic solvation energy can be determined using the PB and GB methods. The 

dielectric constants were set to 1 for the solute (inner region) and 80 for the solvent 

(water). The atomic charges and radii used in the calculation were consistent with those 

applied in MD simulations. From solvent accessible surface-area, the non-polar 

contribution (∆GSASA) to the solvation free energy was calculated by means of Equation 

3.35. 
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∆GSASA= γ × SASA + b ..................................................................... (3.35) 

Here, SASA is the solvent-accessible surface-area and γ is surface tension parameter. 

‘γ’ is set as 0.005 kcal (mol-1Å-2) for PB and 0.0072 kcal (mol-1Å-2) for GB. ‘b’ is a 

parameterized value set as 0.92 kcal/mol for PB and 0 kcal/mol for the GB method. The 

probe radius of the solvent is set to 1.4 Å. 

The total entropy (S), has been formulate from variations in the degree of freedom 

as shown in Equation 3.36: 

 

S = Strans + Srot + Svib ........................................................................................................  (3.36) 

where, Strans is the translational, Srot the rotational, and Svib the vibrational entropy of 

each component. 

3.1.4.2. Free energy decomposition using Python Script MMPBSA.py: 

 
According to the work of Gohlke et al. [46,57], AMBER14 incorporates various 

techniques to break down estimated free energy into specific residue contributions using 

either the Generalized Born (GB) or Poisson–Boltzmann (PB) models. Interactions for 

each residue can be analysed by considering only those in which at least one atom of the 

residue is involved, a process referred to as per-residue energy decomposition. In 

contrast, pairwise decomposition examines interactions between specific residue pairs 

by including only interactions where at least one atom from each residue is involved. 

These decomposition methods provide valuable insights into key interactions during free 

energy calculations [46,47]. 

However, the dielectric boundary between the protein and the surrounding solvent is 

inherently nonlocal, as it is influenced by the overall spatial arrangement of atoms. As a 

result, solvation free energies computed using the Generalized Born (GB) and Poisson–

Boltzmann (PB) models are not strictly pairwise decomposable. Therefore, caution 

should be exercised when interpreting results from free energy decomposition. 

Using the Per-Residue Decomposition Method via Python Script MMPBSA.py [48], we 

can determine the partial BFE contribution towards the amino acid residue Y (ΔGY bind). 

The contribution of each residue to the overall BFE may be calculated using a per-residue 

based decomposition method [49-52]. We divide the terms in Equation 3.35 first to get 

the ΔGY bind into its atomic contribution. Equation 3.37 is used to calculate each atom's 

(a) contribution to the overall electrostatic interaction energy: 
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𝐸𝑒𝑙𝑒𝑐
𝑎 =

1

2
𝛴𝑏≠𝑎

𝑞𝑎𝑞𝑏

𝑟𝑎𝑏
……………………………………... (3.37) 

 

where qa and qb are atomic partial charge on the atoms a and b, and rab is the distance 

between them. To prevent duplicate counting, just use half of the pairwise energy for the 

van der Waals contact between the protein and the ligand, Ea
vdW. Equation 3.38 illustrates 

how the non-polar effects of solvents on BFE are expressed using each atom's (a) SASA  

ΔGa
nonpolar,solv = γ{(SASAa,complex – (SASAa,protein, + SASAa,ligand)} …………….... (3.38) 

Where, ΔGa
nonpolar,solv : The nonpolar solvation free energy change.  

 SASAa,complex : The solvent-accessible surface area of the protein-ligand complex after 

binding. 

SASAa,protein : The solvent-accessible surface area of the unbound protein (before binding). 

SASAa,ligand 
: The solvent-accessible surface area of the unbound ligand (before binding). 

γ is surface tension parameter and it is set to 0.0072 kcal/mol/Å2 in AMBER 14. The 

Generalized Born/Poisson–Boltzmann (GB/PB) approach is used to calculate the 

contribution of atom “a”, to the electrostatic part of solvent effects. The contribution of 

atom “a” is given by:  

𝛥𝐺𝑒𝑙𝑒𝑐,𝑠𝑜𝑙
𝑎 = −

1

2
𝛴𝑏𝑞𝑎𝑞𝑏 (

1

𝑓(𝑟𝑎𝑏,𝑅𝑎,𝑅𝑏)
) −

1

𝜀𝜔𝑟𝑎𝑏
………………… (3.39) 

𝑓(𝑟𝑎𝑏, 𝑅𝑎, 𝑅𝑏) = √𝑟𝑎𝑏
2 + 𝑅𝑎𝑅𝑏ⅇ−𝑟2

𝑎𝑏 ∕ (4𝑅𝑎𝑅𝑏)………………… (3.40) 

Here, 𝛥𝐺𝑒𝑙𝑒𝑐,𝑠𝑜𝑙
𝑎  is the electrostatic solvation free energy contribution of atom a, 𝑞𝑎, 𝑞𝑏 

denotes the partial charges of atoms a and b, 𝑟𝑎𝑏 is the direct Coulomb distance between 

atoms a and b, 𝑅𝑎 , 𝑅𝑏 is the effective Born radii, 𝜀𝜔 is the dielectric constant of the solvent 

and 𝑓(𝑟𝑎𝑏 , 𝑅𝑎, 𝑅𝑏) denotes the Generalized Born function,  

Evaluating the partial BFE contribution to amino acid residue Y using these 

contributions to each atom results in Equation 3.41, which is shown below:  

    𝛥𝐺𝑏𝑖𝑛ⅆ
𝑌 = ∑ (

𝑎𝜖𝑌
𝐸𝑒𝑙𝑒𝑐

𝑎 + 𝐸𝑣 ⅆ𝑤
𝑎 + 𝛥𝐺𝑛𝑜𝑛𝑝𝑜𝑙𝑎𝑟,𝑠𝑜𝑙𝑣

𝑎 + 𝛥𝐺𝑒𝑙𝑒𝑐,𝑠𝑜𝑙𝑣)
𝑎 ………….…… (3.41) 

 

3.1.5. Binding free energy calculation using webserver 
 

3.1.5.1. Prodigy webserver:  
 

PROtein binDIng enerGY prediction (PRODIGY) is a web server designed to estimate the 

binding affinity of protein–protein complexes based on their three-dimensional (3D) structure 
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[53]. This server utilizes a straightforward yet highly effective predictive model that relies on 

intermolecular contacts and features derived from the non-interface surface. 

To use PRODIGY, users must provide the 3D structure of a protein–protein complex through 

one of the following methods: 

1. Uploading the structure in PDB or mmCIF format. 

2. Automatically retrieving it from the Protein Data Bank. 

3. Uploading a compressed archive file (.tar, .tgz, .zip, .bz2, .tar.gz) to analyse multiple 

structures simultaneously (up to a 50 MB limit). 

Additionally, users need to specify the chain identifiers of the interacting molecules. The server 

also allows setting the temperature for calculating the dissociation constant (default: 25°C) and 

provides an option to enter an email address, where a link to the results page will be sent. The 

output include: 

1. the predicted value of the binding free energy (ΔG) in kcal/mol; 

2. the predicted value of the dissociation constant (Kd) in M calculated from 

ΔG = RT ln(Kd) where R is the idea gas constant (kcal/K/mol), T the temperature (K); 

3. the number and type of intermolecular contacts within the 5.5 Å distance cutoff; 

4. the percentages of charged and polar amino-acids on the non-interacting surface; 

5. a downloadable table (.txt) of all residues occurring at the interface; 

6. a compressed file with all the result files. 

The PRODIGY server operates efficiently, completing predictions within seconds even for the 

largest protein–protein complexes [53]. An illustration of the input and output pages of 

PRODIGY is presented in Figure 3.13. 

(A) Input  
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(B) Output   

 
 

Figure 3.13. Example output of PRODIGY showing the (A)input and (B) output page. 

 

3.1.5.2. HawkDock webserver:  

 
Protein-protein interactions (PPIs) are crucial for various cellular functions; however, accurately 

predicting their three-dimensional structures remains a challenging task. To address this, 

HawkDock, a freely accessible web server was developed to predict and analyse PPI structures. 

The HawkDock server seamlessly integrates the ATTRACT docking algorithm, the HawkRank 

scoring function, and MM/GBSA free energy decomposition analysis into a comprehensive, 

multi-functional platform [54]. 

MM/GBSA is utilized to estimate binding free energy and decompose the contributions of 

individual residues to the overall binding free energy of a protein–protein complex, facilitating 

structural analysis. When predicting key residues using the MM/GBSA approach, the most 

significant residues involved in PPIs were identified within the top 10 residues in approximately 

81.4% of predicted models and 95.4% of crystal structures in the benchmark dataset [54]. An 

example of output page of HawkDock is shown in Figure 3.14. 

 

 

Figure.3.14. Example output of HawkDock for the Spike-ACE2 complex 
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3.1.6. Prediction of protein-protein / protein-ligand interaction using in-

silico tools:  

 
Protein-protein interactions (PPIs) play a vital role in numerous cellular physiological 

processes and are also linked to various diseases [55-57]. Since PPIs exhibit considerable 

variability, a detailed examination of protein interfaces is crucial. The size of the protein contact 

area influences both the specificity and stability of these interactions. Protein-protein 

interaction sites are primarily formed through van der Waals interactions among nonpolar 

residues, driven by hydrophobic effects [58] and significant shape complementarity [59-61]. 

Additionally, electrostatic interactions between the interacting protein surfaces plays a crucial 

role in promoting the formation and stabilization of the complex. As the protein surfaces 

interact, the complex becomes more stable. 

Accurately predicting PPIs is essential for advancing drug discovery and developing new 

therapeutic strategies. While external substances can interfere with PPIs, these interactions are 

fundamental to numerous biological processes, both beneficial and harmful. In modern drug 

discovery, the two key steps involve selecting a viable pharmacological target, gathering 

comprehensive information about it, and designing an appropriate ligand [62]. Understanding 

PPIs, therefore, facilitates the development of modulators specifically designed to target 

protein complexes effectively. In order to predict the interactions between protein-protein or 

proteins-ligands, this thesis employs three different tools namely PDBsum, LigPlot, and 

Mapiya server.  

3.1.6.1. PDBsum server:  

PDBsum is a web-based database [63,64] established in 1995, providing structural insights into 

all experimentally validated models published by the Protein Data Bank (PDB) [65,66]. The 

PDBsum server also offers a schematic representation of intermolecular interactions [63], aiming 

to visually depict structural data for each three-dimensional (3D) model as comprehensively as 

possible. It generates graphical diagrams of molecular components within each PDB entry, 

including protein, DNA, and RNA chains, ligands, and metal ions, along with their interactions. 

Over time, the server has been enhanced with new features, expanding its functionality. 

         PDBsum was the first web-based platform to leverage emerging World Wide Web 

technologies to create a structured catalog of PDB information. Its primary goal was to serve as 

an extensive visual compendium of protein structures and their complexes. Originally developed 

at University College London in 1995, the server contained numerous structural representations 

not readily available elsewhere. In 2001, PDBsum was transferred to the European 
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Bioinformatics Institute, where it has since been continuously updated and integrated with other 

resources. Complementary resources include the Research Collaboratory for Structural 

Bioinformatics (RCSB) PDB (http://www.rcsb.org), and PDB Europe (PDBe) 

(https://www.ebi.ac.uk/pdbe) [65]. These platforms offer extensive coverage of all PDB entries, 

along with powerful tools for structural analysis. The results from the PDBsum server 

summarizes the number of interactions across any chosen interface (Figure 3.15A), and the 

Figure 3.15B plot illustrates a depth information about which residues are actually interacting 

across that interface. 

       

 

 
 

Figure 3.15. Protein–protein interaction diagrams in PDBsum (A) A schematic diagram 

showing the numbers of interactions across one of the interfaces, namely the A–B protein 

interface, and the numbers of residues involved in the Spike (Delta-plus)-ACE2 complex. (B) 

Detail of the individual residue–residue interactions across this interface. Hydrogen bonds 

(blue lines), non-bonded contacts (orange tick‐marks), and salt bridges (red lines) between 

residues on either side of the protein‐protein interface.  (Taken from Chapter 7B). 

 

3.1.6.2. LigPlot Tool:  

LigPlot+ [67] is a widely used program that generates a two-dimensional (2D) schematic 

representation of protein-ligand interactions, including hydrogen bonds and non-bonded 

(A) (B) 
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interactions between the ligand and surrounding protein residues. When a protein-ligand 

complex in PDB format is uploaded, LigPlot+ analyzes the molecular interactions and 

visually maps them for easier interpretation. A standalone version of LigPlot+ is also 

available for download and installation, allowing users to generate detailed protein-ligand 

interaction profiles independently. The program produces a PostScript file that displays 

intermolecular interactions such as hydrogen bonding, hydrophobic interactions, and atom 

accessibility, along with their interaction strengths. These representations can be viewed 

in either color or black and white, depending on user preferences. One of the key 

advantages of LigPlot+ is its universal applicability, as it supports interaction mapping for 

all ligands without restrictions. This makes it an essential tool for structural biology and 

drug discovery studies.  

Figure 3.16 illustrates an example of LigPlot+ results for the Mpro-Rosmanol complex, 

depicting the hydrophobic interactions and hydrogen bonds. 

       

Figure 3.16. LigPlot analysis showing hydrophobic interaction, hydrogen bonds between Main 

Protease and Rosmanol molecule. The hydrogen bond interactions are represented by dashed 

lines.  The amino acid residues involved in the hydrophobic interactions are shown as 

starbursts (Taken from Chapter 5) 

 

3.1.6.3.  Mapiya - contact maps:    

The study of biomolecular interactions is fundamental to understanding how biomolecules 

function. Contact maps serve as an effective tool for deciphering the complex network of 

biomolecular interactions [68]. Over time, computer-aided visualization tools for contact 

maps have been developed, facilitating their application in validating contact prediction 



CHAPTER 3 | 2025 
 

CHAINEE DAS 115 

 

methods [69,70], reconstructing three-dimensional (3D) protein structures [71-74], and 

performing surface-based interaction analyses [75,76]. 

Mapiya is an interactive and user-friendly web service designed for biomolecular structure 

analysis, specifically for proteins and their complexes, including protein-protein and 

protein-nucleic acid (RNA/DNA) interactions. It integrates several features from existing 

tools while offering additional structure- and sequence-based analyses. Mapiya's core 

functionality revolves around contact maps, providing multiple visualization options for 

detailed molecular interaction analysis [77,78]. 

            To use Mapiya, the only required input is a biomolecular structure file in PDB 

format. This is marked as the fourth step on the main Mapiya page. The first three steps 

are optional and allow users to customize default settings and perform additional 

calculations. These optional steps include: 

  (i) ‘Select options’ – enabling modification of default settings, such as the contact 

cutoff value; 

 (ii) ‘Fix structure’ – utilizing the PDBfixer package to correct structural issues and fill 

gaps in PDB input files; 

 (iii) ‘Biological assembly’ – reconstructing biological assemblies based on information 

from the input PDB file. 

The primary steps involved in using the Mapiya server to analyse biomolecular 

interactions of proteins and their complexes (protein-protein, and protein-RNA/DNA) are 

depicted in Figure 3.17. 

 

Figure 3.17. Showing the main steps of Mapiya server to analyze the biomolecular 

interactions of proteins and their complexes (protein-protein, and protein with RNA 

and/or DNA) 
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Mapiya is capable of analyzing both intramolecular and intermolecular interactions among 

various biomolecules, including proteins, peptides, and nucleic acids (RNA and DNA). 

Users can upload a structural file directly from their local system or retrieve it from the 

Protein Data Bank (PDB) for analysis [77]. 

3.1.7. Prediction of binding pocket analysis using CASTp Server:  

Protein structures are highly complex, comprising internal cavities, cross pathways, and 

surface pockets. These structural features serve as the foundation for various biological 

functions, including ligand binding, DNA interactions, and enzymatic activity. 

Understanding and quantifying these topographic characteristics is essential for 

deciphering the relationship between protein structure and function [79], engineering 

proteins with specific properties [80], and designing therapeutics targeting protein 

structures [81]. 

The Computed Atlas of Surface Topography of Proteins (CASTp) utilizes the alpha shape 

method [82], a concept from computational geometry, to identify and analyze protein 

topographic features. This approach allows for precise measurement of area, volume, and 

imprint calculations [83-89]. CASTp offers essential functionalities, such as detecting and 

characterizing protein structure channels, pockets, and cavities. Additionally, by 

incorporating pre-computed topographic features of biological assemblies from the 

Protein Data Bank (PDB) and providing negative volume imprints, the service has 

significantly enhanced its capabilities. 

A refined user interface has improved the readability and accessibility of the server. The 

default probe radius for pre-computed results is set to 1.4 Å, a standard for solvent-

accessible surface area calculations. However, users can specify a custom probe radius for 

tailored analysis. CASTp precisely defines all atoms involved in forming protein 

structures, including surface pockets, internal cavities, and cross channels, while also 

computing their exact areas and volumes (Figure 3.18). 

These calculations are performed analytically using both the solvent-accessible surface 

model (Richards' surface) [88] and the molecular surface model (Connolly's surface) [89]. 

The CASTp server also provides topographic feature imprints [103], which can be 

downloaded directly and visualized using UCSF Chimera.  
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Figure 3.18. The primary CASTp server user interface. (A)The panel in the pocket and 

(B) sequence panels 

  

3.1.8. Predicting Physicochemical Properties, secondary structure, Intrinsically 

Disordered regions, and Mutation Effects on Protein Stability: 

Comprehensive information on the physicochemical properties of a protein, secondary 

structure prediction, intrinsically disordered regions, and the impact of single-point 

mutations on stability and function of a given protein was predicted using online servers 

such as:  

1. I‐Mutant 2.0: This support vector machine-based tool predicts changes in protein 

stability resulting from single-point mutations [90]. 

2. SIFT (Sorting Intolerant from Tolerant): SIFT analyzes the effects of single-

point mutations on protein function by evaluating their tolerance or intolerance 

scores [91]. 

3. PONDR VLXT: This tool estimates the percentage of intrinsic disorder in a 

protein. It integrates three predictors: two trained on X-ray characterized terminal 

(A) 

(B) 
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disordered regions and one trained on variously characterized long disordered 

regions [92]. 

4. ExPASy ProtParam: This online tool calculates physicochemical properties 

such as instability index and aliphatic index, providing insights into protein 

stability [93]. 

5. GOR IV: The GOR IV server is an advanced bioinformatics tool designed to 

predict protein secondary structures from amino acid sequences. Utilizing an 

information theory-based approach, it evaluates position-dependent scoring 

matrices to classify regions into alpha-helices, beta-sheets, or coils. By analyzing 

sequences provided in FASTA format, the server generates both graphical and 

tabular results, facilitating research in structural biology, protein function 

analysis, drug discovery, and protein engineering. As a freely accessible online 

resource, GOR IV is extensively applied in homology modeling and protein 

structure prediction, making it a valuable tool in computational biology [94].  

 

3.1.9. 3-D structure visualization tools:  

(i) Visual Molecular Dynamics (VMD): VMD is a computational tool designed for 

molecular modeling and visualization [95]. Its primary function is to facilitate the 

visualization and analysis of MD simulation results. Additionally, VMD supports various 

data types, including volumetric data, sequence information, and graphical objects, 

making it a versatile tool in computational biology. 

(ii) UCSF Chimera: UCSF Chimera is a highly flexible software used for the interactive 

visualization and analysis of molecular structures along with related data such as 

conformational ensembles, density maps, sequence alignments, supra-molecular 

assemblies, and docking results [96]. Developed by the Resource for Biocomputing, 

Visualization, and Informatics (RBVI) with support from the National Institutes of Health 

(NIH), Chimera serves as a powerful tool in computational chemistry and structural 

biology. 

(iii) ArgusLab: ArgusLab is a molecular modeling and drug design software specifically 

developed for Windows-based operating systems. Created by Mark Thompson, a research 

scientist at the Pacific Northwest National Laboratory, ArgusLab provides tools for 
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molecular graphics, docking studies, and computational chemistry applications, making it 

useful for rational drug design and molecular interaction studies [97]. 

3.1.10. 3-D structure modelling tools:  

1. I-TASSER web server: Based on the Critical Assessment of Protein 

Structure Prediction (CASP) rankings, I-TASSER [98] has been recognized as the most 

effective automated server for predicting 3D protein structures.  The server generates 

five distinct models, from which the most reliable structure is determined using the C-

score calculated from the relative clustering structural density and consensus 

significance. To assess the accuracy of the selected model, Template Modeling (TM) 

score and Root Mean Square Deviation (RMSD) are utilized, providing insights into 

the structural quality and similarity to the native conformation.  

3.1.11. Analysis of trajectories:  

At this stage, the recorded coordinates and velocities of the system are utilized for further 

analysis, which requires MD trajectory files. When integrated with visualization tools like 

VMD, these simulations enable the time-dependent observation of structural parameters, 

facilitating a deeper understanding of atomic-level conformational changes. By means of 

the ptraj and cpptraj modules of AMBER14, parameters such as Root Mean Square 

Deviation (RMSD), Root Mean Square Fluctuation (RMSF), and Radius of Gyration (Rg) 

can be analyzed.  

(i) Root Mean Square Deviation (RMSD):  

    RMSD is a measurement used to determine a structure’s deviation from a certain 

conformation. 

     It is described as:  

     𝑅𝑀𝑆𝐷 = [
𝛴𝑁(𝑅𝑖−𝑅𝑖

0)
2

𝑁
]

1
2⁄

……………………... (3.42) 

where Ri is the vector location of particle i (the target atom) in the snapshot, 𝑅𝑖
0 is the 

coordinate vector for reference atom i, and N is the total number of atoms/residues 

taken into account in the computation. Using backbone atoms and the simulation's 

first frame as a reference, the RMSD was calculated. The RMSD is the product of 

the number of locations (i), the number of strands (j), and the number of angular 

parameters (k). The value of N in the above equation denotes the total number of 

variables needed to compute the RMSD. A radial vector of length r in the structure 
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space denoted by the RMSD absolute magnitude is the calculated RMSD. 

  

(ii)  Root Mean Square Fluctuation (RMSF):  

The measurement of deviation between particle position i and a reference position 

is known as the root mean square fluctuation (RMSF):  

𝑅𝑀𝑆𝐹 = (
1

𝑇
𝛴𝑡=1

𝑇 (𝑟𝑖(𝑡) − 𝑟𝑖
𝑟𝑒𝑓

)
2

)
1

2⁄

…………………….. (3.43) 

 

In Equation 3.43, The time period over which one intends to average is known as 

T,  𝑟𝑖(𝑡) is the Instantaneous Position of Atom i at Time t and 𝑟𝑖
𝑟𝑒𝑓

 as the reference 

position of particle i. The reference position will be the time-averaged position of 

the same particle i, i.e. 𝑟𝑖𝑟ⅇ𝑓 = 𝑟𝑖.  

Difference between RMSD and RMSF: In MD simulations, the structural variations 

of biomolecules are commonly assessed using RMSD and RMSF. RMSD measures 

the overall deviation between two structures for a given set of atoms, while RMSF 

quantifies fluctuations around an average position for each atom, residue, or a 

collection of structures over a trajectory. It is possible to have an RMSD of zero with 

a non-zero RMSF for every atom, or a high RMSD with a low RMSF if a significant 

conformational change occurs, followed by minimal atomic fluctuations. 

(iii)  Radius of Gyration (Rg):  

The radius of gyration is computed to assess the structure's compactness.:  

𝑅𝑔 = (
𝛴𝑖|𝑟𝑖|2𝑚𝑖

𝛴𝑖𝑚𝑖
)

2

……………………………………. (3.44) 

In Equation 3.44, mi is the mass of the atom i and ri is the position of atom i with 

respect to the center of mass (CoM) of the molecule. 
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