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Computational Investigation on the Efficiency of Small Molecule Inhibitors 

Identified from Indian Spices against SARS-CoV-2 Mpro  

 

5.1. Abstract: 

 
Recently, small compounds from Indian spices (Carnosol, Arjunglucoside-I, and Rosmanol) have been 

identified as SARS-CoV-2 main protease (Mpro) inhibitors. The structural dynamics and characteristic 

features of binding of these small molecules to the SARS-CoV-2 Mpro are not well understood. Here, 

we have constructed the potential of mean force (PMF) for dissociating Mpro-small molecule inhibitor 

complexes from the umbrella sampling simulations using the weighted histogram analysis method. 

Mpro-small molecule inhibitor complexes exhibited relatively higher dissociation energy values than the 

alpha-ketoamide-Mpro complex (positive control) from the PMF calculations. We found that binding 

affinity between protein and ligand is higher in Mpro-Arjunglucoside-I complex [∆Gbind = -19.74 

kcal/mol from MM-GBSA and ∆Gbind = -9.13 kcal/mol from MM-PBSA] than in other three SARS CoV-

2 small molecule complexes. The MM-GBSA/MM-PBSA calculations revealed that the small molecule 

inhibitors studied in this work have substantially higher binding affinity for Mpro. We found the residues 

present in SARS-CoV-2 Mpro's binding pocket contributed the most binding free energy to SARS CoV-

2 Mpro-small molecule interactions. Our findings emphasize the structural and binding features of the 

identified small molecule inhibitors with SARS-CoV-2 Mpro, which could be relevant in developing 

therapeutic candidates to combat SARS-CoV-2. 

 

5.2. Introduction: 

 

A unique strain of SARS-CoV-2 coronavirus was first detected in Wuhan, a city in China's Hubei 

Province with a population of 11 million people, in December 2019, following a pneumonia outbreak 

with no clear reason. The virus has spread to more than 200 countries and territories around the world, 

and on March 11, 2020, the World Health Organization (WHO) declared it a pandemic [1,2]. There was 

288,767,991 laboratory-confirmed coronavirus disease 2019 (COVID 19) infection worldwide as of the 

1st of January 2022, with 5,455,634 recorded fatalities. On 16 March 2020, outside of China, the number 

of cases and deaths surpassed those within the country [3]. SARS-CoV-2 belongs to the coronavirinae  
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family of single-stranded RNA viruses, divided into four genera: alpha, beta, gamma, and delta [4, 5]. 

The majority of this family's members are enzootic, with only a few species infecting humans (namely  

alpha and beta coronaviruses). It also causes minor infections in people, akin to the common cold, and 

is responsible for 10-30% of upper respiratory tract infections in adults. More severe infections are 

uncommon, but enteric and neurological diseases may be caused by coronaviruses [6]. A coronavirus 

might generally take up to two weeks to incubate [7]. Middle East Respiratory Syndrome (MERS), first 

reported in September 2012 in Saudi Arabia, and severe acute respiratory syndrome (SARS), first 

reported in 2003 in southern China, are two previous coronavirus outbreaks. MERS infected almost 

2,500 people, resulting in more than 850 deaths, while SARS infected over 8,000 people, resulting in 

approximately 800 deaths. The case fatality rates were 35 percent and 10 percent for these conditions, 

respectively. SARS-CoV-2 is a novel coronavirus strain that has never been found in humans before. 

Although the incubation period of this strain is currently unknown, the US Centers for Disease Control 

and Prevention advise that symptoms can appear as soon as 2 days after exposure and as late as 14 days 

after exposure [7]. The current pandemic predicament has prompted the scientific community to conduct 

a time-sensitive quest for effective antiviral therapy techniques. Computational techniques are one of the 

most extensively used approaches for detecting potential therapeutic agents. Several drug like or lead-

like candidates have been found or repurposed against the SARS-CoV-2 drug target proteins. It is well 

known that viruses that cause human disease encode one or more proteases, which are essential 

components of the viral life cycle.  

Proteases are the ideal therapeutic targets for viral infections because they cleave the viral polyprotein, 

allowing the virus to continue to replicate [8, 9]. In cases where the virus has evolved mutational 

resistance, protease inhibitors have been employed along with the drug treatment. Protease inhibitors 

were utilized in conjunction with nucleoside reverse transcriptase to treat viral disorders such as acquired 

immunodeficiency syndrome, and this combination therapy method to overcome drug resistance was 

successful. The SARS-CoV-2 replicase enzyme encodes pp1a and pp1ab polyproteins, which create all 

functional polypeptide units required for replication and transcription. The catalytic cleavage action of 

3CLpro releases polypeptides at different subsites of polyproteins. For all coronaviruses, this cleavage 

mechanism is retained in 3CLpro. The protease 3CLpro has been identified as a possible therapeutic 

target for COVID-19 therapy due to its important role in viral replication and the lack of a similar 

homolog in humans [10-22]. SARS-CoV-2 Mpro plays a critical function in the processing of 

polyproteins transcribed from viral RNA, and therefore this protease is viewed as a key to critical 
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survival and development. Despite its potential, the search for 3CLpro inhibitors that could be used to 

treat COVID-19 has so far been unsuccessful. For the COVID-19 treatment, many computational studies 

have focused on currently available antiviral medicines [23-33] targeting the viral replication process. 

Computer-aided drug discovery technologies have developed as crucial and powerful tools in the drug 

development process over the last decade. They have been used to uncover protein inhibitors and analyze 

protein-drug and protein-protein interactions. Because turning a candidate drug into an approved drug is 

a time-consuming and costly process. A combination of computer methodologies such as virtual 

screening, docking, MD simulation, and binding free energy evaluation can help identify potential drug 

candidates from compound libraries. Many in silico studies have been conducted to identify potential 

SARS-CoV-2 inhibitors. In one of the studies, using the virtual screening method, small chemical 

molecules (Carnosol (CAN), Arjunglucoside-I (ARJ), and Rosmanol (ROS)) from Indian spices have 

been identified, and the results showed that they have the capacity to inhibit SARS-CoV-2 Mpro and 

may have antiviral properties against nCoV [34]. Furthermore, anti-carcinogenic activities have been 

reported for these small chemical compounds [36-37]. However, more research into these inhibitors' 

effects on SARS-CoV-2 Mpro is needed before clinical trials may be undertaken. In this study, we used 

the potential of the mean force method to show these small molecule inhibitors' likely binding 

(unbinding) approach with SARS-CoV-2 Mpro during the formation (dissociation) of the corresponding 

complex in terms of free energy as a function of the reaction coordinate. 

 

 We employed molecular docking and MD simulations to study the binding interaction of the small 

molecule inhibitors with SARS-CoV-2 Mpro. These small molecule inhibitors SARS-CoV-2 Mpro 

complexes were subjected to binding free energy calculations and a per-residue energy breakdown study. 

The molecular mechanics Poisson Boltzmann surface area (MM-PBSA) and the molecular mechanics 

Generalized Borne Surface area (MM-GBSA) approaches were applied to compute the binding free 

energy and identify the residues of Mpro involved in interaction with the small molecule inhibitors. The 

MM-GBSA/MM-PBSA calculations exhibited that the small molecule inhibitors considered in this study 

showed a marked binding affinity with Mpro compared to the positive control (P3-Capped alpha-

ketoamide inhibitor 40 (AKA)). In this study, we have considered AKA a positive control because 

recently, AKA was reported to be more potent than anti-HIV retroviral drugs such as lopinavir and 

darunavir [21]. The contribution of each residue to the binding free energy was examined to gain a better 

knowledge of the binding features of Mpro-small molecule inhibitor complexes. Our findings emphasize 
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the structural and binding features of the identified small molecule inhibitors with SARS-CoV-2 Mpro, 

which could be relevant in developing therapeutic candidates to combat SARS-CoV-2. 

 

5.3. Materials and methods:  

5.3.1. Initial structure preparation and molecular docking.  

5.3.1.1.  Preparation of receptor (SARS-CoV-2 Mpro). 

The receptor molecule for docking purpose was the 3-D structure of the SARS-CoV-2 Mpro with 

unliganded active site (PDB ID: 6y84 with resolution of 1.39 Å) which was obtained from the Research 

Collaboratory for Structural Bioinformatics Protein Data bank (RCSB-PDB) (www.rcsb.org) [38]. 

 

5.3.1.2. Preparation of ligands. 

The Chemical structures of the ligands, namely (i) Alpha-ketoamide (positive control) (ii) Arjunglucoside-

I (iii) Carnosol and (iv) Rosmanol in SDF format was retrieved from PubChem online server details are 

summarized in (Table 5.1). The Open bable server was used to convert the SDF format of these small 

molecules to PDB format. 

 

5.3.1.3. Preparation of the SARS-CoV-2 Mpro-ligand complexes. 

The receptor molecule (SARS-CoV-2 Mpro) retrieved from Protein Data Bank was then docked to the 

ligands (Alpha-ketoamide, Arjunglucoside-I, Carnosol and Rosmanol) using the PatchDock/Firedock [39] 

online docking server. PatchDock employs a structure-based molecular docking technique. The 

PatchDock algorithm splits the protein molecules' Connolly dot surface representation into three classes: 

convex, concave, and flat patches [41,42]. The candidate transformations were then created by combining 

complementary patches. 
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Table 5.1. Details of the small molecule inhibitors obtained from Pubchem database. 

S.no. Name of small molecule PubChem-ID                   Structure 

1. Alpha-ketoamide (AKA) 6481510  

 
 

2. Arjunglucoside-I  (ARJ) 14658050  

 
 

3. Carnosol (CAN) 442009  

 
 

4. Rosmanol (ROS) 13966122  

 
 

A scoring function that includes both the atomic desolvation energy and geometric fit is also applied 

to evaluate each candidate transformation.  First, RMSD clustering is used by the candidate solutions 

to eliminate redundant Solution. The PDB coordinate files of protein and ligand molecules are used 

as input parameters for docking. In the PatchDock analysis, three key processes are followed: (i) 

surface patch matching, (ii) molecular shape representation, and (iii) filtering and scoring. From the 

PatchDock server, many resulting docked model complexes were generated for the four SARS-CoV-

2 Mpro-ligand complex system. In all the four complex systems, the initial complex structure was 
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chosen based on its atomic contact energy, geometric surface, and geometric shape complementarity 

score. Using UCSF Chimera [42], the complex structure was examined, the ligand and receptor 

sections were separated, and their co-ordinates were stored in mol2 and PDB formats respectively. 

Using the antechamber protocol, the selected solution structure was further curated in xleap. This 

includes bcc charge addition, frcmod file generation, and PDB formats respectively. Using the 

antechamber protocol, the selected solution structure was further curated in xleap. This includes bcc 

charge addition, frcmod file generation, and complex system in explicit and implicit solvation. The 

topology and coordinate files for each of the four complex systems were then prepared individually.  

 

5.3.2. MD simulation of receptor-ligand complexes.  

The initial coordinate and topology file for the separated receptor and ligands structures for all four 

complexes were produced using the AMBER ff99SB force field and the Leap module of the AMBER 

14 software package. The receptor and its ligand were then loaded together, and the coordinate and 

topology files of the loaded receptor-ligand complex were created using the Leap module in both 

implicit and explicit environments. The loaded system was solvated in all directions with the TIP3P 

[43] water model with a solvent buffer of 10 Å. The complex's charge was then neutralised by the 

addition of the appropriate number of counter ions. The four receptor-ligand complexes were then 

subjected to energy minimization in two phases using the AMBER 14 software package, with the first 

500 steps of steepest descents minimization (while preserving restraints over the solute) and the second 

500 steps of conjugate gradient minimization (devoid of restraints on the solute). 

The MD experiment was carried out according to a standard technique, which included heating 

dynamics, density, equilibration, and production dynamics. We used an energy minimized receptor-

ligand system as the starting structure for ensuing MD steps. The density procedure was performed 

after the individual receptor-ligand system was gradually heated from 0-300 K in constant volume 

(NVT) conditions. Later the system was equilibrated for 1 ns in NPT conditions (300 K and 1 atm 

pressure). The density, temperature, pressure, and energy graphs were plotted and examined to 

guarantee the system's successful equilibration Then, using the Particle Mesh Ewald (PME) method 

[44,45], we ran a 10 ns MD production run for the equilibrated structure of the receptor-ligand system 

with a time step of 2 fs. During the simulation, a cut-off of 8 Å was used to tackle nonbonding 

interactions (short-range electrostatic as well as van der Waals interactions), whereas the PME 
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approach was used to treat long-range electrostatic interactions. The SHAKE algorithm [46] was used 

to constrain all of the bonds in the system. The Berendsen weak coupling algorithm [47] was used to 

maintain the pressure and temperature (0.5 ps of heat bath and 0.2 ps of pressure relaxation) constant 

throughout the simulation. 

After the 10 ns of production dynamics of the four receptor-ligand complexes were completed, the 

RMSD clustering algorithm was used to extract the lowest energy conformer of each individual 

complex from the densely populated clusters, followed by the measurement of the centre of mass(es) 

(CoM) distance between the receptor and the ligand in the complex structure. The extracted structures 

of each of the four complexes were then used as the starting point for PMF [48] analysis. 

 

5.3.3. PMF calculation. 

AMBER software was used to create PMF for the four small molecule inhibitor complexes of SARS-

CoV-2 Mpro utilizing Alan Grossfield's Weighted Histogram Analysis Method (WHAM) [49] 

employing umbrella sampling (US) [50] simulations. PMF is used to determine free energy along a 

certain reaction coordinate, and this free energy profile aids in the identification of transition states, 

intermediates, and relative end point stabilities. However, simply running the MD simulation to 

generate free energy along the reaction coordinate will not generate accurate PMF because the energy 

barrier of interest is many times the size of kbT, so the MD simulation will either stay in the local 

minimum it started in or cross to different minima, rarely sampling the transition state. US sampling 

strategy is used with WHAM [39] which helps in attaining the transition states of the interest samples. 

The reaction coordinates for the four small molecule inhibitor complexes of SARS-CoV-2 Mpro were 

divided into series of windows by the US, and then restraints were given to the samples to keep them 

close to the center of window, ensuring that the end points overlapped.  The Hamiltonian was then 

augmented with biassing potentials to limit the molecular system to certain regions of phase space. The 

biassing potential is typically a harmonic potential that keeps the system in the reaction path close to a 

specified value. This was carried out in several windows throughout the reaction path. Equilibrium 

simulations were run in each window, and the biased probability distribution (histogram) was 

calculated. The optimal free energy constants for the combined simulations are then determined using 

the WHAM.  

The PMF calculation for studying the degree of association between the corresponding small molecule 
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inhibitor and the SARS-CoV-2 Mpro was done by increasing and decreasing the CoMs distance 

between the corresponding small molecule inhibitor and the SARS-CoV-2 Mpro in two separate 

directions from the starting point.  The CoMs distance between the small molecule inhibitor and the 

SARS-CoV-2 Mpro was altered from 8 Å to 25 Å in all four small molecule inhibitor complexes of 

SARS-CoV-2 Mpro, spanning diverse configurations. Because the buffer of water is 10 Å out of solute, 

it is expected that a component of the complex structure will emerge out of the solvation box for bigger 

distances of separation (more than 15 Å) of the ligand and receptor units in the complex. So, at a wider 

umbrella sampling distance (for each window of the US simulation), we took the solute (complex) and 

resolvated it with TIP3P water molecules with a solvent buffer of 10 Å enclosing the complex from all 

sides, as well as neutralised the system with counter ions. Prior to the US simulation, we ensured that 

the complex system's periodic boundary conditions and equilibration were in place. The system was 

run for 5 ns of MD simulation with harmonic potentials at each distance of US window to keep the 

CoM distance between the two monomeric units near the required values. For all four small molecule 

inhibitor complexes of SARS-CoV-2 Mpro, we calculated the PMF as a function of reaction coordinate.  

 

5.3.4. MD simulation of the structure with the lowest energy of the SARS-CoV-2 Mpro- 

small molecule inhibitor complexes. 

 

A structure with the lowest potential energy was chosen from the ensemble of related SARS-CoV-2 

Mpro small molecule inhibitor complex structures at the reaction co-ordinate corresponding to the 

minimum PMF values and then subjected to MD simulation to examine its prominent structural features. 

Then the same conventional approach was utilized for minimization, heating, density, equilibration, and 

production dynamics of lowest energy structure of the SARS-CoV-2 Mpro- small molecule inhibitor 

complexes, but with a 50 ns modification in the duration of the production run. The PTRAJ (short for 

Process TRAJectory) and CPPTRAJ (a rewriting of PTRAJ in C++) modules [51] of AMBER 14 Tools 

were used to evaluate the MD trajectories for the four complexes. To assess the convergence of the four 

complex systems, we looked at the RMSDs for the ligand and complex, using the corresponding initial 

structure as a reference. We also calculated the RMSFs and Rg to examine the four complexes' flexibility 

and size. In addition, for each of the four complexes, intermolecular hydrogen bond analysis were carried 

out to see how the complex's stability is altered during MD simulation. 
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5.3.5. Binding free energy (BFE) analyses for the four SARS-CoV-2 Mpro- small 

molecule inhibitor complexes. 

The four SARS-CoV-2 Mpro-small molecule inhibitor complexes were subjected to BFE investigations. 

The MMPBSA.py script [52] of the AMBER 14 suite was used to calculate the relative BFE and per-

residue energy decomposition (PRED) of the interface residues of the four complexes in this work. The 

Molecular Mechanics-Poisson Boltzmann Surface Area (MM-PBSA) and Molecular Mechanics-

Generalized Borne Surface Area (MM-GBSA) algorithms are used to create this script. To determine 

the binding free energy (ΔGbind) and comprehend the roles of electrostatic and van der Waals terms in 

the formation of complexes, the MM-PBSA/GBSA methods were used.  

  The equations (1-6) show the formulas for computing the BFE and their decomposed energy 

components. The free energy difference between the bound state complex (Gcomplex) and the free state 

individuals of receptor (Greceptor) and ligand (Gligand) is represented by the total BFE (∆Gbind). ∆Gbind can 

be divided into the enthalpy (∆H) and the entropy (-T∆S) using the second law of thermodynamics. The 

enthalpies were determined with a low computing effort using Poisson–Boltzmann or Generalized-Born 

surface area continuum solvation (MM-PBSA/MM-GBSA) method [53,54], and the entropy was 

evaluated using normal mode (nmode) analysis [55,56]. After calculating MM-PBSA/MM-GBSA using 

all of the trajectories, three components of the individual four complexes were analysed: (i) ligand (ii) 

receptor (iii) complex.  Many recent in-silico investigations [57-63] have employed the methodologies 

and protocols that we evaluated in this study to estimate the binding free energy. 

BFE for the four complex systems were calculated using Equation (1) 

                      

                  ∆Gbinding =ΔGcomplex - [ΔGreceptor+ ΔGligand] ………………..   (1) 

 

where, ∆Gbinding is the total binding free energy.  

Thermodynamically,  

                                            ∆G = ∆H-T∆S   ………………………  (2) 

                                     ∆G = ∆EMM+∆Gsol-T∆S   ……………………..   (3) 

                                 ∆EMM = ∆Eint + ∆Eele + ∆Evdw   …………………… (4) 
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and 

                                 ∆Gsol = ∆EPB/GB + ∆ESURF     ………………………. (5) 

                                      ∆ESURF = ENP + Edis     ………………………  (6) 

 

5.3.6. Enthalpy calculations with MM-GBSA/PBSA. 

 ∆Gcomplex, ∆Greceptor and ∆Gligand indicate free energy contributions from small molecule inhibitor-

SARS-CoV-2 Mpro (complex), SARS-CoV-2 Mpro (receptor), and small molecule inhibitor (ligand) 

for the four complex systems, as given in Equation 1.  

As stated in Equation 3, the enthalpy portion is derived by adding the change in molecular dynamics 

energy (∆EMM) and the solvation free energy (∆Gsol). ∆EMM  is composed of internal energy (∆Eint) 

(bond, angle and dihedral energies), electrostatic interaction (∆Eele) and vander Waals interaction 

(∆Evdw). The solvation free energy is divided into polar (∆EPB/GB) and non-polar (∆ESURF) contribution 

Equation 5. ∆EPB/GB is derived using Poisson-Boltzmann/Generalized-Boltzmann models and ∆ESURF 

is the sum of non-polar contribution calculated by PB (ENP) and dispersion energy (Edis) using Solvent 

accessibility surface area (SASA). 

 

5.3.7. Conformational entropy calculation based on nmode. 

The normal mode analysis [55,56] and the python-based mmpbsa py nabnmode tool were used to 

compute the conformational entropy (T∆S) during the interaction of receptor and ligand units in the 

four complexes. The normal modes for the complex, receptor, and ligand were determined and then 

averaged to obtain a binding entropy estimate in this study. The PRED analysis calculates the energy 

contribution of each protein residue by examining its molecular interactions across all of the complex's 

residues. 

The methods and their objectives carried out in this work have been briefed in the form of flowchart 

in Figure 5.1.  
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Figure 5.1.  Flowchart representing the methods and protocols followed in this work 

 

5.4. Results and Discussions:   

5.4.1. PMF profile of SARS-CoV-2 Mpro-ligand complexes.  

 

To analyse the unbinding pathway of each of these small molecule inhibitors and the positive control 

AKA from the SARS-CoV-2 Mpro, a PMF study was done by combining MD simulations with the 

umbrella sampling (US) method [50]. The equilibrated complex structure of Mpro –AKA/other small 

molecule inhibitors (ARJ, CAN, ROS) were chosen as the starting structure for the US simulation. 

We plotted the density, temperature, potential energy, kinetic energy, and total energy of the 

AKA/small molecules-SARS-CoV-2 Mpro complex as a function of simulation time to ensure that 

our NPT simulation algorithm was correct shown in Figure 5.2, 5.3, 5.4 and 5.5. 
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Figure 5.2. (A) Density, (B) Temperature, and (C) Energy plots of SARS-CoV-2-Alpha-ketomaide 

complex system as a function of simulation time. 

 

 

 

 

 

(A) 

(C) 

(B) 
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Figure 5.3. (A) Density, (B) Temperature, and (C) Energy plots of SARS-CoV-2-Arjunglucoside-I 

complex system as a function of simulation time. 

 

                       

 
 

Figure 5.4. (A) Density, (B) Temperature, and (C) Energy plots of SARS-CoV-2-Carnosol 

complex system as a function of simulation time 

(A) 
(B) 

(C) 

(A) (B) 

(C) 
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Figure 5.5. (A) Density, (B) Temperature, and (C) Energy plots of SARS-CoV-2-Rosmanol complex 

system as a function of simulation time. 

 

Figure 5.6 shows the PMF profile for Mpro – AKA/ small molecules (ARJ, CAN, ROS) in water at 

normal temperature as a function of reaction coordinate. The reaction co-ordinate is defined as the distance 

between the AKA/small molecules and SARS-CoV-2 Mpro centres of mass. For the Mpro – AKA/ small 

molecules, 5 ns simulations were performed for each window to assure the sampling convergence of US 

simulations. And, as shown in Figure 5.7, the convergence of PMF was evaluated after each nanosecond 

of simulations. The strategy that we have employed to check the convergence of PMF was the standard 

one and used in earlier works [63].   

The PMF depths from the US simulation of SARS-CoV-2 Mpro-small molecule systems were found to 

be larger than those from the SARS-CoV-2 Mpro-AKA complex system (Figure 5.6), indicating a deeper 

energy potential depth and hence a longer residence period of the small molecules in the SARS-CoV-2 

Mpro binding pocket. 

(A) (B) 

(C) 
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Figure 5.6. Potential of Mean Force for the association and dissociation of the SARS-CoV-2 Mpro-

small molecule complexes. 

 

 

Figure 5.7. Convergence of the PMFs calculated by umbrella sampling for (A) SARS-CoV-2-Alpha-

ketoamide (B) SARS-CoV-2-Arjunglucoside-I (C) SARS-CoV-2-Carnosol (D) SARS-CoV-2-

Rosmanol complex where 5 ns US simulation were performed. 

(A) 

(D) 

(B) 

(C) 
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             We observed use of distinct reaction coordinates (RCs), when small molecules dissociate 

from the AKA binding pocket of SARS-CoV-2 Mpro, as stated according to a comparative study of 

PMF curves. When ligands (small molecule inhibitors) moved out of the AKA binding pocket of 

SARS-CoV-2 Mpro, different phases vertical elevation of the PMF (Figure 5.6) were observed. The 

small molecules were seen to move out of the AKA binding pocket when the biased potential rises. 

In the case of the Arjunglucoside-I small molecule inhibitor (Figure 5.6), when the ligand moves out 

of the binding pocket of SARS-CoV-2 Mpro, the PMF of RCs is upgraded, and at 20 Å of RC, the 

ligand completely dissociates with a potential energy value of 12 kcal/mol. Similarly, as the PMF 

curve rises, the other small molecule inhibitors are seen gradually moving out of the binding pocket 

of SARS-CoV-2 Mpro (Figure 5.6). We detected an energy barrier when the AKA small molecule 

was unbound from the binding pocket of SARS-CoV-2 Mpro and at 22.0 Å of RC, with a potential 

energy value of 8 kcal/mol, AKA dissociates from its binding site far more easily than other small 

molecule inhibitors. The snapshots of all the complex systems taken at various windows of separation 

distances during the simulation were shown in Figure 5.8. 

  

 

(A) (B) 



 

 

CHAPTER 5 | 2025 
  

CHAINEE DAS 169 
 

 
 

Figure 5.8. Snapshots of SARS-CoV-2 (A)Mpro-Alpha-ketoamide complex structures, (B) Mpro-

Arjunglucoside-I complex, (C) Mpro-Carnosol complex structures and (D) Mpro-Rosmanol complex 

structures at discrete distance of separation (in Å) between their centre of mass. 

 

The PMF profiles of all small molecule inhibitors and AKA with SARS-CoV-2 Mpro were compared. 

According to PMF plots, AKA has the lowest dissociation energy barrier of all the small molecules 

investigated here, and is thus expected to be easily released from the binding site of SARS-CoV-2 Mpro. 

The order of dissociation of small molecule inhibitors from the AKA binding site of SARS-CoV-2 Mpro 

was determined by PMF plots to be AKA < Rosmanol < Carnosol < Arjunglucoside-I. 

From Figure 5.6, we see that the four small molecule- SARS-CoV-2 Mpro complexes show the minimum 

PMF values at different distances of separation and also exhibit different dissociation energy values in 

kcal/mol. The results have been summarized in Table 5.2.   

(C) 
(D) 
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Table 5.2. Details of Umbrella Sampling Simulation 

Sl. 

no. 

Name of the complex Equilibrium distance 

(Å) at minimum PMF 

value 

Dissociation 

energy (kcal/mol) 

Distance 

samples (Å) 

Duration (ns)for 

umbrella sampling, 

each window side 

being 5ns. 

1 AKA- SARS-CoV-2 

Mpro 

19.5 9 8-25 Å 90 ns 

2 ARJ- SARS-CoV-2 

Mpro 

20 11 8-25 Å 90 ns 

3 CAN- SARS-CoV-2 

Mpro 

15 10 8-25 Å 90 ns 

4 ROS- SARS-CoV-2 

Mpro 

17.5 9.5 8-25 Å 90 ns 

               

When the distance between the small molecule inhibitors and the SARS-CoV-2 Mpro crosses 22 Å, we 

noticed that there are no more interactions between them. The PMF was observed to increase when the 

inter-molecular distance between SARS-CoV-2 Mpro and the small molecules was lowered below the 

optimum equilibrium distance (15 Å in the case of Carnosol, 18 Å in the case of Rosmanol, 19 Å in the 

case of Arjunglucoside-I and Alpha-ketoamide). 

 

5.4.2. Salient structural features of the minimum PMF structure of the small molecule 

inhibitors-SARS-CoV-2 Mpro complex. 

5.4.2.1.  Molecular dynamics analysis. 

 

Because it works with atomic-level interactions, MD is a useful computational tool for deciphering the 

physical foundation of biological macromolecule structure and function.  From their corresponding 50 ns 

MD simulation trajectories, changes in the structure and stability of small molecule inhibitors-SARS-

CoV-2 Mpro complexes were investigated. The trajectories obtained from 50 ns simulation for SARS-

CoV-2 Mpro complexed with AKA (positive control), Arjunglucoside-I, Carnosol and Rosmanol were 

analyzed using the CPPTRAJ module of Amber program.  The 3-D structure of the four complexes 

isolated at their minimum PMF value were used as starting structure for the corresponding simulation. 
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5.4.3. Stability Profile Analysis of the SARs-CoV-2 Mpro protein-ligand complexes. 

The dynamic stability and structural behaviour of the SARS-CoV-2 Mpro-small molecule inhibitor 

complexes were investigated using MD simulations. The MD simulation data trajectory files were 

obtained over a 50-ns simulation time period. 

5.4.3.1.  Root Mean Square Deviation (RMSD) analysis 

The atom-positional root mean-square deviation (RMSD) obtained from roto-translational least-squares 

fitting is likely the most commonly utilised measure for structural comparison and stability. The degree 

of structural variability in a particular ensemble is captured by RMSD values, which can be related to the 

intrinsic flexibility of a specific structure or the uncertainty of the structural refinements.  The arithmetic 

mean is frequently used to summarise the parameters of this distribution, which is typically determined 

for backbone atoms. RMSD from the starting structure for the C-α backbone atoms from all the residues 

of Mpro complexed with AKA (positive control), Arjunglucoside-I, Carnosol and Rosmanol were 

calculated (Figure 5.9) from the 50 ns MD simulations.  The simulation findings showed that when the 

Mpro was complexed with the small molecule inhibitors, the final RMSD variation from the initial model 

of C- and backbone atoms showed stable conformation, which was maintained throughout the simulation 

time of 50 ns.  RMSD plots of Mpro complexed with the four ligands were similar, ranging between 0.7 

Å and 1.7 Å.   The amplitude of the fluctuation and the modest change in the average RMSD value of the 

C-backbone atoms, clearly shows that the four SARS-CoV-2 Mpro protein-ligand complex structures 

have a stable dynamic behaviour. In the four complexes, we have also calculated the RMSD of the four 

small molecule inhibitors (Figure 5.10) to check whether they are stable in the active site of SARS-CoV-

2 and also to identify their possible binding modes. From the RMSD analysis of ligands, we found that 

among the four ligands, AKA showed larger fluctuations in the RMSD values.  So, the small molecule 

inhibitors that have been identified from Indian spices are stable in the active site in comparison with the 

positive control. 
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Figure 5.9. Root Mean Square Deviation (RMSD) analysis of the SARS-CoV-2 Mpro-small molecule 

inhibitor complexes as a function of simulation time in picoseconds (ps). 

 

Figure 5.10. Root Mean Square Deviation (RMSD) analysis of the small molecule inhibitors in 

the complexes as a function of simulation time in picoseconds (ps). 
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5.4.3.2. Root Mean Square Fluctuation (RMSF) analysis 

 

Residues RMSF analysis was used to determine the residues responsible for complex structural 

fluctuations in the four SARS-CoV-2 Mpro complexes (Figure 5.11). The average position of 

fluctuations of all the Cα-atoms in the amino acid residues of the complex is depicted by RMSF 

analysis.  In all the four SARS-CoV-2 Mpro-ligand complexes, greater fluctuations were observed at 

the residues near the binding site of the ligand. 

 

Figure 5.11. Root Mean Square Fluctuation (RMSF) Analysis of the SARS-CoV-2 Mpro-small 

molecule inhibitor complexes as a function of Residue index. 

 

5.4.3.3. Radius of gyration (Rg) analysis.  

 

The mass-weighted root-mean-square distance of atoms from their centre of mass is known as the radius 

of gyration (Rg). Figure 5.12 depicts the information about the compactness, shape, and folding of the 

four complex structures at various point scales throughout the 50 ns of MD simulation trajectory. 

Throughout the 50 ns simulation time, all four complexes showed a similar pattern in terms of Rg value. 

It denotes the four complexes' long-term stability and compactness. 
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Figure 5.12. Radius of gyration analysis (Rg) of the SARS-CoV-2 Mpro-small molecule inhibitor 

complexes as a function of simulation time in picoseconds (ps). 

 

5.4.3.4. Protein-ligand contact profiles. 

From the MD simulation trajectories, the protein-ligand interaction patterns for all ligands with SARS-

CoV-2 Mpro were obtained from the PDBsum server as shown in Table 5.3-5.6 as well as from the LigPlot 

tool as shown in Figure 5.13.  During the 50 ns simulation of the SARS-CoV-2 Mpro alpha-ketoamide 

complex, we found the residues GLU165, LEU166, PRO167, GLN188, ASN141, SER143, HIE162, 

HIE163, MET48, THR26 of SARS-CoV-2 Mpro have been involved in interaction with the ligand via 

hydrogen bonding, hydrophobic, ionic, and water bridge interactions. In other small molecule inhibitors- 

SARS-CoV-2 Mpro complexes, we see residues near the active site of Mpro were involved in interaction 

with the ligands through hydrogen bonding, hydrophobic, ionic and water bridges interactions during the 

50 ns of simulation.  

Table 5.3. List of atom-atom interactions(non-bonded) across protein-ligand interface in SARS-CoV2 

Mpro- AKA complex from PDBsum server 

 

SARS-CoV-2 Mpro 

non- 

bonded  

Alpha-ketoamide (AKA) 

Sl.no 

  

Atom 

no. 

Atom 

name 

Res 

name 

Res 

no. 

Atom 

no. 

Atom 

name 

Res 

name 

Res 

no. 

  

Distance 

1 2609 CD GLU 165 ---- 1 O26 AKA 1 3.61 

2 2611 OE2 GLU 165 ---- 1 O26 AKA 1 3.21 
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3 2631 C LEU 166 ---- 5 C31 AKA 1 3.73 

4 2633 N PRO 167 ---- 5 C31 AKA 1 3.76 

5 2945 NE2 GLN 188 ---- 11 O22 AKA 1 3.11 

6 2945 NE2 GLN 188 ---- 16 C20 AKA 1 3.79 

7 2266 CG ASN 141 ---- 22 O37 AKA 1 3.65 

8 2267 OD1 ASN 141 ---- 22 O37 AKA 1 3.15 

9 2945 NE2 GLN 188 ---- 23 N38 AKA 1 3.74 

10 2603 CB GLU 165 ---- 27 C47 AKA 1 3.78 

11 2603 CB GLU 165 ---- 29 N49 AKA 1 3.43 

12 2609 CD GLU 165 ---- 29 N49 AKA 1 3.78 

13 2610 OE1 GLU 165 ---- 29 N49 AKA 1 3.37 

14 2610 OE1 GLU 165 ---- 30 C51 AKA 1 3.77 

15 2287 OG SER 143 ---- 31 C54 AKA 1 3.58 

16 2557 CE1 HIE 162 ---- 31 C54 AKA 1 3.64 

17 2559 NE2 HIE 162 ---- 31 C54 AKA 1 3.58 

18 2581 O HIE 163 ---- 32 C57 AKA 1 3.85 

19 2945 NE2 GLN 188 ---- 33 O40 AKA 1 3.77 

20 787 SD MET 48 ---- 37 C13 AKA 1 3.59 

21 788 CE MET 48 ---- 38 C14 AKA 1 3.84 

22 788 CE MET 48 ---- 39 C28 AKA 1 3.52 

23 439 CG2 THR 26 ---- 40 C26 AKA 1 3.79 

24 2267 OD1 ASN 141 ---- 42 C23 AKA 1 3.24 

25 2273 N GLY 142 ---- 42 C23 AKA 1 3.87 

26 2267 OD1 ASN 141 ---- 43 C15 AKA 1 3.6 

 

Table 5.4A. List of atom-atom interactions (Hydrogen bonds) across protein-protein interface in 

SARS-Cov2- ARJ complex from PDBsum server. 
 

SARS-CoV-2 Mpro 
Hydrogen  

bonds 

Arjunglucoside (ARJ) 

Sl.no Atom Atom Res Res Atom Atom Res Res   

  no. name name no. no. name name no. Distance 

1 795 OG SER 47 <-- 9 O8 ARJG 1 3.24 

2 722 NE2 HIE 42 --> 11 O10 ARJG 1 2.98 

3 2629 O HIE 165 <-- 11 O10 ARJG 1 3.16 
 

 

Table 5.4B. List of atom-atom interactions (non-bonded) across protein-protein interface in SARS-

Cov2- ARJ complex from PDBsum server. 
 

SARS-CoV-2 Mpro non- 

bonded 

 

Arjunglucoside (ARJ) 

Sl.no. Atom Atom Res Res Atom Atom Res Res   

  no. name name no. no. name name no.   Distance 

1 2272 CB PHE 141 --- 3 O2 ARJG 1 3.13 
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2 2275 CG PHE 141 --- 3 O2 ARJG 1 3.31 

3 2284 CD2 PHE 141 --- 3 O2 ARJG 1 3.8 

4 2332 CB SER 145 --- 3 O2 ARJG 1 3.54 

5 2632 CA MET 166 --- 6 O5 ARJG 1 3.84 

6 2645 C MET 166 --- 6 O5 ARJG 1 3.59 

7 2647 N GLU 167 --- 6 O5 ARJG 1 3.08 

8 2649 CA GLU 167 --- 6 O5 ARJG 1 3.88 

9 2651 CB GLU 167 --- 6 O5 ARJG 1 3.46 

10 2629 O HIE 165 --- 7 O6 ARJG 1 3.42 

11 2632 CA MET 166 --- 7 O6 ARJG 1 3.69 

12 792 CB SER 47 --- 9 O8 ARJG 1 3.76 

13 795 OG SER 47 --- 9 O8 ARJG 1 3.24 

14 836 SD MET 50 --- 9 O8 ARJG 1 3.59 

15 830 CB MET 50 --- 10 O9 ARJG 1 3.69 

16 836 SD MET 50 --- 10 O9 ARJG 1 3.59 

17 837 CE MET 50 --- 10 O9 ARJG 1 3.54 

18 2959 CA ARG 189 --- 10 O9 ARJG 1 3.62 

19 2979 C ARG 189 --- 10 O9 ARJG 1 3.6 

20 2981 N GLN 190 --- 10 O9 ARJG 1 3.55 

21 720 CE1 HIE 42 --- 11 O10 ARJG 1 3.46 

22 722 NE2 HIE 42 --- 11 O10 ARJG 1 2.98 

23 2629 O HIE 165 --- 11 O10 ARJG 1 3.16 

24 2634 CB MET 166 --- 11 O10 ARJG 1 3.58 

25 2947 CA ASP 188 --- 11 O10 ARJG 1 3.8 

26 2955 C ASP 188 --- 11 O10 ARJG 1 3.43 

27 2956 O ASP 188 --- 11 O10 ARJG 1 3.45 

28 2659 OE2 GLU 167 --- 22 C10 ARJG 1 3.45 

29 2659 OE2 GLU 167 --- 29 C17 ARJG 1 3.58 

30 2658 OE1 GLU 167 --- 31 C19 ARJG 1 3.68 

31 2305 C LEU 142 --- 32 C20 ARJG 1 3.57 

32 2306 O LEU 142 --- 32 C20 ARJG 1 3.35 

33 2307 N ASN 143 --- 32 C20 ARJG 1 3.73 

34 2309 CA ASN 143 --- 32 C20 ARJG 1 3.76 

35 2628 C HIE 165 --- 34 C22 ARJG 1 3.58 

36 2629 O HIE 165 --- 34 C22 ARJG 1 3.47 

37 2630 N MET 166 --- 34 C22 ARJG 1 3.57 

38 2632 CA MET 166 --- 34 C22 ARJG 1 3.8 

39 2339 N CYS 146 --- 38 C26 ARJG 1 3.78 

40 2341 CA CYS 146 --- 38 C26 ARJG 1 3.49 

41 2343 CB CYS 146 --- 38 C26 ARJG 1 3.77 

42 2346 SG CYS 146 --- 38 C26 ARJG 1 3.78 

43 2612 O HIE 164 --- 38 C26 ARJG 1 3.85 

44 2630 N MET 166 --- 40 C28 ARJG 1 3.71 
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45 2645 C MET 166 --- 40 C28 ARJG 1 3.9 

46 2646 O MET 166 --- 40 C28 ARJG 1 3.38 

47 2745 CD2 HIE 173 --- 40 C28 ARJG 1 3.9 

48 2337 C SER 145 --- 41 C29 ARJG 1 3.74 

49 2338 O SER 145 --- 41 C29 ARJG 1 3.38 

50 2634 CB MET 166 --- 47 C35 ARJG 1 3.73 

51 2955 C ASP 188 --- 47 C35 ARJG 1 3.7 

52 2957 N ARG 189 --- 47 C35 ARJG 1 3.73 

53 2980 O ARG 189 --- 47 C35 ARJG 1 3.61 
 

 

Table 5.5A. List of atom-atom interactions (Hydrogen bonds) across protein-protein interface in 

SARS-Cov2- CAN complex from PDBsum server. 

 

SARS-CoV-2 Mpro Hydrogen  

bonds 

 

Carnosol (CAN) 

Sl.no Atom Atom Res Res Atom Atom Res Res   

  no. name name no. No. name name no. Distance 

1 667 NE2 HIE 42  3 O3 CAN 1 3.27 

 

 

Table 5.5B. List of atom-atom interactions (non-bonded) across protein-protein interface in SARS-

Cov2- CAN complex from PDBsum server. 
 

SARS-CoV-2 Mpro non- 

bonded 

 

Carnosol (CAN) 

Sl.no. Atom Atom Res Res Atom Atom Res Res   

  no. name name no. no. name name no. Distance 

1 2593 N GLU 167 --- 1 O1 CAN 1 3.28 

2 2607 O GLU 167 --- 1 O1 CAN 1 3.5 

3 2597 CB GLU 167 --- 1 O1 CAN 1 3.83 

4 667 NE2 HIE 42 --- 3 O3 CAN 1 3.27 

5 669 CD2 HIE 42 --- 3 O3 CAN 1 3.76 

6 2580 CB MET 166 --- 3 O3 CAN 1 3.8 

7 2926 O ARG 189 --- 3 O3 CAN 1 3.78 

8 663 CG HIE 42 --- 4 O4 CAN 1 3.72 

9 664 ND1 HIE 42 --- 4 O4 CAN 1 3.42 

10 665 CE1 HIE 42 --- 4 O4 CAN 1 2.39 

11 667 NE2 HIE 42 --- 4 O4 CAN 1 2.1 

12 669 CD2 HIE 42 --- 4 O4 CAN 1 3.09 

13 2563 CB HIE 165 --- 4 O4 CAN 1 3.67 

14 2574 C HIE 165 --- 4 O4 CAN 1 3.53 

15 2575 O HIE 165 --- 4 O4 CAN 1 2.99 

16 2578 CA MET 166 --- 5 C1 CAN 1 3.79 

17 2591 C MET 166 --- 5 C1 CAN 1 3.88 

18 2580 CB MET 166 --- 5 C1 CAN 1 3.15 
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19 2587 CE MET 166 --- 5 C1 CAN 1 3.2 

20 2593 N GLU 167 --- 5 C1 CAN 1 3.4 

21 2606 C GLU 167 --- 5 C1 CAN 1 3.59 

22 2607 O GLU 167 --- 5 C1 CAN 1 2.79 

23 2580 CB MET 166 --- 6 C2 CAN 1 3.51 

24 2587 CE MET 166 --- 7 C3 CAN 1 3.24 

25 2606 C GLU 167 --- 7 C3 CAN 1 3.88 

26 2607 O GLU 167 --- 7 C3 CAN 1 2.85 

27 2972 CB GLN 193 --- 7 C3 CAN 1 3.53 

28 2980 NE2 GLN 193 --- 7 C3 CAN 1 3.7 

29 2578 CA MET 166 --- 8 C4 CAN 1 3.24 

30 2591 C MET 166 --- 8 C4 CAN 1 2.85 

31 2592 O MET 166 --- 8 C4 CAN 1 3.81 

32 2580 CB MET 166 --- 8 C4 CAN 1 3.25 

33 2587 CE MET 166 --- 8 C4 CAN 1 3.85 

34 2593 N GLU 167 --- 8 C4 CAN 1 2 

35 2595 CA GLU 167 --- 8 C4 CAN 1 2.55 

36 2606 C GLU 167 --- 8 C4 CAN 1 2.36 

37 2607 O GLU 167 --- 8 C4 CAN 1 1.89 

38 2597 CB GLU 167 --- 8 C4 CAN 1 3.39 

39 2608 N LEU 168 --- 8 C4 CAN 1 3.61 

40 2926 O ARG 189 --- 9 C5 CAN 1 3.32 

41 2929 CA GLN 190 --- 9 C5 CAN 1 3.7 

42 2980 NE2 GLN 193 --- 9 C5 CAN 1 3.81 

43 2587 CE MET 166 --- 10 C6 CAN 1 3.27 

44 2957 O THR 191 --- 10 C6 CAN 1 3.39 

45 2972 CB GLN 193 --- 10 C6 CAN 1 2.85 

46 2975 CG GLN 193 --- 10 C6 CAN 1 2.87 

47 2978 CD GLN 193 --- 10 C6 CAN 1 2.81 

48 2980 NE2 GLN 193 --- 10 C6 CAN 1 2.28 

49 2578 CA MET 166 --- 11 C7 CAN 1 2.85 

50 2591 C MET 166 --- 11 C7 CAN 1 2.79 

51 2580 CB MET 166 --- 11 C7 CAN 1 3.37 

52 2593 N GLU 167 --- 11 C7 CAN 1 1.94 

53 2595 CA GLU 167 --- 11 C7 CAN 1 2.92 

54 2606 C GLU 167 --- 11 C7 CAN 1 3.38 

55 2607 O GLU 167 --- 11 C7 CAN 1 3.11 

56 2597 CB GLU 167 --- 11 C7 CAN 1 3.19 

57 2578 CA MET 166 --- 12 C8 CAN 1 2.93 

58 2591 C MET 166 --- 12 C8 CAN 1 3.85 

59 2580 CB MET 166 --- 12 C8 CAN 1 2.52 

60 2593 N GLU 167 --- 12 C8 CAN 1 3.77 

61 2926 O ARG 189 --- 13 C9 CAN 1 2.77 
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62 2957 O THR 191 --- 13 C9 CAN 1 3.68 

63 2975 CG GLN 193 --- 13 C9 CAN 1 3.76 

64 2978 CD GLN 193 --- 13 C9 CAN 1 3.32 

65 2980 NE2 GLN 193 --- 13 C9 CAN 1 2.26 

66 2574 C HIE 165 --- 14 C10 CAN 1 3.78 

67 2575 O HIE 165 --- 14 C10 CAN 1 3.45 

68 2576 N MET 166 --- 14 C10 CAN 1 3.33 

69 2578 CA MET 166 --- 14 C10 CAN 1 2.05 

70 2591 C MET 166 --- 14 C10 CAN 1 2.82 

71 2580 CB MET 166 --- 14 C10 CAN 1 2.44 

72 2593 N GLU 167 --- 14 C10 CAN 1 2.68 

73 2607 O GLU 167 --- 16 C12 CAN 1 2.89 

74 2587 CE MET 166 --- 17 C13 CAN 1 2.6 

75 2606 C GLU 167 --- 17 C13 CAN 1 3.37 

76 2607 O GLU 167 --- 17 C13 CAN 1 2.64 

77 2608 N LEU 168 --- 17 C13 CAN 1 3.86 

78 2610 CA LEU 168 --- 17 C13 CAN 1 3.72 

79 2615 CG LEU 168 --- 17 C13 CAN 1 3.11 

80 2621 CD2 LEU 168 --- 17 C13 CAN 1 2.55 

81 2972 CB GLN 193 --- 17 C13 CAN 1 3.15 

82 667 NE2 HIE 42 --- 18 C14 CAN 1 3.8 

83 2575 O HIE 165 --- 18 C14 CAN 1 3.7 

84 2578 CA MET 166 --- 18 C14 CAN 1 3.51 

85 2580 CB MET 166 --- 18 C14 CAN 1 2.92 

86 2574 C HIE 165 --- 19 C15 CAN 1 2.67 

87 2575 O HIE 165 --- 19 C15 CAN 1 2.16 

88 2576 N MET 166 --- 19 C15 CAN 1 2.56 

89 2578 CA MET 166 --- 19 C15 CAN 1 1.89 

90 2591 C MET 166 --- 19 C15 CAN 1 2.96 

91 2580 CB MET 166 --- 19 C15 CAN 1 2.78 

92 2593 N GLU 167 --- 19 C15 CAN 1 3.23 

93 2561 CA HIE 165 --- 20 C16 CAN 1 3.39 

94 2574 C HIE 165 --- 20 C16 CAN 1 2.17 

95 2575 O HIE 165 --- 20 C16 CAN 1 1.3 

96 2576 N MET 166 --- 20 C16 CAN 1 2.74 

97 2578 CA MET 166 --- 20 C16 CAN 1 2.67 

98 2580 CB MET 166 --- 20 C16 CAN 1 3.14 

99 665 CE1 HIE 42 --- 21 C17 CAN 1 3.76 

100 667 NE2 HIE 42 --- 21 C17 CAN 1 3.32 

101 2574 C HIE 165 --- 21 C17 CAN 1 3.13 

102 2575 O HIE 165 --- 21 C17 CAN 1 2.51 

103 2576 N MET 166 --- 21 C17 CAN 1 3.62 

104 2578 CA MET 166 --- 21 C17 CAN 1 3.33 
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105 2580 CB MET 166 --- 21 C17 CAN 1 3.11 

106 2287 CA CYS 146 --- 22 C18 CAN 1 3.73 

107 2289 CB CYS 146 --- 22 C18 CAN 1 3.27 

108 2292 SG CYS 146 --- 22 C18 CAN 1 2.86 

109 2559 N HIE 165 --- 22 C18 CAN 1 3.73 

110 2561 CA HIE 165 --- 22 C18 CAN 1 2.53 

111 2563 CB HIE 165 --- 22 C18 CAN 1 3.5 

112 2574 C HIE 165 --- 22 C18 CAN 1 1.69 

113 2575 O HIE 165 --- 22 C18 CAN 1 0.55 

114 2576 N MET 166 --- 22 C18 CAN 1 2.83 

115 2578 CA MET 166 --- 22 C18 CAN 1 3.46 

116 2287 CA CYS 146 --- 23 C19 CAN 1 3.8 

117 2292 SG CYS 146 --- 23 C19 CAN 1 3.56 

118 2550 ND1 HIE 164 --- 23 C19 CAN 1 3.11 

119 2551 CE1 HIE 164 --- 23 C19 CAN 1 3.5 

120 2557 C HIE 164 --- 23 C19 CAN 1 3.31 

121 2558 O HIE 164 --- 23 C19 CAN 1 3.64 

122 2559 N HIE 165 --- 23 C19 CAN 1 2.32 

123 2561 CA HIE 165 --- 23 C19 CAN 1 1.44 

124 2563 CB HIE 165 --- 23 C19 CAN 1 2.82 

125 2574 C HIE 165 --- 23 C19 CAN 1 0.8 

126 2575 O HIE 165 --- 23 C19 CAN 1 1.3 

127 2576 N MET 166 --- 23 C19 CAN 1 1.93 

128 2578 CA MET 166 --- 23 C19 CAN 1 3.14 

129 2285 N CYS 146 --- 24 C20 CAN 1 3.46 

130 2287 CA CYS 146 --- 24 C20 CAN 1 2.91 

131 2289 CB CYS 146 --- 24 C20 CAN 1 2.31 

132 2292 SG CYS 146 --- 24 C20 CAN 1 2.8 

133 2561 CA HIE 165 --- 24 C20 CAN 1 3.74 

134 2574 C HIE 165 --- 24 C20 CAN 1 2.96 

135 2575 O HIE 165 --- 24 C20 CAN 1 1.92 

136 2576 N MET 166 --- 24 C20 CAN 1 3.89 

 

 

Table 5.6A. List of atom-atom interactions across protein-protein interface in SARS-Cov2- ROS 

complex from PDBsum server. 

 

SARS-CoV-2 Mpro Hydrogen  

bonds 

 

Rosmanol (ROS) 

Sl.no 

  

Atom 

no. 

Atom 

name 

Res 

name 

Res 

no. 

Atom 

no. 

Atom 

name 

Res 

name 

Res 

no. 

  

Distance 

1 2234 O PHE 141 <-- 1 O1 ROS 1 3.30 

2 2554 NE2 HIE 164 <-- 3 O3 ROS 1 3.20 

3 2561 NE2 HIE 178 <-- 5 O5 ROS 1 3.28 
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Table 5.6B. List of atom-atom interactions (non-bonded) across protein-protein interface in SARS-

Cov2- ROS complex from PDBsum server. 
 

SARS-CoV-2 Mpro non- 

bonded 

 

Rosmanol (ROS) 

Sl.no Atom Atom Res Res Atom Atom Res Res   

  no. name name no. no. name name no.  Distance 

1 2234 O PHE 141 --- 1 O1 ROS 1 3.3 

2 2598 CB GLU 167 --- 1 O1 ROS 1 3.81 

3 2605 OE1 GLU 167 --- 1 O1 ROS 1 3.9 

4 2552 CE1 HIE 164 --- 3 O3 ROS 1 3.82 

5 2554 NE2 HIE 164 --- 3 O3 ROS 1 3.2 

6 2579 CA MET 166 --- 3 O3 ROS 1 3.38 

7 2592 C MET 166 --- 3 O3 ROS 1 3.15 

8 2593 O MET 166 --- 3 O3 ROS 1 3.75 

9 2594 N GLU 167 --- 3 O3 ROS 1 3.14 

10 2598 CB GLU 167 --- 3 O3 ROS 1 3.55 

11 2579 CA MET 166 --- 4 O4 ROS 1 3.88 

12 2581 CB MET 166 --- 4 O4 ROS 1 3.52 

13 2594 N GLU 167 --- 4 O4 ROS 1 3.47 

14 2944 O GLN 190 --- 4 O4 ROS 1 3.51 

15 2608 O GLU 167 --- 5 O5 ROS 1 3.28 

16 2944 O GLN 190 --- 5 O5 ROS 1 3.75 

17 2234 O PHE 141 --- 9 C4 ROS 1 3.46 

18 2594 N GLU 167 --- 12 C7 ROS 1 3.85 

19 2598 CB GLU 167 --- 12 C7 ROS 1 3.68 

20 2604 CD GLU 167 --- 14 C9 ROS 1 3.83 

21 2605 OE1 GLU 167 --- 14 C9 ROS 1 3.88 

22 2606 OE2 GLU 167 --- 14 C9 ROS 1 3.74 

23 2594 N GLU 167 --- 15 C10 ROS 1 3.69 

24 2598 CB GLU 167 --- 15 C10 ROS 1 3.56 

25 2598 CB GLU 167 --- 16 C11 ROS 1 3.7 

26 2234 O PHE 141 --- 17 C12 ROS 1 3.74 

27 2252 C LEU 142 --- 17 C12 ROS 1 3.89 

28 2253 O LEU 142 --- 17 C12 ROS 1 3.12 

29 2282 OG SER 145 --- 17 C12 ROS 1 3.21 

30 2594 N GLU 167 --- 19 C14 ROS 1 3.58 

31 2608 O GLU 167 --- 19 C14 ROS 1 3.84 

32 2598 CB GLU 167 --- 20 C15 ROS 1 3.85 

33 2604 CD GLU 167 --- 20 C15 ROS 1 3.88 

34 2606 OE2 GLU 167 --- 20 C15 ROS 1 3.41 

35 2608 O GLU 167 --- 22 C17 ROS 1 3.49 

36 2608 O GLU 167 --- 24 C19 ROS 1 3.6 
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37 2626 C LEU 168 --- 24 C19 ROS 1 3.77 

38 2963 CB ALA 192 --- 25 C20 ROS 1 3.78 

  The protein-ligand interaction patterns for all ligands with SARS-CoV-2 Mpro obtained from 

the LigPlot tool are depicted in Figure 5.13.   

 

 

Figure 5.13. Amino acid residual interactions of the protein-ligand interface in (A) SARS-CoV-2-

Alpha-ketoamide (B) SARS-CoV-2-Arjunglucoside-I (C) SARS-CoV-2-Carnosol (D) SARS-CoV-2-

Rosmanol complexes. The hydrogen bond interactions are represented by dashed lines.  The amino 

acid residues involved in the hydrophobic interactions are shown as starbursts. 

In addition, we have also determined the total number of inter-molecular hydrogen bonds at different 

points throughout the 50 ns simulation time in the four complexes as shown in Figure 5.14.  From the 
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plots we can see for the four complexes, the number of inter-molecular hydrogen bonds follows the order 

SARS-CoV-2 Mpro-Arjunglucoside > SARS-CoV-2 Mpro-Carnosol > SARS-CoV-2 Mpro- Alpha-

ketoamide > SARS-CoV-2 Mpro-Rosmanol.   These observations suggested the ligands from Indian 

spices as strong inhibitor against SARS-CoV-2 Mpro.  

 

 
Figure 5.14. Number of inter-molecular hydrogen bonds between SARS-CoV-2 Mpro and the small 

molecule inhibitors as a function of simulation time in picoseconds (ps). 
 

 

5.4.3.5. Binding free energy (BFE) and per residue energy decomposition (PRED) 

analysis.  

The molecular mechanic energies were integrated using the MM-PBSA/GBSA method to further study 

the free energy of the binding of small molecules with the SARS-CoV-2 Mpro. Because MM-

PBSA/GBSA approach uses a continuum solvent technique to determine the binding free energies of a 

complex system, the binding energy values here represent the relative binding free energy, not the 

absolute or total binding free energy. The main goal of these methods is to determine the difference in 

free energy between the bound and unbound states of protein-ligand complexes.  For all of the protein-

ligand complexes, the MM-PBSA/GBSA approach was used to calculate all of the thermochemical 

characteristics by using the AMBER suite for each coordinate at every 10 ps sampling frequency 

throughout the MD trajectory. The most stable complexes were considered to be the those with the lowest 
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binding energy. The binding free energy analysis for SARS-CoV-2 Mpro- small molecule inhibitor 

complexes were tabulated in Table 5.7 to Table 5.14.  The total free energies (∆Gbind) obtained from 

MM-GBSA and MM-PBSA for the protein-ligand complexes show comparable values (-13.14 kcal/mol 

from MM-GBSA and -5.31 kcal/mol from MM-PBSA for the SARS-CoV-2 Mpro-Alpha-ketoamide 

complex, -19.74 kcal/mol from MM-GBSA and  -9.13 kcal/mol from MM-PBSA for the SARS-CoV-2 

Mpro-Arjunglucoside-I complex, -16.81 kcal/mol from MM-GBSA and  -9.98 kcal/mol from MM-

PBSA for the SARS-CoV-2 Mpro-Carnosol complex,  -14.05 kcal/mol from MM-GBSA and  -5.87 

kcal/mol from MM-PBSA for the SARS-CoV-2 Mpro-Rosmanol complex). ∆Gbind for the SARS-CoV-

2 Mpro showed the least value for the SARS-CoV-2 Mpro and Arjunglucoside-I complex followed by 

SARS-CoV-2 Mpro-Carnosol complex, SARS-CoV-2 Mpro-Rosmanol complex and SARS-CoV-2 

Mpro-Alpha-ketoamide complex.  These observations suggest the small molecule obtained from Indian 

spices as potential inhibitors of SARS-CoV-2 Mpro. 

Table 5.7. The various components of the Binding Free Energy (kcal/mol) evaluated by Molecular 

Mechanics-Generalized Borne Surface Area (MM-GBSA) method between SARS-CoV-2 main protease 

(Mpro) – alpha ketoamide (AKA) complex. 

 Average (Mpro-AKA) 

(kcal/mol) 

Average (Mpro) 

(kcal/mol) 

Average (AKA) 

(kcal/mol) 

▲ 

(kcal/mol) 

VDW -2403.67 -2363.27 -1.83 -38.57 

ELE -21647.22 -21576.06 -58.59 -12.56 

GB -2610.86 -2601.34 -19.29 9.77 

GBSUR 103.86 105.04 3.36 -4.54 

GAS -24050.90 -23939.33 -60.43 -51.13 

GBSOL -2506.99 -2516.29 -15.92 25.22 

GBTOT -26557.89 -26445.63 -76.35 -35.90 

TSTRA 17.01 16.99 13.42 -13.40 

TSROT 17.72 17.70 11.43 -11.41 

TSVIB 3314.02 3258.52 53.45 2.05 

TSTOT 3348.75 3293.22 78.30 -22.76 

ΔGbind                                                                                                                             -13.14 

Electrostatic energy (ELE); van der Waals contribution (VDW); total gas phase energy (GAS); nonpolar contribution 

to the solvation free energy (GBSUR); the electrostatic contribution to the solvation free energy (GB); sum of nonpolar 

and polar contributions to solvation (GBSOL); final estimated binding free energy (GBTOT); translational energy 
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(TSTRA); rotational energy (TSROT); vibrational energy (TSVIB), total entropic contribution (TSTOT); binding free 

energy (ΔGbind). 

Table 5.8. The various components of the Binding Free Energy (kcal/mol) evaluated by Molecular 

Mechanics- Poisson-Boltzmann Surface Area (MM-PBSA) method between SARS-CoV-2 main 

protease (Mpro) – alpha ketoamide (AKA) complex 

 Average (Mpro-AKA) 

(kcal/mol) 

Average (Mpro) 

(kcal/mol) 

Average (AKA) 

(kcal/mol) 

▲ 

(kcal/mol) 

VDW -2403.67 -2363.27 -1.83 -38.57 

ELE -21647.22 -21576.06 -58.59 -12.56 

PB -2650.11 -2664.57 -21.09 35.55 

NPOLAR 2328.40 2376.58 37.43 -85.43 

DISPER -1307.40 -1314.42 -35.99 43.01 

GAS -24050.90 -23939.33 -60.43 -51.13 

PBSOL -1629.11 -1662.51 -19.65 53.06 

PBTOL -25680.01 -25570.76 -80.08 -28.07 

TSTRA 17.01 16.99 13.42 -13.40 

TSTRO 17.72 17.70 11.43 -11.41 

TSVIB 3314.02 3258.52 53.45 2.05 

TSTOL 3348.75 3293.22 78.30 -22.76 

ΔGbind                                                                                                                 -5.31 

Electrostatic energy (ELE); van der Waals contribution (VDW); total gas phase energy (GAS); nonpolar contribution 

to the solvation free energy (GBSUR); the electrostatic contribution to the solvation free energy (GB); sum of nonpolar 

and polar contributions to solvation (GBSOL); final estimated binding free energy (GBTOT); translational energy 

(TSTRA); rotational energy (TSROT); vibrational energy (TSVIB), total entropic contribution (TSTOT); binding free 

energy (ΔGbind). 

 

Table 5.9.  The various components of the Binding Free Energy (kcal/mol) evaluated by Molecular 

Mechanics-Generalized Borne Surface Area (MM-GBSA) method between SARS-CoV-2 main 

protease (Mpro)–arjunglucoside-I(ARJ) complex. 

 Average (Mpro-ARJ) 

(kcal/mol) 

Average (Mpro) 

(kcal/mol) 

Average (ARJ) 

(kcal/mol) 

▲ 

(kcal/mol) 

VDW -2354.72 -2318.97 -1.78 -33.96 

ELE -21639.86 -21531.04 -94.56 -14.25 
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GB -2619.47 -2592.13 -23.86 -3.48 

GBSUR 107.75 108.00 3.46 -3.71 

GAS -23994.59 -23850.02 -96.35 -48.21 

GBSOL -2511.71 -2514.12 -20.40 22.81 

GBTOT -26506.30 -26349.14 -116.75 -40.39 

TSTRA 17.01 16.99 13.51 -13.50 

TSROT 17.73 17.71 11.75 -`11.73 

TSVIB 3328.01 3272.04 51.38 4.58 

TSTOT 3362.75 3306.75 76.65 -20.65 

ΔGbind                                                                                                                                         -19.74 

 

Table 5.10. The various components of the Binding Free Energy (kcal/mol) evaluated by Molecular 

Mechanics-Poisson-Boltzmann Surface Area (MM-PBSA) method between SARS-CoV-2 main 

protease (Mpro)–Arjunglucoside-I (ARJ) complex. 

 Average (Mpro-ARJ) 

(kcal/mol) 

Average (Mpro) 

(kcal/mol) 

Average (ARJ) 

(kcal/mol) 

▲ 

(kcal/mol) 

VDW -2354.72 -2318.97 -1.78 -33.96 

ELE -21639.86 -21531.04 -94.56 -14.25 

PB -2649.89 -2658.20 -26.25 34.56 

NPOLAR 2356.32 2410.29 37.98 -91.95 

DISPER -1345.89 -1349.73 -36.98 40.82 

GAS -23994.59 -23850.02 -96.35 -48.21 

PBSOL -1639.46 -1667.64 -25.25 53.43 

PBTOL -25634.05 -25481.67 -121.60 -29.78 

TSTRA 17.01 16.99 13.51 -13.50 

TSTRO 17.73 17.71 11.75 -`11.73 

TSVIB 3328.01 3272.04 51.38 4.58 

TSTOL 3362.75 3306.75 76.65 -20.65 

ΔGbind                                                                                                                                 -9.13 
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Table 5.11. The various components of the Binding Free Energy (kcal/mol) evaluated by Molecular 

Mechanics-Generalized Borne Surface Area (MM-GBSA) method between SARS-CoV-2 main 

protease (Mpro) – Carsonol(CAN) complex. 

 Average (Mpro-CAN) 

(kcal/mol) 

Average (Mpro) 

(kcal/mol) 

Average (CAN) 

(kcal/mol) 

▲ 

(kcal/mol) 

VDW -2371.15 -2325.41 -1.60 -44.13 

ELE -21486.26 -21408.65 -59.01 -18.60 

GB -2790.09 -2803.01 -19.54 32.46 

GBSUR -110.37 -111.65 3.37 -4.65 

GAS -23857.42 -23734.06 -60.61 -62.47 

GBSOL -2679.72 -2691.36 -16.17 27.81 

GBTOT -26537.14 -26425.43 -76.78 -34.93 

TSTRA 17.01 16.99 12.89 -12.88 

TSROT 17.71 17.71 10.32 -10.32 

TSVIB 3294.63 3268.39 21.15 5.08 

TSTOT 3329.35 3303.11 44.37 -18.12 

ΔGbind                                                                                                                                         -16.81 

 

Table 5.12. The various components of the Binding Free Energy (kcal/mol) evaluated by Molecular 

Mechanics- Poisson-Boltzmann Surface Area (MM-PBSA) method between SARS-CoV-2 main 

protease (Mpro) – Carsonol (CAN complex). 

 Average (Mpro-CAN) 

(kcal/mol) 

Average (Mpro) 

(kcal/mol) 

Average (CAN) 

(kcal/mol) 

▲ 

(kcal/mol) 

VDW -2371.15 -2325.41 -1.60 -44.13 

ELE -21486.26 -21408.65 -59.01 -18.60 

PB -2838.37 -2849.99 -21.30 32.92 

NPOLAR 2362.69 2393.40 37.32 -68.03 

DISPER -1351.53 -1365.30 -35.96 49.74 

GAS -23857.42 -23734.06 -60.61 -62.74 
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PBSOL -1827.20 -1861.89 -19.95 54.63 

PBTOL -25684.63 -25575.96 -80.56 -28.10 

TSTRA 17.01 16.99 12.89 -12.88 

TSTRO 17.71 17.71 10.32 -10.32 

TSVIB 3294.63 3268.39 21.15  5.08 

TSTOL 3329.35 3303.11 44.37 -18.12 

ΔGbind                                                                                                                                -9.98 

 

Table 5.13. The various components of the Binding Free Energy (kcal/mol) evaluated by Molecular 

Mechanics-Generalized Borne Surface Area (MM-GBSA) method between SARS-CoV-2 main 

protease (Mpro)- Rosmanol (ROS) complex. 

 Average (Mpro-ROS) 

(kcal/mol) 

Average (Mpro) 

(kcal/mol) 

Average (ROS) 

(kcal/mol) 

▲ 

(kcal/mol) 

VDW -2349.32 -2316.12 -1.42 -31.77 

ELE -21530.17 -21413.80 -95.14 -21.22 

GB -2709.64 -2698.31 -23.17 11.84 

GBSUR 111.81 111.40 3.46 -3.04 

GAS -23879.49 -23729.93 -96.57 -52.99 

GBSOL -2597.82 -2606.91 -19.70 28.79 

GBTOT -26477.32 -26326.84 -116.27 -34.19 

TSTRA 17.01 16.99 12.93 -12.92 

TSROT 17.72 17.71 10.39 -10.38 

TSVIB 3282.50 3257.09 22.23 3.16 

TSTOT 3317.22 3291.80 45.56 -20.14 

ΔGbind                                                                                                                                         -14.05 
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Table 5.14. The various components of the Binding Free Energy (kcal/mol) evaluated by Molecular 

Mechanics-Poisson-Boltzmann Surface Area (MM-PBSA) method between SARS-CoV-2 main 

protease (Mpro)- Rosmanol(ROS) complex 

 Average (Mpro-ROS) 

(kcal/mol) 

Average (Mpro) 

(kcal/mol) 

Average (ROS) 

(kcal/mol) 

▲ 

(kcal/mol) 

VDW -2349.32 -2316.12 -1.42 -31.78 

ELE -21530.17 -21413.80 -95.14 -21.23 

PB -2736.89 -2748.61 -25.20 36.92 

NPOLAR 2368.27 2405.68 37.97 -75.38 

DISPER -1364.39 -1365.04 -36.80 37.45 

GAS -23879.49 -23729.93 -96.57 -52.99 

PBSOL -1733.01 -1763.97 -24.03 54.98 

PBTOL -25612.51 -25434.90 -120.60 -26.01 

TSTRA 17.01 16.99 12.93 -12.92 

TSTRO 17.72 17.71 10.39 -10.38 

TSVIB 3282.50 3257.09 22.23 3.16 

TSTOL 3317.22 3291.80 45.56 -20.14 

ΔGbind                                                                                     -5.87                                                                                                                                      

 

5.4.3.6. The decomposition of residue. 

The contribution of each individual residue to the binding free energy has been examined in depth to 

understand the protein-ligand binding mechanism. To construct the residue-ligand interaction spectrum, 

the binding free energy is decomposed in terms of interacting residue-ligand pairs., shown in Figure 5.15-

5.18. The method of residue decomposition is particularly useful for explaining the protein-ligand binding 

mechanism at the atomic level, as well as for analysing the contribution of each individual residue to the 

binding free energy. The contribution toward binding free energy of several key residue-ligand pairs is 

split into vdW energy, the sum of electrostatic energy and polar solvation energy, and non-polar solvation 

energy, according to the analytic result of residue-ligand interaction spectrum. From the analysis, we can 

see the residues in the binding pocket of SARS-CoV-2 Mpro make a significant contribution to binding 

free energy. 
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Figure 5.15. Decomposition of the binding free energy on (A) per-residue basis (B) per-residue 

basis into contribution from vdW energy, the sum of electrostatic energy and polar solvation energy 

and non-polar solvation energy for SARS-CoV-2 Mpro-Alpha ketoamide complex. 
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Figure 5.16. Decomposition of the binding free energy on (A) per-residue basis (B) per-residue basis 

into contribution from vdW energy, the sum of electrostatic energy and polar solvation energy and 

non-polar solvation energy for SARS-CoV-2 Mpro-Arjunglucoside –I complex 

(B) 

(A) 
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Figure 5.17. Decomposition of the binding free energy on (A) per-residue basis (B) per-residue 

basis into contribution from vdW energy, the sum of electrostatic energy and polar solvation 

energy and non-polar solvation energy for SARS-CoV-2 Mpro-Carnosol complex 
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Figure 5.18. Decomposition of the binding free energy on (A) per-residue basis (B) per-residue 

basis into contribution from vdW energy, the sum of electrostatic energy and polar solvation 

energy and non-polar solvation energy for SARS-CoV-2 Mpro-Rosmanol complex 

5.5. Conclusion:  

In this study, we found that small molecule inhibitors (Carnosol, Arjunglucoside-I, and Rosmanol) 

traced out from Indian spices can act as potential inhibitors of SARS-CoV-2 Mpro.  We conducted the 

research in this direction using in silico approach and our results revealed that Arjunglucoside-I 

comparatively strongly inhibited the SARS-CoV-2 Mpro followed by Carnosol, Rosmanol and then 

Alpha-ketoamide (positive control). The PMF calculations revealed that the small molecule inhibitors 

to have a deeper energy potential depth and consequently a longer residence period (Arjunglucoside-

I, Carnosol and Rosmanol) in the binding pocket of SARS-CoV-2 Mpro. The order of inhibition among 

(B) 

(A) 



 

 

CHAPTER 5 | 2025 
  

CHAINEE DAS 194 
 

the small molecule inhibitors and Alpha-ketoamide (positive control) was determined using binding 

free energy calculations. ∆Gbind for the SARS-CoV-2 Mpro showed the least value for the SARS-CoV-

2 Mpro and Arjunglucoside-I complex followed by SARS-CoV-2 Mpro-Carnosol complex, SARS-

CoV-2 Mpro-Rosmanol complex and SARS-CoV-2 Mpro-Alpha-ketoamide complex.  These findings 

point to small molecule inhibitors derived from Indian spices as potential SARS-CoV-2 Mpro 

inhibitors. From the PRED analysis, we found the residues present in the binding pocket of SARS-

CoV-2 Mpro provided the highest energy contributions for the SARS-CoV-2 Mpro-small molecules 

interactions.  Our findings shed light on the binding pathway and degree of association between SARS-

CoV-2 Mpro and the small molecules (Arjunglucoside-I, Carnosol, and Rosmanol, Alpha-ketoamide 

(positive control)) in the complex formation. These findings could aid in the development of novel 

SARS-CoV-2 Mpro inhibitors. 
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